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Scaling theory of nonlinear critical relaxation
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A scaling analysis of nonlinear critical slowing down on the basis of a Landau-type relaxation equation, shows

that the critical exponents, 5," and b, "' of the linear and nonlinear relaxation times of the order parameter
are related by h, '"' = d"' —P. Generally if Q scales like 5 T~Q one has 6 &' —5'&" ——P& but a different relaxation

may occur in systems with oscillatory modes.

Consider a thermodynamic property 4'(t}, which
relaxes to zero with time t; for example, the or-
der parameter of a system at temperature T
above, but near its critical point, T, . If 4, =4'(0)
is the initially prepared value, the relaxation time
may be defined"' generally by

The limit 40- 0, of a vanishingly small initial dis-
turbance, then defines the linear relaxation time
TI ' «(T); on approach to a critical point, TI" will
in general diverge as AT-~ where LT = T- T, .(r)

On the other hand, if one lets T approach T, at
fixed finite 4', (& 0} one is studying the nonlinear
relaxation time which, in principle, diverges with
a distinct exponent b, "' as 4T 0.

Previous discussions"' have lead one to expect
the equality 4 ' = 4"'-, except for possible viola-
tions in nonergodic systems, ' since the long-time
relaxation always occurs in the linear region close
to equilibrium. However, it has recently been dis-
covered' that the critical exponents of the linear
and nonlinear relaxation may differ even in an

ergodic system. In this note, as a step towards a
better understanding of the phenomena of nonlinear
critical slowing down, we examine the problem on
the basis of scaling theory applied to a Landau-
type relaxation formulation. Our analysis leads to
the exponent relation

~(nt) ~(t) p

where P is the exponent characterizing the scaling
of 4 with b,T. This relation is relevant, ' in partic-
ular, to the interpretation of the recent observa-
tion' of critical slowing down near the order-dis-
order transition in the binary alloy Ni, Mn. More
generally for the relaxation of another quantity,
such as the energy E, we find the corresponding
exponent difference 4~' —4~ ' to be P~ =1- a

(where a is the standard specific-heat exponent),
and so on. We also show that for systems in which
the relaxation is governed by a non-Hermitian
Liouville operator the relation between 6 ' and

may differ from that in a purely dissipative
system.

To develop the argument we postulate that the
time evolution of the macroscopic order parame-
ter (4 =(g, ,)) towards an equilibrium configura-
tion of minimum free energy may be described by
the dissipative equation

8+ Bg—=-r-
8t ~C ' (3)

where E(4', T) is the appropriate free energy of the
system. Near the critical point, the driving field
h satisfies the scaling relation'

for 4™0, where 5 =1+ y/P is the critical isochore
exponent, and y is the susceptibility exponent.

Now in order to describe properly the analytic
behavior of h for small 4 and T& T, , the scaling
function H(x) must' vary as

H(x)- x"[H +H x +O(x }],
as x-~, where H„ is directly related to the sus-
ceptibility amplitude for T & T, . For finite x the
requirement is simply that H(x) be analytic so that

H(x) =Ho+H, x+O(x'), Ho& 0.
Following various microscopic calculations' and,
for example, Suzuki's Kadanoff-type cell analysis
for time-dependent phenomena, ' it is appropriate
to assume that F in (3) is a renormalized kinetic
coefficient satisfying the scaling relation

I'= nT G(d.T/4" ~8).

Note, indeed, that the important memory effects
are neglected in (3) only seemingly. From Kawa-
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saki's work' one can see that, at least near four
dimensions, the memory terms lead, in the criti-
cal region, merely to a renormalization of the
kinetic coefficient as incorporated here.

In order to describe properly the linear regime
(q -0) and the relaxation on the critical isotherm
the scaling function G(x) must have the following
asymptotic propertie s

G( }=F,&0 and G(x)=Ax ' (8)

m'Z-(m "),-
where E(x) = G(x)H(x). If m, (t') is the solution of
this equation satisfying m, (0) =x=@o/c T s, we may
rewrite the relaxation time (1) in the scaled form

r(c „T)= 4(4, /d. T')/r T"",
where the scaling function is

s(x)=*-' f dr, (r).
0

(12)

Now the linear relaxation time is evidently given
by

r&'&=C(0)tT, 8 '=y+o',(~)
(13}

provided 4 (0) is finite and nonzero; this will be
shown below. Conversely the nonlinear relaxation
time requires knowledge of C (x) for large x; we
will demonstrate the behavior

4(x}= 4 /x, as x-~.
From this we immediately deduce

(14)

r "' =(C „/4, )n.T, A"' =y+o —p. (15}

Comparison with (13) establishes the result (2) for
the difference between 4 " and 4

To study 4(x) we integrate (10) to obtain

t'= V(m„)- V(x),
(16)

(y) =
q&( -its)

Since SC(x) is positive, V(y) is a monotonic function
and so has a monotonic inverse, V '(u), in terms
of which the solution of (10) is m, (t ' }= V '[t'+ V(x)].
It follows that the scaling function 4(x) can be ex-
pressed as

as x-0. As x-~ the correction terms are of the
same form as in (5).

We may now rewrite the evolution equation (3) in
terms of the scaled variables

m =C /d Ts, t ' = d, T ""t,
and so obtain

4(x) =x ' V '(u)du.
v(x)

Using the properties (5), (6), and (8) of H(x) and

G(x) we find from (16) the small-y behavior

V(y) = (I'+„) 'lny '+ V, +O(y'), (18)

dt 4 t op
tI

where t, is the time at which the system enters the
linear region. Since for t& t, the system is in the
linear region, the integral over 4(t }/4'(t, ) gives,
by definition, the linear relaxation time, so from
(19}we have

r'"" = 7"' e(t, )/e, . (20)

But by (b), we have q (t, ) = Bd,Ts yielding rt"' l/r ~"
- ATs, which implies (2). The difficulty with the
argument is that the time t, also diverges when
T- T, so the contribution to the integral for t& t,
cannot be bounded; indeed according to scaling it
contributes equally strongly to the divergence.

When a system must be described by a non-Her-

where the positive constant Vo comes from the
large-m region of the defining integral. This
means V(x)-~ as x-0 and V '(u)= exp[- I'0
x H„(u —Vo)] as u-~. Using this information it is
easy to show that C (0) = 1/I'0 H„which is finite and
nonzero.

To establish (14) we must, by (I'7), show that the
integral f,"V '(u) du = 4 „ is finite. Convergence
at the upper limit follows from (18), as already
seen. Since V '(u) is monotonic, only the lower
limit needs study Fr.om (16) using (6) and (8),
one finds V(y} - I/H, Ayi ~' l as y-~, so that,
when u-0 one has V '(u) - u t with t; = p/(y+a).
Hence J V '(u) du converges at u =0 provided y+o
& P, which is always so in reality. " Finally,
since V '(u) is positive, the integral defining 4 „
cannot vanish.

These arguments go through with 4 replaced by
another variable, say the energy E, for which the
appropriate driving field, say Its, is (i) finite on
the critical isotherm, (ii) analytic across the
critical isochore (small field) above T, , and
(iii} can be written in scaled form in terms of, say
nE/n. T

Indeed a more general heuristic argument for the
relation (2), not relying on the determinate Lan-
dau-Ginzburg ansatz, can be based on two assump-
tions: (a) that the divergence of ri"'~(T) is deter-
mined only by the long-time relaxation in the lin-
ear region; and (b) that the extent of the linear
region diminishes according to (4'~ &BAT . The
integral in (1) can then be estimated by
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&F
et

- a+ (21}

where SF/S4' is again given by (4) except that q is
replaced by ~4'

~
and a factor sgn(4') is required.

The kinetic coefficient is assumed to vary as
Q(4, T) = bT W(n. T/4" 8) with W(~) = W„& 0 and

W(x) = Cx as x- 0.
The characteristic time of this system is the

period of oscillation r Analys. is of (21) shows
that v depends on the amplitude 40 through the
scaling relation

7 (q„T) =4 (4,/r Ts)/dT (22)

mitian Liouville operator there may be oscillatory
modes and the situation is more complex, since
the coupling between modes plays an essential role
in developing the singularities in dynamical quan-
tities. " We have not devised general arguments
for nonlinear phenomena in such situations but the
following simple model serves to demonstrate that
the relation between b, "' and 6 can be different
from (2) in a system with a non-Hermitian Liou-
ville operator. To this end assume the order pa-
rameter does not couple to other quantities and
that its motion is described by the nonlinear oscil-
lator equation"

1'(y}=2 m K(m '~s)dm,
0

(24)

with K(x) = W'(x)H(x). Using the asymptotic prop-
erties of H(x) and W(x) one finds 4(0) = const and

4(x) =4„/xi '" '~ as x-~. These results allow
us to conclude from (22) that

~(l) ~+ &y ~(nl) 02 j (25)

z+ +Q —d+

is a conserved quantity. If, as might be more
realistic, a dissipative term S4'/&t is introduced
which violates this conservation law then, close to
the critical point, a crossover to purely dissipa-
tive behavior occurs and the system may be de-
scribed asymptotically again by the Landau-type
equation (3).

which evidently differs from the result (2) for sim-
ple dissipative systems. We stress, however, that
owing to the complexities of systems with interact-
ing oscillatory modes this last relation may well
be of restricted applicability.

It may also be remarked that a crucial feature of
the model equation of motion (12) is that the "ener-

where the scaling function is given by

3:

C (x) =4 [1'(x) —F(y)] ' dy,
0

(23)
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