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The susceptibility of simple-cubic-lattice ferromagnetic Ising films of n two-dimensional lattice layers is

studied by extrapolation of high-temperature series expansions (to eleventh and twelfth orders) for n = 3,4,..., 14
layers with periodic boundary conditions, and n = 3,4,...,10 layers with free-surface conditions. The
corresponding surface susceptibility series for sc, bcc, and fcc lattices are analyzed in the light of universality

hypotheses. On the basis of finite-size scaling theory explicit scaling functions are constructed describing the
crossover from two-dimensional to three-dimensional critical behavior in terms of the ratio n/g(T), where

g —b, T " is the bulk correlation length.

I. INTRODUCTION

The effect of the dimensionality d on the critical
behavior of a system is well established' '. for a
given Hamiltonian, the critical exponents depend
strongly on d (for d~4). The characteristic di-
mensionality of a system as it approaches a criti-
cal point is determined by the number of spatial
dimensions in which the system has infinite ex-
tent. Accordingly, both purely two-dimensional
or planar (~x ~) systems and films of finite thick-
ness L (~ &&~ x L}must exhibit the same critical
exponent values typical of d =2. In the present
work, which represents part of a general study' '4

of the effects of finite size on critical-point be-
havior, " "the susceptibilities of ferromagnetic
films are studied theoretically on the basis of
exact high-temperature series expansions.

W'e consider films formed of magnetic spina
localized on the sites of a cubic (sc, bcc, or fcc)
lattice with nearest-neighbor distance a and cubic
cell edge a'. The films are infinite in two dimen-
sions and of finite thickness I. =na' in the third,
orthogonal dimension (taken parallel to a cubic
lattice axis). Two types of boundary conditions are
studied (i) periodic (denoted by v =0) where the
first and nth layers are regarded as adjacent
neighboring layers; and (ii) free surface condi-
tions (denoted by v =1) where the lattice is simply
truncated so that there are no spins in the zeroth
and (n+1)th layers. The magnetic spine are taken
to have spin value S =

& and to interact through the
standard, nearest-neighbor ferromagnetic Ising-
model Hamiltonian

X=-J s& s& —mH g&,

where s, = +1 is the spin at the i th lattice site,
(i,j) denotes nearest-neighbor pairs, d&0 is the
exchange parameter, m is the magnetic moment
per spin, and II is the external magnetic field.

In earlier work by Allan, ' series expansions for
the zero-field reduced susceptibility, }tr(n, T),
of an n-layer film were derived to ninth order for
n =3, 3, 4, and 5 (and analyzed to estimate criti-
cal temperatures}. Later (see Ref. 8) Allan ex-
tended these series to eleventh order for up to
n =7 layers. By using the results of Sykes, Gaunt,
Roberts, and Wyles'4 for the bulk sc lattice,
further series for thicker layers have now been
obtained. These sc series are reported in Table I
for periodic conditions [to eleventh order for n =3,
twelfth order for n =4 to 9, and (n+3)rd order up
to n =14] and in Table II for free-surface condi-
tions (to eleventh order up to n =10). These sus-
ceptibility series are extrapolated to study the
crossover from the two-dimensional behavior of
gr(n; T), which diverges as [T —T,(n)] ~, with"
y =14 as T approaches the critical temperature
T,(n) in a "thin" film, to three-dimensional be-
havior, namely, rr [T —T,(~)]-~, with y=1—,', in a
"thick" (n-~) film. In particular, the shift in
critical temperature e(n) ~ [T,(n) — (T~)] is found
to vary as n ~" for large n, where v = ~i4 is the
correlation length exponent. Our estimates of
T,(n) are corroborated fairly well in recent Monte
Carlo work by Binder and co-workers. "'"

The surface susceptibilities y~r(T) for the sc
lattice (obtained by Allan) and for the bcc and fcc
lattices (calculated by Watson" ")are a'nalyzed
in the light of the universality hypothesis which
relates the amplitude of divergence of rr(T) on a
particular lattice to the corresponding amplitudes
for the bulk susceptibility Zr(T} and the bulk cor-
relation length $(T).

Finally in the light of finite-size scaling theo-
ry, ' ' '""which relates the asymptotic cross-
over behavior to the scaled thickness variable
y =L/$(T), the extrapolated series for films of
different thickness are examined as a family.
This leads to numerical determination of the uni-
versal scaling functions (differing for free-surface
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TABLE I. Susceptibility expansion coefficients &~ (n) for periodic (&= 0), simp)e cubic, n-layer Ising films. Note:
co= 1 and blank entries in a row represent the same figure as in the nearest column.

n=2 n=4 n=6 n=7

1
2

3
4
5
6
7
8
9

10
ll
12

6
28

130
564

2438
10132
41 794

169652
682 870

6
30

148
706

3322
15364
70 222

317 574
1 424 652
6 348 234

28 129 922

30
150
724

3490
16490
77 826

362 356
1 684 966
7 758 846

35 693 078
163 033 352

150
726

3508
16 690
79 234

373 106
1 751 810
8 182 156

38 100 350
176 751 774

726
3510

16 708
79 474

374 866
1 767138
8 281 978

38 793 234
180 872 492

3510
16 710
79 492

375 154
1 769 322
8 303 754

38 940 962
182 004 234

16 710
79 494

375 172
1 769666
8 306434

38 971 538
182 219 074

n=g n=10 n =11 n=12 n=13 n =14

7
8
9

10
11
12
13
14
15
16
17

79 494
375 174

1 769684
8 306 842

38 974 786
182 261 354

375 174
1 769 686
8 306 860

38 975 266
182 265 242
852 058 290

1 769686
8 306 862

38 975 284
182 265 802
852 062 890

3 973 778 738

8 306 862
38 975 286

182 265 820
852 063 538

3 973 784 122
18 527 525 202

38 975 286
182 265 822
852 063 556

3 973 784 866
18 527 531442
86228 659 746

182 265 822
852 063 558

3 973 784 884
18 527 532 290
86228 666914

401 225 381 954

852 063 058
3 973 784 886

18 527 532 310
86 228 667 894

401 225 391 222

and periodic conditions) which describe the cross-
over quantitatively. " Simple analytic approxi-
mants are constructed for the scaling functions;
these should be useful in the interpretation of data
on real ferromagnetic films of sufficient uniformity
and controlled thickness.

The layout of the remainder of this paper is as
follows. The scaling theory for films is recapitu-
lated briefly in Sec. II, and the new consequences
of the universality hypothesis are exhibited. In
Sec. III the series expansions are presented. The
analysis of the series for gr(n; T) is described in
Sec. IV while the surface susceptibilities are
analyzed in Sec. V, and used to test the univer-
sality hypothesis. Finally, in Sec. VI the con-
struction of the scaling functions is undertaken.

relation is a'/a =2/W3 and v2, respectively.
If T,(n) denotes the critical temperature of the

finite-thickness, n-layer film, so that T,(~) is the
bulk (three-dimensional} critical temperature, the
reduced critical point shift is defined'~ by

e (n) = [T,(n) —T,(~)]/T, (~) . (2.2)

The critical-point shift exponent ~ is then intro-
duced vxa

e (n }= 5/n as n - ~ . (2.3)

Of course, for finite n a correction factor of the
form [1+5,/n+ ~ ~ ] must be anticipated and, in-
deed, nonintegral inve". se powers of n could, in
principle, also appear in this factor. The reduced
temperature deviation from the bulk critical tem-
perature is measured by

II. SCALING THEORY FOR FILMS t = [T — (~T)]/T, (~), (2.4)

To summarize finite-size scaling theory" ""
as applicable to films we introduce the thickness
in the form

L =na', (2.1}
where a' is the distance between corresponding
neighboring layers, and refer to n as the "number
of layers. " It is convenient also to introduce the
nearest-neighbor distance a; for a simple cubic
lattice one has a'=a but for the bcc and fcc the

$(T}=fat " as t-0+. (2.5)

If the order of magnitude of the shift in critical
temperature can be determined by the criterion'
$(T,(n)}=I., one obtains the prediction

X = I/v, (2.5)
which is expected to apply at least for free bound-

and the bulk correlation length may then be written
in the asymptotic form'
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TABLE II. Susceptibility expansion coefficients &&(&) for free-surface (&=1), simple cubic,
+-layer Ising films. Note &o = 1, all +.

n=4

10

12

20

80

304

1152

4236

15 528

55 924

200 808

712 868

2 523 560

8 865 304

51

234

102-
3

433~

1822~3

7478&3

305694

123 224

494 888

1 968 724

7 819188

5-1
2

25

114~2

506

9660

41 648

177 290

752 728

3 168 544

13 31V 507

121 3
5

550

2488~5

11060

49 077&

215 424-
5

943 786 2
5

410 368-
5

18 811367~

5-2
3

26 2
3

126~
3

579~
3

2659

12 001~3

54 137~

241 896

1 079 657$

4 787 396

21 200 632

10

5)
27Jt

129$

600 2
7

2780-',

12 674

57 7597

260 926-

1 178 064-
7

5 288 015&7

23 717 504~

a=8

53

27$

132$

616

2871444

13156

604761

275 207

1 252 008

5 665177$

25 621 904~4

5-7
9

27-7

134~2

628-
9

2942&9

13 550'
62 589-

9

286 314'
1 3095279

5 958 698~

27 105 613&9

n= 10

638

299&5

13 866-
5

64 279-
5

295 200-,

1 355 543
5

6 193514~5

28 292 580-

ary conditions (7 =1). However, exact analysis
of Isingand spherical models' "" shows that the
value of ~ may be different for periodic boundary
conditions (7 =0).

To allow for this later possibility we introduce
the reduced temperature deviation t for the &-
layer film by

t = [T —T,(n)]/T, (~) . (2.7) y„(T) = (ksT/m')gr(n; T) . (2.10}

The crossover from two- to three-dimensional
critical behavior should occur when y is of order
unity.

To develop this idea systematically for the iso-
thermal, zero-field susceptibility yr(n; T), it is
convenient first to define the reduced suscepti-
bility

The bulk (n-~) correlation length can then be
rewritten

((T) = fat (2.8)

For a paramagnet obeying Curie's law, we have
y„(T)=1. For the bulk s-ystem the susceptibility
will diverge as

The scaling hypothesis" now asserts that the
basic physical variable controlling the behavior for
small t and large n is the scaled thickness

& =L/(= cnt ", with c =a'/fa. (2 8)

1 (T)=Ct & as T-T,(~)+, (2.11)

but for any finite n we expect the exponent of di-
vergence to be y, corresponding to a system of
dimensionality d —i. Thus we should have
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X„(T)=C(n)t &' as T-T,(n)+. (2.12) scaling function and the identity

In place of the scaling variable p it is somewhat
more convenient, in practice, to use the variable

x =net with 8=1/v. (2.13)

The crossover of behavior from (2.11) to (2.12}
may then be described by the scaling hypothesis"

)t„(T}=n"'X(net) =n X(x) as n-~, t-0. (2.14)

To determine the exponent ~ one considers the
limit n-~. Then (2.11) must be reproduced which
requires

t =t+e(n)=t+b/n (2.21)

which follows from (2.2)-(2.4) and (2.7), this
implies

g„(T)=X„t &(I —byt 'n + ~ ~ )+Y„n ~t

If A. &1, as expected by the earlier scaling argu-
ment when v&1 (as is the case for three dimen-
sions'6) the form (2.19}can be matched only if
~- 8$=-1 so that

X(x)=X x ~=n Ct " as x-~, (2.15) (2.23}

and, since )t„(T) must become independent of n in

this limit, we also fi.nd'
The surface susceptibility is thus predicted to
vary as

&e =ys=y/v and X„=C. (2.16) )t'"(T)=C"t '&'"' with C" =Y„/2o" . (2.24)

For fixed n as t approaches zero, the form (2.12)
must be generated so implying

X(x) =X,x-& =n C(n}t-&as x--0.

This can be satisfied only if

C(n)=X,n&~ »' as-n-

(2.17)

(2.18)

which is a prediction for the behavior of the am-
plitudes C(n) in the finite films.

The leading asymptotic forms for the suscepti-
bility scaling function X(x) are evidently indepen-
dent of the nature of the boundary conditions, (al-
though X~ should depend on the conditions). In
order to extract explicit information concerning
the effect of the boundary conditions on the sus-
ceptibility, it is necessary to investigate the ap-
proach to the asymptotic forms. For an n-layer
system with free surfaces (7 =1) a decomposition
of the free energy per spin into bulk and surface
contributions can be made if the range of forces
is finite and provided T & T, .' Then for the sus-
ceptibility we can correspondingly write

X„(T)=X.(T)+(2o"/n)X" (T) as n-", (2.19)

X(x)=x„x &'+ Y„n ~ as x-~(7 =1), (2.20)

where fQI) is to be determined by the requirement
that (2.19) be matched. Using the definition of the

where y" (T) is the reduced surface susceptibility
per surface spin (for one of the two surfaces of
the film) and 2o'"/n is the number of surface spine
per total spin in the film of n layers. This decom-
position should certainly be valid for the n-layer
Ising model with nearest-neighbor interaction
which we consider below.

We now extend the scaling hypothesis' by as-
suming that in the limit n- with fixed t «1, the
decomposition may be written in a scaled form

The possibilities ~ ~i are discussed further in
Ref. 8 but need not concern us here since the
series evidence indicates»1 unequivocally for
d =3 (see Sec. IV}.

In films under periodic boundary conditions
(7 =0) the decomposition (2.19) is not valid since
there is no proper surface. The effect of the
boundary conditions may be viewed as requiring
site l and the corresponding site (l+n) in a column
of an infinite system to have the same spin value.
%hen t&0 it is known that the two-point or spin-
spin correlation function decays exponentially
fast" so that

I'(T, r) = (sos-, ) =D(r)e ' "" (2.25)

where ((T) is the appropriate correlation length
and D(r) has a power-law dependence. Now for the
periodic boundary conditions the distance around
the torus is r =I.=na'. Thus we expect' the effect
of the boundary conditions on the total suscepti-
bility to decay as

I'(T, na')-e '=e ' =e (2.26)

for n»1 and f00 [where c is defined in (2.9}]. If
this is so, then we should have

X(x}-X„x"=O(e '* ) asx- (r=O}. (2.27}

This prediction is confirmed by exact calculations
on the planar Ising model, "' and the spherical and
ideal Bose models. ' "

For free-surface boundary conditions there is no
geometrical structure in the film beyond the two
surfaces. Hence it is reasonable to expect that
the next term in the asymptotic form (2.19) will
also be of order e '"".

Finally at lozo values of x, corresponding to
t-0 at fixed n, it is plausible to expect correc-
tions to (2.18}to involve integral powers of x which
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in turn means analytic corrections in t to the form
(2.12). This conclusion couhi, however, well be
subject to modification if exponents characteristic
of "irrelevant" variables, in the renormalization
groups sense, "' can enter (as they certainly do
in the leading "corrections to scaling" ).

As a matter of convenience a superscript label
7 will be included in the definition of the reduced
susceptibility and in the scaling hypothesis,

cax Cx/C Wx (2.35)

involving the surface and bulk susceptibility am-
plitudes, should be universal. We shall test this
new prediction in Sec. V using the numerical esti-
mates of C" obtained there.

This then leads via (2.31) to the prediction that the
ratio

}t„'(T}=n&X'(n t } (n»1, t «1) (2.28} III. HIGH- TEMPERATURE EXPANSIONS

to denote, as mentioned in Sec. I, the particular
boundary conditions which are being considered:
for periodic boundary conditions we put 7 =0, for
free-surface boundary conditions 7' =1. The ex-
pected asymptotic behavior of the scaling functions
are then summarized by

v =tanh(J/kaT), (3.1)

the susceptibilities per spin of the n-layer films
can be expanded as

In terms of the standard high-temperature Ising-
model variable

X'(x) =x «(X,'+X,'x+X,'x'+ )

ass 0 and

(2.29)
y„(T) = 1++a, (n) v',

1=1
(3.2)

X'(x}=X„x-~+7Y x- ~- " + O(e-'* )

as x-~, with

c =a'/fa, X„=C, and Y„=2axCx .

(2.30)

(2.31}

X'(x) = CW'(cx")/x&, (2.33)

which shows how the nonuniversal amplitudes C
and c enter into the original scaling functions
X'(x) as metrical or scale factors.

By using (2.32) and the universality of W(y}
various universal ratios of lattice-dependent am-
plitudes may be constructed. Thus, in order to
reproduce the asymptotic form (2.30) one must
have

W'(y} =1+27W"/y+ ~ ~ as y —~. (2.34)

The scaling functions X'(x}, as introduced here,
must have an explicit dependence on the lattice
structure considered. Thus X„=C is the ampli-
tude of the bulk susceptibility per spin, which is
known to be "nonuniversal, " i.e. , to vary from
lattice to lattice (see, e.g. , Ref. 26 for explicit
estimates). Similarly the variable x =net will not
have a universal significance since there is an
arbitrariness in what is considered "one layer. "
However, if the amplitude variation of the bulk
susceptibility is factored out and if the universal
scaled thickness y =I,/f, of (2.9) is used, one may
indeed expect"'~ universality of the correspond-
ing scaling function. Thus, if we rewrite the scal-
ing hypothesis as

}t„'(T)= CW'(cnt ")/t ", (2.32)

we may postulate that W'(y) is a universal func-
tion with, in particular, W'(~) =1 in order to
reproduce the bulk susceptibility when n- ~. Com-
parisons with (2.28) yields the identification

where the expansion coefficients a, (n) have a well-
known graphical interpretation in terms of a chain
and polygons of / bonds embedded on the lattice. ""
The calculation of the coefficients for periodic
(7 =0) films to eleventh order for n =3 and to
twelfth order for n=4 to 8, and for free-surface
(v =1}films to eleventh order for n =3 to 7, was
achieved by Allan" using a computer program for
lattice counting developed by Martin (of King' s
College, London). '2 The further terms for n) 8
and 7, respectively, were obtained later as will
be explained.

Allan's calculations" for the periodic films em-
ploy the Sykes susceptibility counting theorem. "
The problem falls into two parts: (i) enumeration
of all allowable graphs of t bonds; (ii) counting
the number of embeddings of each graph in the
lattice. The latter task was executed entirely by
the Martin counting program which, given a par-
ticular graph, will generate and count all em-
beddings with an assigned "first" or rooted bond
on a specified lattice structure. For a periodic
film one must distinguish between parallel (or in-
layer) and perpendicular root bonds. Adding the
corresponding partial lattice constants"" for a
graph, with appropriate weights, yields the total
lattice constant of the graph in the film.

For free-surface films the calculation likewise
falls into two parts. However, owing to the lack
of translational invariance perpendicular to the
layers the Sykes theorem cannot be employed (at
least not in its standard simple form). According-
ly recourse was had to the original methods'I
which involve enumerating all possible "magnetic
graphs" (with two vertices of odd degree} now both
oPen and closed„open graphs, having vertices of
degree or valence unity, are not required when
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a, (n) =sg(~) for l &n. (3.3)

The origin of this result is simply that all graphs

using the Sykes theorem. " (Closed graphs have
vertices only of degree 2 or higher. ) For both
sets of boundary conditions it is also necessary to
count disconnected configurations by enumerating
all possible overlap graphs. Happily, no more
than three disconnected components need be con-
sidered up to twelfth order.

For free-surface films the computer calculation
of the lattice constants must be subdivided both by
the orientation of the root bond and by the layer
in which it is placed. For n even only —,n in-layer
bonds need be considered by symmetry; for odd n
one must use for —,'(n+1) distinct in-layer bonds.
Similarly 2 (n —1) different perpendicular root
bonds must be considered for n odd, etc.

The enumeration of closed graphs of l bonds
proceeded by listing possible graphical topologies
through the star topologies (polygon, theta, del-
ta, etc }, an. d linked stars (dumbbells, etc. ). These
topologies suffice for periodic films. Open-graph
topologies were generated systematically by adding
"tails" or chains to the closed graphs at odd ver-
tices or even vertices. This generates all the
required possibilities although some may appear
more than once. Certain topologies may not be
realizable as embedded graphs with 12 or fewer
bonds on the simple cubic lattice but, in doubtful
cases, the lattice constants were explicitly cal-
culated (and found to be zero). The process used
to enumerate the overlap of the disconnected
graphs was to consider all overlaps (i) of only
one vertex; (ii) of only two vertices; (iii) of only
three vertices . . . ; (iv) of one bond; (v) of one
bond and one distinct vertex . . . ; (vi) of two adja-
cent bonds; (vii) of two adjacent bonds and one
distinct vertex . . . ; and to continue until all possi-
bilities were exhausted.

These procedures require as many checks as
possible. However, the main overall check, which
is fairly stringent, is that the previously pub-
lished"'" bulk sc susceptibility series couM be
generated precisely by both techniques to eleventh
or twelfth orders, respectively. The expansion
coefficients obtained by Allan are presented in
Tables I and II. The series for n =2 are included
for completeness; the short length for periodic
conditions arises from lack of provision for count-
ing "polygons" of length two 1 However, this fea-
ture will not hinder our main purpose which is to
study large n.

To extend the series to larger n let us examine
the n-layer coefficients for periodic boundary con-
ditions. On comparing them with the buH:;, n =~
series, one finds

of fewer than n bonds or lines have the same lat-
tice constant on the n-layer periodic films as in
the bulk lattice since none of them can encircle
the nx~& torus. However, with n lines there is
one graph, namely, the straight chain of n bonds,
which reaches around the torus and interfere with
itself (by forming a polygon}. This "ghost" con-
figuration must be subtracted off the bulk contribu-
tion and leads to

a„(n) =a„(~)—2 (l =n). (3.4)

At the next stage, l =n+1, similar interfering
graphs must be subtracted but, in addition, the
disconnected graph of a one-step chain and a poly-
gon that loops the torus, must be accounted for.
This yields

a„+,(n) = a„+,(~) - 20 (l = n + 1), (3.S)

=2np[ag(~)-a, (n)]v' =Qb, (n)v'.
5=0 1=0

(3.8}

The factor o" is included here, as in (2.19), to
provide the appropriate normalization between
surface and bulk spina. The values of cr" for sc,
bcc, and fcc lattices with surfaces parallel to the
cubic lattice planes are presented in Table IIl.

which, like (3.4), is easily checked against the
explicit data. At the next stage a two-step chain
and a separated polygon must be considered. In
addition, an (n+2}-step polygon with two kinks
can be formed which still loops the torus. The
possible locations of the kinks leads to a factor
', n(n+1-) and to the final relation

a„,m(n) =a„+2(~)—4n(n+1) —140 (l =n+2). (3.6)

When l =n+3 the configurational argument is
more involved but clearly again involves a quadra-
tic (but not cubic) expression in n. Granted this
fact, the easiest procedure is to form the differ-
ences a, (n) —a, (n —1) and take successive differ-
ences on l. This yields the expression

n„+~(n) =a„+,(~) —40n(n+1) —868 (l =n+3).

(3.V)

Using these relations and the extended series for
the bulk susceptibility obtained by Sykes et al„~
the reduced susceptibility series has been calcu-
lated to the (n+3)rd term for 9&n&14 (see Table
1).

The search for corresponding recursion rela-
tions for the free-surface series coefficients is
facilitated by the introduction of the effective
reduced surface susceptibiltty of an n-layer sys-
tem through the definition

-o"x."(&)-=-'n[x-(~)- x„(~)]
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Lattice

a'/a
OX

vc{
E
C=C'
f=fp'
g~X

6
1
1

0.218 13+1
0.967 97
1.0585+ 10
0.478 26
0.4334+ 26

8
2/' 3

1
2

0.156 12+ 2

0.983 67
0.9868 + 30
0.444 56
0.642+ 10

12
V2

1

0.101740+ 5
0.993 08
0.971+ 2

0.433 66
0.512+ 8

The effective n-layer surface susceptibility can
be compared to the reduced surface susceptibility
x"(T), for a semi-infinite system with a surface
which may be defined through the limit

= -lim-,'n[X„(T)—X„(T)]= Qbg

vg-

' .
ag-+ aO 1=1

TABLE III. Properties of the bulk cubic lattices used
in the series and scaling function analyses. {From Refs.
24 and 26, and see text; the values of " follow from
Table VII below. )

IV. SERIES ANALYSIS

The high-temperature expansions (3.2) must be
analyzed to estimate the critical temperatures
T,(n) and susceptibility amplitudes C(n} and C"
[see (2.12) and (2.24)]. In terms of the variable v

we anticipate the behavior

x„(T}=A„(v}[1 v/v-, (n)] ), (4.1)

with

v, (n} = tanh[&/ksT, (n}],

where A„(v) approaches a finite limit A(n) as
v -v, —.Since the variable v features in all the
numerical analysis it is convenient to introduce

(4.2)

existence of the graphical technique suffices since
it, at once, determines the order of the polyno-
mial appearing in the recursion relation. By using
the relations (3.10)-(3.14) Allan's results have
been extended to obtain the free-surface series
for 8&n &11 to eleventh order as presented in
Table H.

(3.9}
t(n) =1 —v/v, (n) (4.3)

bg(n) =bi(")

b„„(n)=b„„(~)—1

b„~ (n}=b„„(~)—4n —10

b„+,(n) = b„+2(~) —Sn' —44n —75

(l ~ n), (3.10)

(l =n+1), (3.11)

(l = n+ 2), (3.12}

(l =n+3}, (3.13}

b„„(n}= b„„(~)—10—', n' —96n' —349—', n —484

(l =n+4). (3.14)

The first three relations here may be easily
checked generally by exact graphical considera-
tions since they involve no disconnected graphs.
For l ~n there are no overlapping graphs which
intersect both surfaces and the equality of b, (n}
and b, (~) follows. When l =n+1 there is a single
symmetric overlapping graph, namely a chain
of n+1 bonds. This yields (3.11). The last simple
case is l =n+2 where are overlaps resulting from
a chain with one kink. For higher order, just the

The coefficients b, =lim b, (n) [n- ~], are in fact,
the number of allowed distinct graphs of l bonds
which intersect or lie outside the film. The values
of the b, have been calculated by Allan" for the sc
lattice to order 11 and by Watson" for the bcc
and fcc lattices to orders 8 and 7, respectively;
they have been published in Ref. 15 (p. 136; but
notice that b, is equal to one-half the coefficient
c, listed there)

Now by construction of the table of deviations
[b, (~) —b, (n)] and differencing one discovers the
following recursion relations hold:

to measure deviations from criticality. As
T- T,(n) this variable is related to the more gen-
eral f(n) introduced in (2.'I) by

t(n) =K„t(n), (4.4)

with proportionality factor

(4.5)K„=2JT,(~)/k Ts(n2)s'inh[2J/keT, (n)].

Evidently the critical amplitude A(n) in terms of
t, corresponds to C(n} in terms of t; likewise we
will use A and Ax with t, corresponding to C and
C" with t. We will also use x =n t in place of x,
as convenient. It may be observed from Table III,
however, that K„ is within a few percent of unity
for large n.

y 14 (4.6)

A. Bulk critical behavior

The susceptibility series for the bulk (n =~)
Ising model on the sc, bcc, and fcc have been ob-
tained to greatest length by Sykes et al. '4 and
analyzed by them in detail. Their estimates for
v, (~), which we adopt, are listed in Table Ill to-
gether with the corresponding values of the con-
version factors K„defined in (4.5}, and the criti-
cal amplitudes C. (But note that the values of C
appearing in the journal version of Ref. 24 are
slightly in error; the corrected values of C =—C'
are taken from Ref. 26.) Sykes et at. , also con-
cluded that y =1.250 +3; accordingly we adopt the
value
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in all our work without further question.
The correlation length ((T) has been studied by

Fisher and Burford'4 who concluded that the ex-
ponent v lay in the range 0.643 +0.0025. Moore,
Jasnow, and Wortis" using somewhat longer
series, especially for the fcc lattice, concluded
that v should be closer to 0.640 or lower. How-
ever, these differences will not be significant for
our purposes. Accordingly we follow Tarko and
Fisher" and adopt the simple fractional value

v = I/O= ——', =0.642814 (4.7)

The correlation length most appropriate to finite-
size scaling theory is the "true" or exponential
range of correlation"6 in the bulk lattice, defined
in accordance with the decay law of the two-spin
correlation function displayed in (2.25}. In the
notation of Tarko and Fisher, ' therefore, the am-
plitude parameter f in (2.8) should be called f'.
However, for the three cubic Ising lattices the
value of f' is very close indeed"'" to the value
of f; for the second-moment correlation length"'
$, (T) (which enters into low-angle scattering theo-
ry). Accordingly, in Table III we quote for f the
values of f; calculated, following Tarko and
Fisher, "by using the values of the parameter
p, = (r, /a)', " found by Fisher and Burford, ~ and
the later values" of C —= C', in the relation (f,')' "
=p,C'. Multiplying these values of f,' by 1.0003
(see Table XIV of Ref. 26) will give somewhat
better estimates of f —= f ' but this degree of ac-
curacy is not needed in the present study.

a v, (n) = v, (n) —u, (~)

were calculated and plots of [hv, (n)]'~~ vs n eval-
uated' for various trial values of ~. Such a plot
for free-surface films was presented in Ref. 8
(Fig. 12). The scaling expectation

(4.10)

, = 8 = I /v = 1.56 (4.11)

yields a good linear fit in the range n =1-7. Trial
values of ~ differing by +0.15 clearly display cur-
vature in opposite senses. Furthermore, the ap-
proximate representation

v, (n) =v, (~)+0.350/(n+-,')~" (r =1) (4.12)

p~ 11 98 7 6

with zero sloPe on the standard plot' '0 versus 1/r.
Indeed, as can be seen from Fig. 1, where the
ratios p„(E„)for periodic boundary conditions are
plotted versus (I/r)' in place of I/r, this expecta-
tion is well borne out for large enough r. The
same behavior is observed for free-surface films.
The resulting critical point estimates for n &8

(7 =1) are listed in Table IV.
A perusal of the estimates for v, (n) reveals that

the periodic layer critical points approach the
bulk value v, (~) =0.21813 much more rapidly then
do the free-surface values. To determine the shift
exponent ~ the deviations

B. Layer critical temperatures

Estimation of the critical points v, (n) and expo-
nents y for finite n may be attempted by standard
ratio and Pads approximant methods. ' For n &4

one finds y =14, in accord with the expected two-
dimensional value which is exactly' ""

.I

4.2

~ 3y=1p . (4.8)

For larger values of n the crossover to three-
dimensionality affects the series analysis, and it
is appropriate to assume the result (4.8) for all
n & in order to obtain the best possible estimates
for v,(n). Accordingly the function E(v) with ex-
pansion coefficients e„(s) defined by

E„(v) =g e„(s)v" = [y„(T}]~&

(4.9)
III I I I

1198 7 6

is calculated. ' This function must diverge as a
simPle Pole at v =v, (n), so that the ratios p„(E„)
=e„(n)/e„, (n) should approach the values I/v, (n)

FIG. 1. Estimation of e, (n) from ratio plots vs (1/r)
for periodic lattices for n =4, 5, 6, and 7. The value j
=

4 ls assumed.7 ~
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TABLE 1V. Estimates of the critical temperatures
v~(n) = tanh[J/~p&~(n)] for the n-layer sc lattice. 0.) 0.2

v (n) {7=0) v~(n) (7 =1)

2

3
4
5
6
7.
8

0,2692 + 11
0.2401 + 1
0.2305+ 1
0.2261+ 1.5
0.2235+ 2.5

0.2220+ 3
0.2211+ 4.5

0.3020+ 6
0.2675 + 3.5
0.2520+ 3
0.2430+ 3
0.2371 + 3.5
0.2334+ 4

0.6—

is found to fit n. v, (n) to within 1% down to n = 2.
The estimate (4.11) is also supported by more
recent Monte Carlo calculations by Binder and
co-workers"' and by Landau. "

For periodic boundary conditions, on the other
hand, the larger value

X, p=2.0+0.1, (4.13)

not equal to 1/v, is clearly indicated. ' The cor-
responding formula

v, (n) =v, (~) +0 177/.(n —~)' (v =0) (4.14)

is found to fit n, v, (n) to within 2% down to n =4 and
to within 6/c for n =3. (This representation of the
results is an improvement for larger n values
over the slightly simpler fit advanced in Ref. 8.)
As commented in Sec. II, the difference between

and ~ —p is not unexpec ted.

0.5—

0.4
n=5)p

l
..In=9' j

/
/ ]

/

j
/

/
0.3
n=7]f

/

00
l I

20 12 10 8 6 5
I

4
C. Critical amplitudes

On adopting the critical-point estimates in Table
IV, and using the fitting expressions (4.12}and

(4.14) to extrapolate v, (n) to larger values of n,
the n-layer critical amplitudes A'(n) may be esti-
mated by standard Pads approximant and ratio
techniques. Thus, direct [L/M] Padd approxi-
mants were formed to the amplitude functions
A„(v) defined through (4.1}; evaluation at v =v,(n}
yields estimates for A'(n). As an example, the
series for free-surface (n =5)-layer films yields
[4/4] =0.3924, [4/5]=0.3928, [5/4] =0.3929, [5/5]
=0.3426, [5/6] =0.3930, and [6/5] =0.3938.

The ratio technique used is based on extrapola-
tion versus I/& of the sequences of estimators''I

(A'„)„„=a„'(n}/cI, (n), (4.15)

where the c,"(n}are the expansion coefficients of
the binomial [1 —v/v, (n)] f. Some of these plots
for particular values of the "shift" m, chosen to
reduce the curvature, are shown in Fig. 2. Al-
though the residual curvature allows some latitude
of extrapolation the corresponding sequences of
pairwise linear intercepts'I extrapolate quite

FIG. 2. Plot of the estimstors gt), ~ for free-sur-
face boundary conditions [see (4.15)] vs 1/x with (a)
n =3, m = —1; (b) n =5, m = —1; (c) n =7, m =-2; and

(d) n=9, m= —2.

well and reveal trends to which, as in other cases,
the Pads approximants seem unresponsive. Thus,
in the case r =1, n=5, mentioned above, the
ratios indicate somewhat lowe" values than the
Pads table and the over-all estimate made is
A'(5)=0.387+5. Generally the series-based values
are preferred although the uncertainty limits over-
lap to a considerable degree. As might be ex-
pected, the curvature increases for larger n and
the Pads tables likewise become Jess consistent
so that the final uncertainties are larger, reach-
ing 5 or 6% at n = 14 for r =0 and at n =9 for v =1.
The over-all estimates made are listed in Tables
V and VI.

If the scaling prediction (2.18) for the C(n} and,
equivalently, for the A(n) is valid, the second
columns in Tables V and VI, which display
A(n)ne'& "', should approach constant values Xe,
directly related to the scaling function amplitudes
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A(n) A(n)ne& f' &)

2
3

5
6
7
8
9

10
11
12
13
14

0.836
0.590 +1
0.4515+ 10
0.366 + 1
0.299 + 2
0.249 + 3
0.220 + 4
0.203 +4
0.184 + 5
0.169 + 6
0.157 + 6
0.146 + 7
0.137 + 7

1.433
1.387+ 2

1.327+ 3
1.280+ 3
1.205+ 8
1.131+13
1.109+20
1.121+ 22
1.103+ 30
1.091+39
1.085+ 41
1.073+ 54
1.067+ 55

Xo. Clearly the expected asymptotic behavior is
not well approximated in the range of n displayed,
so that allowance for correction factors must be
made. Since the values in each table show a down-
ward trend as n increases, a small downward
shift in the n values is indicated. Investigation of
various shifts suggests m =--, for periodic films
and m =-3 for free-surface films as appropriate
choices. The corresponding sequence of esti-
mators, namely, (Xs)„=A'(n)(n+m')'+, is plotted
versus 1/n in Fig. 3. From these data the final
estimates for the periodically connected films are

X,'=0.93+0.02 or Xss=0.98+0.02, (4.16)

where the tilde applies with use of the variable I',
and for the free-surface films

X~s =1.20 +0.02 or Xs'=-1.27 a0.02, (4.17)

since Xo =E&XO. Combined with the value y =1&
this determines the limiting behavior of the scaling
functions X'(x) as x =nt s- 0 [see (2.29)]. The
behavior for large x required analysis of the sur-
face susceptibilities to which we now turn.

TABLE V. Finite-size susceptibility amplitudes A(n)
for periodic boundary conditions (&= 0) and their analysis.

0.1

.. I

0.2
I

0.3
l

1.2—

Fee

rfaces

D. Surface susceptibilities

The surface susceptibility y" (T) must (unless
the surface interactions are enhanced in some
way") diverge only at the bulk critical point v,(~)
with an exponent which may be called y". The
scaling theory makes the unequivocal prediction'
y" =y+ v [see (2.24)]. However in contrast to the
value y+v =1.89, direct ratio and Pade estimates
of y" for all three cubic lattices yield' distinctly
higher values, around 1.95, with uncertainties
which could be as large as 0.08, owing to curva-
ture of the ratio plots.

If, on the other hand, a scaling value y" =1.89
is adopted, one can attempt to estimate the cor-
responding critical amplitude A" by studying the
sequences (A"), defined in analogy to (4.15).
The corresponding plots are, however, likewise
found to be strongly curved, and the curvature
cannot be removed by any value of the shift m

(see Capehart" for illustrations). This difficulty
precludes straightforward estimation of A" and
C". If the asymptotic scaling prediction is valid,
this behavior implies that the corrections to the
leading critical behavior must be considerably

TABLE VI. Finite-size susceptibility amplitudes &(n)
and their analysis for free-surface boundary conditions
(v= 1).

2
3
4

6
7
8
9

10
11

0.6863 + 10
0.5200+ 15
P 449
0.387 + 5
0.323 + 6
p.290 +7
0.255 + 10
0.230 + 12
0.213 + 12
0.197 +11

~(n)ne& &-»

1.177+ 2
1.222+ 3
1.320+ 12
1.353+ 17
1.301+ 24
1.317+32
1.285+ 50
1.270+ 66
1.277+ 72
1.270+ 71

0.9-

0.8'
CO

I III I I I I I I I

20 13 10 8 6 5

FIG. 3. Extrapolation of the amplitude estimates AT(n)
& (n +m')~ 9 for Xo for periodic (&=0) and free-surface
(r = 1}boundary conditions with shifts mI = -$ and m I

2
3 ~
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L =L + 2ba' =na', with n =n+ 2b. (4.19)

In terms of this we obtain a new decomposition of
the total susceptibility with, in (4.18), s replaced
by n and X"(T) replaced by

(4.20)

Since our original definition of n is really just as
arbitrary as the new one, we conclude that x"(T)
will, in genera/, have a correction term diverging
like the bulk susceptibility X„(T)-f". We thus ex-
pect the surface susceptibility to have the asymp-
totic form

more singular than in the bulk susceptibility
series. To understand this we pause to examine
theoretically the likely character of the coincident
critical singularities in x"(T) as T- T,(~).

First observe that for a film of n layers and
thickness L =na' the decomposition of the total
susceptibility (per unit spin area of film) satisfies

X„"'(T}=sX„(T}=nX„(T)+2o"X"(T}. (4.18)
In this specification, the "surface" of the film nomi-
nally ends at a distance &

a' beyond the final layer
of spin sites. Suppose now that "by convention" the
surface is considered to extend to (-,'+ b)a' beyond
the final spin layer. This amounts to a redefinition
of the "thickness" as

by t = [1 —v/v, (n)] and the resulting form expand-
ed about v =0, a sequence of the expansion coeffi-
cients b, of x "(T) may be matched to determine
corresponding amplitudes A", A,", and A,". As
higher-order terms are matched in this manner
an asymptotic approach to the values of the am-
plitudes should be observed. To obtain distinct
estimating sequences a set of shifts m, m„and
m, may be introduced as in the extrapolation meth-
ods already discussed.

This method was employed to study X "(T) for the
sc, bcc, and fcc lattices under the alternative as-
sumptions g=y- v and g=y+ v- 1. For the sc and
bcc lattices, where strong oscillations between
successive ratios often occur, alternative coeffi-
cients were used; for the shorter fcc series where
oscillations are insignificant, successive coeffi-
cients were used. The solutions to the matching
equations may be labeled by the highest-order term
involved: for example, the amplitude estimates
obtained from the coefficients b„b„and b, for the
fcc lattice were labeled (A")„(A",}„and (A", ),.

Plots of these amplitudes versus 1/r for the sc
and fcc lattices using g=y- v are shown in Figs.
4 and 5. The notations (0, 0, 0) and (0, 1, 1) in Fig.
5 denote alternate choices of the shifts m, . The

X"(T) =C"f '"'"'+C,"I "+C"'f "+'' ~ . (4.21)

One may check~ this conclusion using the Lan-
dau-Ginzburg model of a film'+" which yields

0.41)-
g 0.4075+ 25

0.40-

0.1

I

0.2
I

where A is the temperature-independent "extrapo-
lation length" which represents the boundary con-
ditions. Since one has y=2v=1 (with g—= 0) in the
Landau-Ginzburg model, the first two terms here
confirm those in (4.21). However, the third term
is ambiguous: one could conclude g = v ~0.64 or
P=y —v=0.61 or g=y+v —1=0.89. Since one must
at least expect analytic correction factors to the
leading t '"'"' dependence one must certainly have

P ~ y+ v- 1. However, the standard correction-to-
scaling exponent

~ P„~ studied in renormalization-
group theory' could also be playing a dominant
role.

Now it is well known that straightforward extra-
polation methods fail when a singular correction
term with a small "exponent gap,

"as in (4.21}, has
an amplitude comparable to the dominant term.
Supposing this to be the case in hand, we have re-
analyzed the surface susceptibility series for the
three cubic lattices using the ratio technique de-
veloped by Wortis and co-workers. ' In this meth-
od one assumes a truncated representation of the
form (4.21)with assigned exponents. If f is replaced

0.39-

0.58-

0.3?-

0.2-

0.1-

-0.4-

-0.5-

-0.6
CO

s I s s I I

20 10 8 7 6

FIG. 4. Results of applying the Wortis technique to
the sc surface susceptibility series assuming g =y —v

and zero shifts m&.
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0.52-

0.51-

0.50-
0-

-0.1—

.505+ 8

0.1

I

0.2

(A2

r & 8 alternate regularly about almost constant mean
values. The sequence (A)„ linearly extrapolates to
a value of A„—1.017+2, which is in excellent ac-
cord with the Sykes et al, .' estimate A = 1.0163+ 10.
The method also gave A, =0.0001+2, which is
consistent withA, =—0, as expected, and A, = —0.01
+1. In addition the Wortis technique was applied to
various n-layer series and found to yield amplitude
estimates which are quite consistent with the other
methods used. Thus we have reasonable confidence
in the estimates for A' presented in Table VII.

E. Universality and scaling function

If the scaling function W(w) introduced in Sec. II
is universal the ratio

W =co"C"/C (4.24)

-0.39-

-0.40—

-0.41—

-0.42 I

20
I

10 7 6

FIG. 5. Application of the Mortis technique to the fcc
surface susceptibility series assuming g =y —v for two
sets of shifts m~ (see text).

2 (T}=g,v'=A, t "'"'+At '+At (4.23), "'.
The sequence of approximants (A,), and (A), for

TABLE VII. Estimates of the leading and correction
amplitudes in the surface susceptibilities for the cubic
lattices (see text).

sc bcc fcc

~X
1

QX
2

0.4075 + 25

-0.575 + 25

0.51 + 8

Ov 622 + 10

—0.35 +8
—0.27 + 8

0.505+ 8

—0.41 + 4

-0.10 + 8

final amplitude estimates also using P=y+ v- 1 for
each lattice, are given in Table VII. The ampli-
tudes of interest to scaling theory are the A' which
are found to be insensitive, to within less than 1%,
to the choice of P adopted for the analysis. This
technique is quite different from the previously
described methods and was adopted owing to the
failure of the normal techniques. However, there
is no strong basis for linear extrapolation versus
I/r in estimating the asymptotic amplitude. In an
attempt to check this procedure the Wortis method
was applied to the bulk sc series by assuming

should be the same for all Ising lattices [see
(2.35)]. Using the estimates for C" following from
Table VII and the other data also embodied in Ta-
ble III, the results for the sc, bcc, and fcc lattices
are

W' = 0.856 + 5, 0.845 + 14, 0.859 + 13, (4.25)

respectively. The sc range of uncertainty is in-
cluded totally within the fcc range and almost en-
tirely within the bcc range. (The bcc sequences
are, however, less regular than for the sc and fcc
lattices. ) A universal value of W =0.855 is
strongly suggested by the data (to a precision of
+1.3' or better). We conclude that the evidence
for the universality of the scaling function W(y) is
good.

Finally the behavior of the original scaling func-
tion X'(x) for large values of its argument may be
determined [see (2.31)]. Using the data of Tables
III and VII we find for the simple cubic lattice

p —2.091, Xo 1 0585+ 10' Y 0 867+5.

(4.26)

These results specify the scaling function asymp-
totically. We now turn to the question of approxi-
mating X'(x} over intermediate values of x.

V. SCALING FUNCTIONS

The existence of the scaling function, i.e., the
validity of the scaling hypothesis, may be checked
by plotting appropriately scaled Pade approxi-
mants for x&y„(T)vsx =n t for all the n-layer films.
The validity of scaling is then indicated if the de-
viations between the various approximants appear
to decrease as n increases. Explicitly, by con-
structing Pade approximants' to the amplitude
function A„(v}=t "X„(T)we may evaluate the modi-
fied scaling function
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Z'„(x) =n '" "'[t"X„(T)]=Z'(x}=x~X"(x) (5.1)

as a function of x=n~t for each of the n-layer
films. The form of Z(x) allows a convenient graph-
ical representation since, on a log-log scale, Z(x)
is required to have zero slope as x-0 (i.e. ,
lnx- —~) while for large x it behaves as

lnZ'(x) =(y —y) lnx+lnX„

+In[1+r(F„/X„)x "]+O(e" ), (5.2)

yielding a linear asymptote of slope (y —y) = 2.

1.5

1.0

gn Z„» (x)

n=m/

/
/!n=)2

A. Numerical estimation

The most direct way of testing for the existence
of a scaling function would be to plot Z'„(x) vs lnx
for each of the n-layer films with given boundary
conditions. However, in these plots, the behavior
at small x is not monotonic in n. This merely re-
flects the previous amplitude analysis where shifts
in the value of n were required to extrapolate for
the scaling amplitude X, (see Fig. 3). Further, the
curves for different n frequently cross one another
making a convincing extrapolation of the trends
very hard. Following the philosophy adopted
throughout our study of using the central estimate
of a quantity in all subsequent calculations, we
have, instead, introduced an individual n shift m*
for each approximant for an n-layer film chosen
to exactly satisfy the relation

(n+ m*) '" ""[W„]=X;, (5.3)

where the square brackets denote a particular ap-
proximant to A„. We call the resulting approxi-
mants Z„*(x}. This normalization simply has the
effect of making all the Z'„* approach the same
asymptote as x-0. Some of the corresponding
curves are shown in Figs. 6 and V. While the var-
iation is not entirely monotonic in n, Pade approx-
imants which have been normalized in this manner,
and which have no poles in the region 0 ~ v ~ v,(n),
have relatively few intersections for different val-
ues of n.

With this normalization then, a more detailed
study is worthwhile. For each value of n and se-
lected values of x, with lnx in the range —6 to +3,
various near-diagonal approximants to Z„'*(x) have
been tabulated. Examination of the values of
ln Z„'*(x)vs I/n reveals definite linear trends. In
view of the normalization imposed and the fact
that the values X,' were estimated by linear extra-
polation of I/n plots, this behavior is really to be
expec ted.

In the case of periodic boundary conditions (r =0)
approximants up to n =6 seem very wellconverged;
for n = 7-12 there is more fluctuation, but a cen-
tral value is fairly well identifiable; for n ~ 13

0.5

0 1

Ea ™x

il li
2 3 4

1.5
n=9

o= 7-

1.0

0.5

0.1

-3
I

-2
gf) X

2 3

FIG. 7. Plots of the modified scaling function
ln[Z„+ (7)] vs 1m' with n =3, 5, 7, 9, and ~ for free-sur-
face films. The numbered arrows on the lower right-
hand side again correspond to R =ne or T =~. The
dotted curve and uncertainty bars indicate the extra-
polated limits. The broken curve labeled n ~ corres-
ponds to the surface asymptote.

FlG. 6. Plots of the modified scaling function
ln[Z„+(2}] vs 1.n7 with n =4, 6, 8, 12, and ~ for periodic
films. The numbered arrows on the lower right-hand
side correspond to x = n or T =~, for a particular
n -layer film. The dotted curve and the uncertainty bars
indicate the extrapolated limit.
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FIG. 8. Representative extrapolations for the periodic
scaling function lnZ (x) at fixed 7.

the variation between different approximants is
too large to aid extrapolation, although the results
are quite consistent with the extrapolations adop-
ted. Figure 8 shows the behavior for lnx = —1 and
1. By linear extrapolation of the clear upward
trend we have prepared the set of estimates Z'(x)
presented in the second column of Table VIG and
shown by the uncertainty bars in Fig. 6. The nom-
inal uncertainty in x rises from less than + —,% for
x & 0.15 (lnx & —2), to about +2% for x =1, and
+4% for x & 9 (lnx & 2.2). Of course, these uncer-
tainties rest on the validity of the linear extrapol-
ation. The values shown in parentheses for lnx &0
represent the large x asymptote, namely, lnZ'
=(y —y) lnx+InX„. For x-4 this asymptote is
evidently approached from below (as is tobe expec-
ted). Although the magnitudes of the uncertainties
preclude a precise judgement, it appears that
Z'(x) merges with the asymptote to within 1/p for
x&16 (lnx&2. 8). It should be noted that for given
n the significant values of x™are restrictedby x &ne,
since the value x = n~ corresponds to t = 1 or v = 0,
and hence to T = ~! Larger values of x then cor-

lnx 1nZ0(z) lnZ ~(x')

-6.0
-4.0
—3.0
-2.0
-1.5
—1.0
—0.5

0.0

0.5

1.0

1.5

2.0

2.25

2.5

2.75

3.0

3.5
4.0

-0.0726
-0.0713
-0.066+ 1
—0.055+ 3
-0.024 + 5
+ 0.005+ 10

0.050+ 13
0.120+ 15
0.220+ 5

(0.0166)
0.350+ 18

(0.2662)
0.530+ 20
(0.5162)
0.730+ 25

(0.7762)
0.98 + 3

(1.016)
1.10 + 4

(1.141)
1.24

(1.266)
(1.391)

(1.516)

(1.766)
(2.016)

0.1823
0.1827
0.1853+ 5
0.1914+ 20
0.2045 + 25

0.243 +7
0.278 +10
0.336 + 10

0.415 +15

0.540 + 22

0.700 ~20
(0.4012)
0.905 +25

(0.7655)
1.1010+25

(0.9319)
1.13 + 3

(1.091)
1.255 & 20

(1.244)
1.40 + 2

(1.392)
(1.678)
(1.953)

respond to antiferromagnetic coupling. These
limits are indicated by arrows on the lnx axes in
Figs. 6 and 7. It is however, surprising that the
plots for different n remain close to one another,
even as the limits are approached and passed.

The behavior of the data for free surfaces (7 = 1)
is significantly different. In the first place, dif-
ferent approximants for fixed n agree closely with
one another up to n=9; for n ~ 10 the agreement
deteriorates abruptly and the data are of no aid to
the extrapolation. (The n=4 approximants show
significant but not disturbing dispersion for rea-
sons not elucidated. ) Second, there is a clear
odd-even alternation. Third, there is still a well-
defined linear trend versus I/n, but it is down-
wards for x*12 (lnx s2.5), although it becomes
upwards for larger x. The apparent precision of
the linear extrapolants can be seen in the last
column of Table VIII. It is better than + a% up to
x=0.3, but rises to +2% around x™=3,and to +3%
for x ~ 12. The values in parentheses again rep-
resent the asymptote but this time in the form
appropriate for free surfaces. It appears from
plots of the tabular values, as shown in Fig. 7,

TABLE VIII. Extrapolated values of the scaling func-
tions & (x) for periodic boundary conditions, Z (x) for
free surfaces, and the logarithm of the bulk asymptotes
(in parentheses) as a function of 1nx = in{st/" [1 -v/v~(s)J}.
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that Z'(x) approaches the asymptote from aboue
and merges with it to within 1% for x &17
(lnx 22.85}. The quoted uncertainties of the Z'
estimates do not, of course, include the+2~/0 un-
certainty in the normalizing values of X,'.

In summary, we believe on the basis of the evi-
dence discussed that the existence of asymptotic
scaling functions for both periodic and free-sur-
face conditions can be asserted with reasonable
confidence. The numerical values of the scaling
functions should be close to the estimates pre-
sented in Table VIII and shown as dotted curves in
Figs. 6 and 7; for values of x larger than those
shown in Table VIII the asymptotic expressions
apply to within the precision available. It is strik-
ing that over the whole range of finite x the scaling
functions for periodic and free-surface conditions
exhibit significant quantitative differences. [The
plots of Z' and Z' cross around x =3.3 (lnx = 1.2).]
These differences are, of course, just an indica-
tion of the importance of boundary conditions in
finite-size phenomena. (See also Ref. 23.)

B. Piecewise analytic approximants

As stated, the numerical evidence indicates that
for large x (specifically x+17) the scaling func-
tions may be represented analytically by their
asymptotic forms already determined in terms of
X„and Y„[see (2.31) and (5.2)]. For convenience
we quote here the necessary values

X =1.0163, Y„=-0.815 +5 .

From (2.30) and (5.1) we see that

Z'(x) = Xo + X, x+ X,x'+

(5.4)

(5.5)

should represent the behavior of the modified
scaling functions as x-0. It is straightforward to
estimate the initial slopes X,' from the data shown
in Table VIII. By adopting the central value of the
estimate one can then form rough estimates for
the quadratic coefficient X,'. In this way we find
for periodic boundary conditions

X0=0.93 +2, X, =0.34 +3, X2 =-0.025, (5.6)

X =0.98 R2, X, =0.35 %3, X =-0.025, (5.7)

respectively, for x and x, while for free-surface
films we obtain.

X' =1 20 s2 X' =0.20 +2, X' =-0.0038, (5.8)

X' =1.27 *2, X' =0.20 ~ 2, X' = -0.0038 . (5.9)

Numerically, the linear region extends to about
x =0.4 for T =0 and x =1 for 7=1. The truncated
quadratic expressions then fit well up to x =3 and

x =10, respectively.
Alternate two parameter fits (not counting X,"

which is "given") can be found for the scaling func-
tions by using the [1/1] Pade approximant

Z'(x) = (X,'+ P 'x)/(1 +q'x) . (5.10)

At the cost of slight deviation from the central
estimates of Table VIII, one can choose values of
P' and q' which yield agreement within the quoted
uncertainties for all the values in Table VIII for
which reasonable extrapolations can be made.
Specifically, for periodic conditions we find that

p' = 0.364, q' =0.047 (5.11)

C. Approximants with correct analytic form

The search for a functional form which satisfies
the analytic requirements discussed in Sec. II and
which fits the numerical extrapolations turns out
to be a surprisingly tricky problem. The analytic
requirements immediately eliminate an approxi-
mant of the simple form

Z'(x) =Z;(1+bx")'" "", (5.13)

since for small x it has an expansion in powers of

yield a good fit up to x = 10 (lnx = 2.3}. However,
at x =16 (inx =2.8) the fits fall about 5% below
the asymptotic values. As mentioned, the asymp-
tote probably represents the correct result to
within 1/o at that point. Effectively then, (5.2)
and (5.4) combined with (5.10) and (5.11)provide
analytic fits over the whole range of x. However,
the values of P' and q' chosen in (5.11) yield a
slope X,' =0.32 which falls somewhat below the
central estimate in (5.6), although within the range
of uncertainty. Correspondingly, it implies
X', = —0.0015.

A similar study for free-surface conditions re-
veals that the choice

p'=0. 228, q =0.023 (5.12)

is consistent with the estimate X', = 0.200 and

agrees well with the central estimates up to
x = 17-18 (lnx = 2.85); indeed, the fit in this re-
gion matches the value of the asymptote to within
&~/p. For higher values of x the asymptote itself
should be accurate as mentioned. The quadratic
coefficient X,' implied by (5.10) and (5.12) has the
value —0.0046, which may be compared with (5.8).

While the simplicity and accuracy of the fits just
found are very satisfying, and should meet the
needs of a comparison with experiment, it would
clearly be desirable to find single analytic func-
tions which provide good fits over the whole range
of x. In addition, the fitting functions should ex-
hibit the correct asymptotic behavior (including
appropriate exponential approach to this behavior)
at both ends of the range.
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x" instead of in powers of x. Again, for large x
the leading power expansion is in powers of x ",
which does not satisfy (5.2) for r =0. This leads
to consideration of functions of the form

Z'(x) =Z;[ln(b+e" )]""", (5.14)

L"(u, v) = [ln(u+ e")]~,

with limiting behavior

L~(u, v) = [in(1+u)]~+ v
g ln(1 +u) " '

1+u

+O(v') as v 0,

(5.15)

=v" +gue "/v+O(e '") as v-~. (5.18)

which exhibit the required exponential approach
to the asymptote for 7 =0 at large x but have the
same difficulty as (5.13) for small x.

To overcome these difficulties let us introduce
the function

D. Summary

For convenience we summarize here our esti-
mates for the asymptotic crossover behavior of
the reduced susceptibilities of n-layer ferromag-
netic Ising films. In terms of the reduced devia-
tion

& = [&—&.(n)]/&.(") (5.19)

from the critical temperature T,(n) of the film of
n layers, and the scaling variable

x=n' "t (5.20)

intrinsic complexity of these analytic approxi-
mants, which seems hard to avoid, such fits ap-
pear of doubtful practical value at this time and
will not be quoted. The earlier, piecewise approx-
imants form a simpler numerical synopsis of our
results which should be useful (see further below).

In terms of this function the form

Z'(x) =Z'„L '~~"(a, L"(b, 2 x)) (5.17)

where v is defined via the temperature dependence
of the "true" or exponential bulk correlation
length~'" in the critical region as

is found to satisfy the requirements for periodic
boundary conditions both for small and large x.
To obtain the additional single power-law correc-
tions required for free-surface boundary condi-
tions (v' =1) a sum of two terms of this form may
be used.

Unfortunately, however, these forms contain a
very limited number of parameters and so are un-
suitable for practical fitting requirements. The
function (5.17) may be generalized to the set of
approximants

N (r 7')8

Z'( )=xZO ln g a exp[mL"(b, cx)]

(5.18)
with a„=1, which has an expansion in powers of
x for x-0, and the desired asymptotic expansion
as x- ~. These approximants are sufficiently
complex that the only tractable technique for fit-
ting the numerical estimates seems to be to build
in the desired x- 0 and x- ~ behavior and to use
a least-square fitting routine in the intermediate
or crossover region.

A second variation of (5.17) is obtained by noting
that the parameter b may be replaced by a finite
polynomial in x, say B(x). These approximants
again have correct asymptotic forms. Moderately
satisfactory fits to the numerical estimates have
been obtained using approximants of the form (5.18)
[and the replacement of b by B(x) has also been
explored to some extent]. However, to avoid sig-
nificant "over swing" or, conversely, unphysical
oscillations, in the crossover region, requires
use of four or more parameters a . In view of the

((T)=fat " (n=~, t-0), (5.21)

X'(x) =x"
1+q'x for x ~xo',

=x "(X„+ry'„x ") for x &x,', (5.23)

where y= ~, y=~, v=~, X„=1.0585, and
F„=—0.867. Best estimates for the small x para-
meters are

X0 = 0.98, po = 0.373, q' = 0.0455 (periodic),

X0=1 27' P =0 234

q'=0. 0223 (free surface).

(5.24)

The limits of validity of the small-x and large-x
forms in (5.26) are specified by

the results are as follows. The n-layer reduced
susceptibility per spin may be written asymptotic-
ally

(&.T/~') X',(n; &) = X.'(f )

=n"~" X(x), (n-~, t-0),
(5.22)

where w=0, 1 denotes periodic or free-surface
boundary conditions, respectively. The exponent
y is defined by the divergence of the bulk (n = ~)
susceptibility; for n &~ the divergence is described
by an exponent y.

For the simple cubic Ising model with nearest-
neighbor interactions we estimate the scaling
function as
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x0 —9 and x0~18. (5.25)
g/L

50 10 3 1 0.3 10 10 10 10
I

1.8

y*(n; T) = —[T- T,(n)] ln yr(n; T).8 (5.26}

ln the asymptotic region n- ~, T- T,(n) this should

approach the scaled form

y~(n; T) = K'($/L) = 1"(1/cnt") = F(x "/c), (5.27)

where the universal crossover function 1'(y ') can
be derived from (5.22) and (5.23). The asymptotic
behavior of y~ with $(T)/L and with x =n't"t for the
sc lattice is shown in Fig. 9 (upper and lower
scales, respectively). The effective exponent
crosses over from y = 1.25 at small $/L (large x)
to y=1.75 at large $/L. The crossover for free-
surface films commences at much smaller values
of (/L than for periodically connected films, and

initially has a marked under-swing to values of y*
lcneer than y. This arises directly from the nega-
tive contribution due to the surface susceptibility.
In the region $/L =10 ', where y* already starts
to depart strongly from y, the two approximating
analytic forms in (5.23) for x small and large do

The over-all precision should be +2% or better but
it should be recalled that for small n (say, n ~ 7)
the corrections to the asymptotic behavior may be
larger than this, even when x is small. Indeed, a
full crossover from bulk to finite behavior is ob-
servable only in films with n significantly larger
than 10.

In accorda~e with universality "" concepts,
which we have tested to some degree in the study
of the surface susceptibility, the form of the scal-
ing functions X'(x) should apply to all Ising-like'
ferramagsetic films. As explained in Sec. 11 [see
E@. (2.22)] it is merely necessary (i} to multiply
the scaling function X' by the ratio C&aI/C„„, where

C&~& and C&„& are the amplitudes of the bulk sus-
ceptibility divergence for the system in question
and the simple cubic nearest-neighbor Ising mod-

el, respectively; and (ii) to multiply the scaling
variable x by the corresponding ratio (c&aI/c&„&)'t",
where c =n'/fo; the correlation length amplitude

f here is defined in (5.21) while a' and a are the

interlayer and nearest-neighbor lattice spacings,
respectively.

A useful way of displaying the crossover behav-
ior"'" is in terms of the effective critical expo-
nent

1.7

face

—1.6

—1.4

1.3

1.2

I I IIll
0.1

I I I I I IIII'-I: I I I I IIII I I I I I IIII I I

1 1/~ ~ 10 100
x =n t (sc)

FIG. 9. Asymptotic behavior of the effective critical
exponent y*(n; T) as a function of g /I (upper scale)
or x for the sc lattice (lower scale) for periodic and

free-surface films. The solid lines represent the
piecewise analytic approximants developed in the text.
The dashed curves represent appropriate interpolating
behavior.

400

not quite meet (see the solid lines in the figure);
this, of course, is hardly surprising. The dashed
curve which joins the limiting forms smoothly is
drawn to recognize that X'(x) itself must be con-
tinuous. For this reason y for periodic films al-
so exhibits a small under swing as shown. The
holfIvay crossover point y*= ~(y+y) = 1.50 is
reached for free-surface films at the surprisingly
small value $/L = 8, for periodic conditions it oc-
curs at $/L =0.4. Finally, in applying these re-
sults to real systems, one must remember that
correction-to-scaling terms will be present at
finite n and T —T,(n) However. , as the complete
crossover occurs over about two decades in

T —T, (n) many effects should be experimentally
observable.
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