
PHYSICAL REVIEW 8 VOL UME 13, NUMBER 2 JANUARY 1976

Hydrodynamic of solids~

Paul D. Fleming, IIIt
Brown University, Department of Chemistry, Providence, Rhode Island 02912

Claude ColMn
Brown University, Department of Chemistry, Providence, Rhode Island 02N2
and Polymer Department, ~ The 8'eizmann Institute of Science, Rehovot, Israel

(Received 23 December 1974)

The hydrodynamic equations for solids are derived from the connection between hydrodynamic variables (and
linearized hydrodynamic modes) and continuous broken symmetries. A simple fiuid has five hydrodynamic

variables (and modes), one for each conservation law (mass, three components of momentum and energy). As

pointed out by Martin, Pershan, and Parodi a crystal must have three additional hydrodynamic variables (and

modes) because it does not possess the (threefold) continuous translational invariance of the underlying

Hamiltonian of the system. Previous treatments of the hydrodynamics of solids gave only seven hydrodynamic

modes. As suggested by Martin, Pershan, and Parodi, the additional mode which was omitted from other

earlier treatments, is associated with vacancy diffusion. Previous treatments of vacancy diffusion failed to
recognize its coupling with the other hydrodynamic variables. The recognition of the necessity of inclusion of
vacancy diffusion leads to the identification of two tensor transport coefficients (in addition to the usual

viscosity and thermal conductivity}. One is associated with the vacancy flux while the other is connected with

the cross efFect of thermal diffusion of vacancies (or equivalently a heat flow in a vacancy concentration

gradient). The linearized equations are solved for propagation along the I100], |110],and |111]
directions in cubic crystals. For these directions the longitudinal equations are isomorphic with those in a
binary mixture when vacancy concentration is identified with the concentration in the mixture. In these cases

the identification of the additional mode with vacancy diffusion is most clear. It is suggested that this

additional mode should appear in the spectrum of light scattered from such crystals.

I. INTRODUCTION

It is well known~'~ tha, t the slowly varying spatial
and temporal disturbances of a mechanical system
can be described in terms of local (in space and
time) thermodynamic variables of that system. The
best-known example of such a description is that
of ordinary fluid mechanics, in which the slowly
varying nonequilibrium behavior of a fluid is given
in terms of five partial differential equations. '
This description is referred to as hydrodynamic
because of its extensive application to fluid flow.
By analogy the equations which describe the slowly
varying (in space and time) disturbances of any
system, be it a normal fluid~ or superfluid, 4 mag-
net, crystal, ' '7 or liquid crystal, ' are usually
referred to as the hydrodynamic equations of that
system.

The hydrodynamic behavior of a system is con-
veniently described in texms of a few "hydrodynam-
ic modes" (sound waves, thermal conduction, etc. ).
These collective modes are characterized by slow
decay in times proportional to some power of their
wavelength. The existence and number of such
modes is determined by the sum of the number of
conservation laws and the number of "continuous
broken symmetries. " An example of the con-
tribution of the latter is provided by the long-wave-
length spin waves in an isotropic antiferromagnet,
which behave hydrodynamically because the con-

tinuous rotational symmetry of the spin system
(relative to the lattice) is broken in the ordered
phase. The importance of the continuous nature
of the broken symmetry is that it ensures the sys-
tem has equal energy for all orientations of the
staggered spin arrangement relative to the lattice
(i.e. , the Hamiltonian is invariant under rotation).
Liquid crystals '8 and supex'fluids4 are other ex-
amples of ordered systems in which continuous
broken symmetries are responsible for hydrody-
namic modes.

Since the hydrodynamic description of a system
is a consequence of the assumption of local ther-
modynamic equilibrium and slowly varying dis-
tuxbances, it follows that there must be a thermo-
dynamic variable corresponding to each hydrody-
namic variable (or vice versa). Thus the descrip-
tion of ordered systems must include additional
thermodynamic variables, one corresponding to
each continuous symmetry broken.

In this paper we wish to consider in some detail
the thermodynamic and hydrodynamic equations fox
solids. A simple crystalline solid, unlike a simple
fluid, is not translationally invariant even though
the underlying Hamiltonian of the system is trans-
lationally invariant. Therefore, since translation
is a three-dimensional continuous transformation,
we say that a crystalline phase has three continu-
ous broken symmetries. Since the system still
possesses the five conservation laws (mass, mo-
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mentum, and energy), a crystal must have eight
hydrodynamic modes. This fact was pointed out
by Martin et a/. In particular they argued that a
distortion (or displacement) vector must be treated
as a hydrodynamic variable along with the five con-
served variables.

Earlier treatments" of hydrodynamics in solids
have included the distortion as a hydrodynamic
variable. However it has been generally assumed
that the fluctuations in the divergence of the dis-
tortion are simply proportional to those of the par-
ticle (or mass) density. It is easy to see how such
an identification is made. Suppose in a simple
crystal that the number of lattice sites denoted by
the running index ~ and the number of particles
(atoms or molecules) denoted by the running index
i are the same and that each particle is associated
with a particular lattice site (i.e. , there is an n
associated with each i). Then if R labels a lattice
vector, the particle number density n(rt) is given
in terms of the isotropic component V ~ R(rt) of the
strain g R(rt) by

n(rt) =Z 5(r —r, (t)) =2 5(r —R —5r (t})

=g&(r —R ) —V ~ R(rt),

R(rt) =Z &r (t)6(r —R ),
with

5r (t)=r; —R

Thus in a perfect crystal (one with no vacancies)
the fluctuations in the particle density are the same
as those in the divergence of the distortion. How-
ever, a real crystal has vacancies, so that even
classically it, is impossible to identify each par-
ticle with a particular lattice site. Therefore
(1.1) is not valid in a real crystal and there are
indeed eight independent thermodynamic and hydro-
dynamic variables (along with a like number of hy-
drodynamic modes). Indeed the general mode the-
orem implies, in accordance with thermodynamics„
that any crystal in thermal equilibrium must have
vacancies. We shall see that the hydrodynamic
mode omitted from conventional treatments is re-
lated to diffusion of vacancies. '

Of course, vacancy diffusion is a well-known
phenomenon in solids. In particular, Allnatt and
Chadwick have discussed the effect of a tempera-
ture gradient on vacancy diffusion. This was uti-
lized to discuss the coupling of vacancy and heat
diffusion. They were not, however, concerned
with the full set of hydrodynamic equations which
involve these diffusions.

In Sec. II the thermodynamics of solids is dis-
cussed without the constraint implied by (1.1). In
Sec. III the constitutive equations relating the cur-
rents of the hydrodynamic variables to the thermo-
dynamic variables are derived from the entropy-
production formalism. In Sec. IV the general hy-
drodynamic equations for solids are derived and
discussed. In Sec. V the equations for cubic crys-
tals are discussed in some detail for particular
directions of propagation. In Sec. VI our results
are discussed and the number of thermodynamic
derivatives and transport coefficients necessary to
describe a crystal of a particular symmetry are
exhibited.

II. THERMODYNAMICS OF SOLIDS

(2. 2)

Clearly Q can be taken symmetric without loss
of generality. The requirement that the energy be
stationary with respect to strain variations fixes
the equilibrium value of P to be zero. A similar
recognition is present in conventional elasticity
theory. "

We introduce the auxiliary quantity no(rt), which
we shall refer to as the lattice-site density. Its
fluctuations are assumed to be related to the local
strain by

5no(rt) = Tr5u(rt) = —V' ~ R(rt) . (2. 3)

This identification is motivated by (1.1), with
hr (t) identified with a fluctuating lattice-site posi-
tion rather than a fluctuating particle position.
This variable allows us to identify the vacancy-
(or hole-) concentration variable

c=l — / n, no (2. 4)

where n is the particle number density.
We specify the thermodynamics of a solid in

terms of the energy-density differential

d& = Td(ps)+ pdp+ v. dg+ Trg ~ du, (2. 5)

As argued in the Introduction and in Ref. 2 the
(lattice) distortion R must be treated as a thermo-
dynamic and hydrodynamic variable. It is totally
equivalent and more convenient to work with the
symmetric strain as a variable. ' Hence, we de-
fine a strain-tensor density u(rt) whose variation
is given by

5u;&(rt) = ——,[8&R&(rt) + 8&Jf,(r t}], (2. 1}

where R is the distortion density.
In addition we must introduce an additional vari-

able which is thermodynamically conjugate to the
strain. It is most simply defined in terms of the
energy density a by
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vghere p = mn is the mass density, s is the entropy
per unit mass, p, is the chemical potential per unit

mass, v is the velocity of the system, and g is the
momentum density. p, is related to the pressure
by

Gablean invariance r equires that

txation. II, the variable conjugate to the vacancy
concentration, is essentially a "vacancy pressure. "
The stress o" is conjugate to the strain only @&hen

the energy is considered as a function of entropy,
vacancy concentration, and strain. The variables
H and o ~ are related to the energy by the corre-
sponding derivatives

(2. 7a) VPPlO 8C
(2. 13a)

(2. Vb) 0' = SOPt (2. 13b}
vrhere co is the energy density in the rest frame.
The differential of the chemical potential is seen
to be

pd(tl+-,'v~) =dP-psdT- Tru ~ dp . (2, 8)

This is alternatively interpreted as a Gibbs-Duhem
relation since it can be rewritten as

ps d T —dP+ g ~ dv+ Tr u ~ dQ + p dtl = 0 . (2. 9)

Note that, the finite-strain chemical potential
(2.6) and its differential (2. 8) arise naturally in the
development presented here. The ehemieal poten-
tial (2. 6) allows absolute comparison of relative
stability of strained states. This is to be con-
trasted vrith recent discussions" of stressed solids
involving finite strRin which have appeRred ill the
geophysical literature.

It is instx uetive to examine the energy differen-
tial when the vacancy concentration is employed as
a variable. %e see that

XUo
de =d — = T48+ 2 dP

p P

We can use equations (2. 5), (2. 8), or (2. 12), or
their Legendre transforms to derive sets of Max-
vgell relations amongst the variables s, p, v, and
Q ox' 8~ cy vp Rnd u Rnd their conjugate variables
For example, (2. 5} can be written in a form con-
venient for deriving Maxwell relations with use of
(2. 6),

Q+Q —ga v —Tru ~

d6 = Tp d8+ — dp
P

+ v ~ dg+Trf ~ du ~

By equahng the approprIate cross derxvahves
we obtain (neglecting terms which vanish for an
equilibrium system at rest)

(2. 15a)

(2. 15b)

+v~ dv+Tx' ~ du,
P

We see fl'olll tile defllll'tloll (2. 4)

p dPl0 dpdc= 2
PFlÃ0

(2. 10)

(2. 11)

=p +TrQ' ~ 2, l5c

u= 36ol00 ~ (2. 16)

%'e have assumed v =0 and ft) =0 in equilibrium and
that'4

Then (2. 10) becomes

d8= Td8 — Hdc+v ~ dv+ Tx' . dup' Plo p
(2. 12)

II = P —TX' Q ~ f

(T = II 1 + t)lo (It)

In See. III ore shall see that 0 is the reactive
(reversible or thermodynamic) part of the stress
tensor. Thus equation (2. 12) reduces to the energy
differential usually employed in elasticity theory
if there are no fluctuations in the vacancy eoneen-

%e can neglect cross derivatives involving the ve-
locity or momentum and omit the symbol indicating
that derivatives are taken at constant v when all
derivatives are evaluated at v=0. The thermody-
namic variables for nonzero v can be obtained from
(2. 7). The remaining Maxwell relations amongst
the appropriate variables are derived in Appendix A.

In Sec. III ere shall use the thermodynamic equa-
tions in this section to derive the constitutive equa-
tions from the entropy-production formalism.

III. DERIVATION OF CONSTITUTIVE EQUATIONS

In this section we shall obtain the constitutive
equations which couple the currents (or fluxes) of
the hydrodynamic variables back to the hydrody-



namic variables themselves. For solids, these
currents are defined by the usual five local con-
servation laws plus equations of motion for the
strain. These equations are

mass: + V ~ g(rt) =0;sp rt) (S. la)

Bg rt
momentum: + v ~ 7r(Ft) =0 . (3. lb)

t)c rt}
energy: + V' ~ J'(rt) = 0; (3. lc)

strain: v. J"( t)=o;
Bt

(S. ld)

Jtja(Ft) =2[~&.Jg (rt}+~N J';(Ft)l, (3.2)

where o is the stress tensor, J' is the energy cur-
rent, and J"plays the role of strain current. In
particular

Although Eqs. (3. 1) are formally exact and apply
to arbitrary disturbances, they are of use only when
the currents can be related back to the hydrodynam-
ic variables themselves. This can be done when
these variables are slowly varying in space and
time. For sufficiently slowly varying disturbances
it is possible to assume that the system is in local
thermodynamic equilibrium. Then Eqs. (2. 5),
(2. 6), and (2. 8) are valid locally around each point
in space and time. This alleers us to write for the
rate of entropy production (temporarily suppress-
ing spatial and temporal arguments)

s(ps) 1 se t(, sp F s ((t) su
Awwwwl ~ ~ e Tr ~

8t T 8t T et T et T 8t
(S.4)

The requirement that the work done on the sys-
tem by external forces must be positive for a sta-
ble system implies that

where we have assumed that the distortion satisfies
the dynamical equations

R= T —
~ dr ps~0.

dt 4
(S.5)

ttR(r-t}
(S.3)

When we use (3.1) R can be written in terms of the
currents as

We see that one advant, age of working with the
strain as a variable instead of the distortion itself
is that (3. ld) has the appearance of a local con-
servation law. Of course (3.1d) contains no more
information than (3.3).

R dr ——V' ~ J'+ —V' ~ g+ —~ V' ~ a+ Tr —~ VJ~ .T - T T T

(3.6)
If we integrate (S.6) by parts we obtain using

(2. 8), (2.6) and neglecting surface terms

T (ir —T) —riv) ~ v r* — Trv ~ v( ~ v
)+ T + —(& 0)—T T (3 &)

(3.8)

Since we shall only be concerned with the linea. rized hydrodynamic equations ere can drop all terms in
(3.7) which are of higher order than quadratic in fluctuations from equilibrium. Then (3.7) becomes

[ rI —(6 P)+V] ' 7 T +Tr( -Tl-v, (') ~ Vv ~ (J -vv) ~ (V' 0)),4, T

is the symmetric-traceless part of fIe) with (Ie)0

= —', Tr(t). In (3.8) we have used the fact that

&4'o = & ((t) —0') (3.10)

and integrated nov ~ (7' ~ (t)') by parts, neglecting the
surface term.

The requirement that R be positive restricts the
currents to be of the form (putting the spatial and
tempora, l variables into the nonequilibrium quanti-
ties and denoting equilibrium quantities as those
without such variables)

J'(rt) = (e+ P)v(Ft) —Z vtT(Ft) -7 [& 4 (rt)],
(3.1la)

o(rt) = P(Ft) 1+no/'(Ft) —tt: Vv(Ft), (3.lib)

P(rt) = n,v( tF) —('. ~ [V ~ (t)(Ft)] - fr/T &T(Ft) .
(3.11c)

a, a second-rank tensor, is related to the pure
thermal conductivity T as will be shown below.
a fourth-rank tensor, is the viscosity. f and g

( $* is the transpose of $) are new (tensor) trans-
port coefficients which appear because & ~ 5 is a
variable independent of the density (mass or par-
ticle). 1' is related to the vacancy diffusion con-
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stant while $ is related to the cross effect of
"thermal diffusion" of vacancies.

Note there are no cross terms coupling J' to
Vv, etc. , because J' and v have the same behav-
ior under time reversal. A fundamental property
of transport coefficients is that they always relate
quantities with opposite time-reversal behavior
(e.g. , o is even and v is odd under time reversal).

We see that the reactive or reversible part (that
which is simply proportional to thermodynamic
quantities with no gradients) of the stress tensor
1s

(r (rt} = [P(rt}—nott)0(rt}] 1+no(tt(rt)

= II(rt) 1+no(t)(rt) (3. 12)

to linear order in fluctuations from equilibrium.
As was seen in Sec. II cr is conjugate to the strain
when the vacancy concentration is used as a vari-
able.

Equations (3.11) are the desired constitutive
equations relating the currents to the hydrodynamic
variables. When combined with the assumption
that the fluctuations of the local thermodynamic
variables are related to one another by thermody-
namic derivatives, they close our system of hydro-
dynamic equations. In Sec. IV we will derive and
discuss these equations.

IV. GENERAL HYDRODYNAMIC EQUATIONS

In this section we will derive the general hydro-
dynamic equations for solids. We can obtain these
equations by substitution of (3.11) into (3.1). This
yields the four equations

q(rt) = Tps(rt) = e(rt) — p(rt),
p

( t)=, ,( t) —"
p( tl) .

mn0 p

(4. 2)

(4. 3)

The first, q(rt), has been introduced by Kadanoff
and Martin as the heat-energy density and is pro-
portional to the fluctuation in entropy; the second,
c(rt)t is the fluctuation in vacancy concentration.

We can then write

2 Tr $ VV T(rt) =0,
mn 0

(4. la')

aq(rt}
Bt

—Trn ~ VVT(rt) —Tr $ V[V ~ (t)(rt)] =0 .
(4. lc')

We now note that if the vacancy diffusion flux
(p/mno)[ J (r, t) —n()v(r, t)] is zero, we have Pure
thermal conduction since

a),T(rt)
V

T
~ VT(rt) = 2())tyay + 5yty By)

ij
A summation convention over repeated indices has
been employed.

We can close these equations if we assume that
the small fluctuations of the conjugate variables
o, Q, and T are related to the variables p, u,
and e by a linear combination of thermodynamic
derivatives. It is convenient, however, to first
replace the scalar variables p and & by two other
scalar variables which to linear order are given by

ap(rt)
)+ g r (4. la)

T
Tr K ~ V[V ~ (t)(rt)]+ Tr —~ VVT(rt) =0, (4. 4)

R ~1 —— ~ g(rt)+V ~ as(Ft) =0,
Bt p

' + V ~ g(rt) —n ' vV T(rt)
8&(rt& e+ P

at p

—g:V[v y(rt)]=0,

+ —[Vg(rt)] -[VV 4(rt) &]

(4. lb)

(4. lc)

T
7' —~ VT(rt) =0

T (4. 1c)

where

[Vg(rt)]yy = ,' [Bygy(r t) + Byg, (rt)], —

[VV ~ P(rt) ~ f ],y
——a(gy, .a,. + g«ay)a)$) y(rt),

which when substituted in (4. lc') yields

Bq('t) Tr n ~ P' ~' . VVT(rt)=08t T
4. 5)

This equation may be rewritten as

aq(r t)
at

—Trz VVT(rt)=0 (4. 6)

which defines the thermal conductivity tensor K of
the system.

Our set of hydrodynamic equations for the fluc-
tuations of the thermodynamic variables may be
taken to consist of (4, la'), (4. 1b), (4. lc'), and
(4. 1d). We can close these equations by relating
the variables 0, T, and Q to the variables u, c,
and q via thermodynamic derivatives. Thus we
assume in accordance with local equilibrium

R ~~R g ~R*(')=( -): ( t) ~ —( ) t(t) ~("
SsC t

(4. 7a)



1 8$
iti(rt) = —:u(rt)+ —— q(rt)+ c(rt) ~

Tp 8~ u, c

BT 1 BT BTT(rt) = Tr — ~ u(rt)+ —— q(rt)+ — c(rt) .
Bu Tp Bs Bt."

When these relations are substituted into our chosen set of Eqs. (4. 1) we obtain

(
8 1 1-, 1 —,1 ——v ~ D' ~ v' ~ g(rt)+ —V ~ [C: u(rt)]+ —C' vq(rt)+ —C' ~ Vc(rt) =0,Bt n Q n Q nQ

(
14 —-D":VV': u rt + ~ Vg rt -D~-VV'q rt) —D:V'Ve rI; =0,

(
——TrD' VV q(rt) —TrD" VVc(rt) —VV: D'":u(r t}= 0
Bt

(
——TrD' ~ VV c(rt) —TrD" ~ V'Vq(rt) —VV: D'": jj(rt) =0
Bt

80)j
Cf jhow n0

n0 8~ t

~n 90$j

84'jktt 1 8 T
&jjkj .=k(«4j +&& &*j )

" + —(«4.+&j 4.)
s, c 2 T Blt'a& g, c

1 4'j 1 BT
Dj jkl (ajk~jj' + ~Jk4j') + k («4kl + jk4 j)2 Tp 98 „c 2T p 88

BT
Djjkl 2( jk~jP + jk4j')

8& u 2T+ («k41+ «k4i) 19

+ ~II 9& „~ ~ijaI, —&&j 8
+ ~&j

p 8 It'yj p BT
mn' " Be -+ n'T " acn 0 8yu 0 ga u

cq 1 8~M
co B~ ~ 2T~n

Q uyc 0 ukc

p BT p
+5jkl 8 ~i j +

ljjkj k( jk jj+ jk jj)

These equations are a set of complicated coupled
equations which describe the hydrodynamic modes
of a general crystal. It is not obvious that they
describe six propagating sound modes and two dif-
fusive modes. However, ere can identify the prop-
agating modes of a general crystal by examining
the reversible Euler equations (i.e. , the equations
obtained by neglecting all terms involving trans-
port coefficients). These equations are

sg(rt) 1 — 1 —,+ —V'. C: u(rt)+ —C' ~ Vq(rt)
Bt n Q

+ —C . V'c(rt) =0
n Q
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aq(rt)
Bt

ac(rt)
8t

(4. 9c)

(4. Qd)

the eigenvalues, and the eigenvectors are denoted

We can solve (4. 8) in terms of these eigenvalues
and eigenvectors,

These can be reduced to one nontrivial second-
order equation by taking a/at of (4. Qa),

(k,) -(k, )
- g~(k) —tzgi(k)

—Z +elk {4.13)

(
8~ 1

~ P

egret

=0
Bt p

(4. 10)

fa 00

g(kz) = dt dre'*' e "'g(rt),
J 0

P

g(k) = dre'"'g(r, t =0),

g (k) = dre'"' —g(rt}
- ~=0

The sound velocities are obtained from the solu-
tion to the eigenvalue problem

—c~ e)„=0 (4. 12)

where k is the unit vector along k, X=1, 2, 3 labels

Equation (4. 10) is the usual~'7'~5 equation de-
scribing sound propagation in solids. We can most
easily solve (4. 10}by Fourier-I aplace transforma-
tion. The transformed equation is

(
k ~ C ~ k ~

—z 1 + ~ g(kz} =g (k) —izg(k),
P

(4. 11)

Thus (4. 13) describes six propagating sound modes,
z=+ c&k, of the system. These modes are not at-
tenuated in this approximation since we have ne-
glected the dissipative coefficients.

When dissipation is included, (4. Qc) and (4. Qd)

are replaced by (coupled) diffusion equations. In
the Sec. V the full equations, including dissipation
for certain selected directions of propagation in
cubic crystals, will be discussed. In a subsequent
paper~0 the solutions of these equations will be dis-
cussed for isotropic amorphous solids.

V. HYDRODYNAMIC EQUATIONS FOR CUBIC CRYSTALS

In this section we will discuss the hydrodynamic
equations for the particular case of cubic crystals.
We shall see that the equations simplify somewhat
and can be analytically solved for certain directions
of propagation.

The thermodynamic derivatives and transport
coefficients for cubic crystals are simpler than for
any other type of crystal. The simplifications are
summarized in Appendix B. With these simplifica-
tions of coefficients, the Fourier-Laplace trans-
forms of the hydrodynamic equations are of the
form

4

( —iz 1+k ~ D' k). g(kz)+ —k [C: u{kz)]+—C'kq(kz)+ —C'kc(kz) =g(k),
n 0 n 0 yE 0

(5. la)

( —izl~ + D":k k): u(kz) + [kg(kz) + g(kz)k] + D"'k kq(kz) + D"'k kc(kz) = u(k), (5. lb)

( —iz+ D'k )q(ks} + D"k c(kz) + k k: D'": u(kz) = q(k),

( —iz+ D'k )c(kz) + D'~k q(kz) + k k: D'": u(kz) = c(k) .
(5. 1c)

(5. ld)

Although these equations are simpler than in a general crystal, they still involve couplings amongst all
of the eight hydrodynamic variables for most directions of propagation. However, for certain special di-
rections of k, the equations separate into subsets When .the directions of propagation (k) are the [100],
[110], [ill], or equivalent directions, the equations can be separated into longitudinal and transverse com-
ponents. Then the equations separate into one set of four equations and two sets of two equations each.
For these directions we have the set of four longitudinal equations:

ik . C% . C'k
( —iz+ Dz~kz) gz (kz) + Cz n o(k—s) + i q(kz) + i c(kz) =g~(k),6 p Pl p Pl 0

(5.2a)

( —tz+Df 0 )no(kz}+ i ~kg~(kz)+D"'0 q(kz)+D"'0 c(kz) =no(k),

( —is+ D'k )q(kz)+ D"k c(kz)+ D~z"k no(ks) = q(k),

( —tz+ D')t') c(ks) + D"r'q(ks) + D,'%'n, (kz) = c(k),

(5.2b)

(5.2c)

(5. 2d)
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gL(kz) =g(kz) ~ k, n 0(kz) = uL(kz} = k ~ u(kz) ~ k,

n, 1/P

DL [ 144+ 2 ( 111+ 112)1/P

I" (21112+ 2 12+2 044')/P

if k=e„, e„or e, ,

if k=-2'&2(e, +e,), etc. ,

if k = —
2&3 (e„+e, + e,),

Cl =

C11

C44+, (C11+ C12)

4
3 Cg] + 3 C&z + g C44

if k = e„, etc. ,

if k=-2'v 2(e, +e,), etc. ,

if k = -', v 3 (e„+e„+e,),

DL = D44 + 2 (D11 + D12)
1 2 4
3D(~ + 3Dy2 + 3 D4y

if k = e„, etc. ,

if k=-2'&2(e„+e„), etc. ,

if k =-2'&3(e„+e,+ e,},
($/n0)G„

BT p 8@
DI. + ~ 2 GL = {~/ 0)[G44+ 2(G11+ G12)l

no s c n(} 8~ s M no

(~/n0 }(2G11 + 2G12+ 2 G44)

if k = e„, etc. ,

if k=-,'&2(e„+e,), etc. ,

if k = -', &3 (e, + e, + e,),
and

p$ 8 T fp' 8$ p&

rnno T &no s, c rnn3P Bp „„rnn 4z

The quantities q, g Cgg G], etc. , are defined in Appendix B.
The two pairs of transverse equations are of the form

2z P

( —iz+ D42k )g, (kz)+ kC, u1(k—z) =g, (k),
no

( —iz+ D,"k )u, (kz)+ kg, (kz) = u;(k),

where

g,.(kz} = e; ~ g(kz), u;(kz} = k ~ u(kz) ~ e, , i=1, 2,

A,

eg= —,'&2(e„- e,),
any unit vector orthogonal to k,

e,
k xe1/~ k xe4

~

if k=e„

if k = —,
'

v 2 (e„+e,),
if k = —', v 3 (e„+e, + e,),

n44/P,

(911 112)/2P i

( 2 744+ 2 111 2 112)/P,

D2 = 11,4/P

if k=e„

if k=-2'&2(e„+e,),
if k=-', v 3(e„+e,+e,),

C44,

—,'(C„—C,2)~

1 1 I
2C44+ 2 11 2C12,

C)

C~ = C44

Cq

if k=e„

if k=-2'&2(e„+e,)

if k = —,
'

v 3 (e„4-e, + e,),

Dl4
2 (D11 D12},

1 I 1
3D44+ 3D11 3D12

DM

D2 = D44

if k=e„

if k=-2&2(e„+ e,)
if k=-,'&3(e„+e,+ e, ) .

The two transverse equations can be solved immediately. It is easy to show that
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kz) = ( —iz+ Dfk )g((k) + (2iC(k jno)u((k}
—z -izD k+ek+

u kz)= ( —iz+Dfk )u&(k)+ ,'(i-)(n Jp)kg&(k)"--.D, k ...k
(5. 4a)

(5.4b)

c] = — and D) =Dg+D]s «
t4 4'

p

These solutions are identical to those obtained in the usual treatments'7' of the transverse sound equa-
tions in solids except for the appearance of the new transport coefficient (in D, ).

The longitudinal equations can also be solved in a reasonably transparent form. The equations can be
put in a more suggestive form in terms of the variables p, gl. , q, and c instead of the variables no, gl. , q,
and c. The transformed equations are

—izp(kz}+ikgz(kz) =, p(k), (5. 5a)

( —i z+ D~k')g~(kz) + —C~p(kz) + —C'q(kz) + —C'e(kz) =g~(k),
p SO Pl Q

( —iz+ D'k )q(kz)+ D"k e(kz) + D k p(kz) =q(k),

( —iz+ D'k')e(kz) + D"k'q(kz) + D~k'p(kz) = e(k},
where

(5. 5b)

(5. 5c}

gC DQC ~+0 ~gM B~ ~+Q~ g+ I + I y

~qP ~D4(M DCP ~DCNI y
p

I t

p

D D+ "D, kk.. ~p ae
+ pg, B7'

1
p

'
mno Bc, , mno Bc

(5.q)

Equations (5. 5) are isomorphic with the hydrodynamic equations in a binary mixture. " The vacancy
concentration c is identified with the concentration of one of the species in the mixture. The longitudinal
part of Q is to be identified with the chemical potential. In particular we identify

(k )
—41(kz) i R(kz) mu0

k 4 (k ) k —~no
4 (k ) (5.6)

Alp p p

for the mixture and the solid, respectively. (mn Jp )@~ is essentiaQy a "chemical potential" of vacancies. "
The pressures in the binary mixtures must here be identified with the longitudinal stress (a kind of "longi-
tudinal pressure")

P(kz) —Pl, (kz) =k ~ o (kz) ~ k=P(kz)+nok ~ P'(kz) ~ k .
On the other hand, one can show that (Appendix C)

k ~ P'(ltz) ~ k = ', @I,(kz) . —

%e then have for the longitudinal pressure

Pi(kz) = P(kz)+ gnogz(kz) .

(5.8}

(5.9)

With these identifications we can easily solve Eqs. (5. 5) by following the corresponding solution in the
binary-mixture case. The full solutions are complicated and will not be explicitly provided here. How-
ever, it is instructive to display the mode structure of the solution. This structure is seen most easily in
the determinant of the 4x4 matrix defined by the left-hand side of (5. 5). This determinant, which when
set equal to zero gives the dispersion relation for the hydrodynamic modes, is seen to be of the form

detM= ( —iz+ D, k ) ( —iz+ Dzk ) ( —iz+ieok+ I"k ) ( —iz —ieok+ I'k ), (5. 10)
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where

co= (Cz, /p)U' (sound velocity),

cPLBC
YL

P8C

kP kT nT
(P = —+P PCPL, c

2F = DI, + Dr(pl —1)+ Dmn, cp
s a 6' 2

Bc

"' ='(—)

K
DT =

PCPL, C

D~ = , (Dr —+D) + ,[(Dr —+&) —4Dr &]

D2=r(Dr+&) ~2[(Dr+ )'-4Dr 1"',
with

~T m+ 0 B~L
X) =D 1+ zTCP, cp Bc P, T-

But from (5. 9)

Bc P T BP Tc Bc PL, T

(5. 11)

(5. 12)

Substituting into (5. 11) and solving for (84&/ac)p, , r
we obtain

BAI (api/ac)p r
ac ...=

I+ ', n, (ay, /BP-), ,
In a similar manner we can show that

', (as/BP)g, r(ag, /BT)p,—npT
1+ -,'(84n, / BP), ,

(5. 13)

84, (ay, /BP)r. ,
BPi r, ~ 1+ ~no(8$~/BP)r,

r
8@, (ap, la T)p. ,
BT p& 1 + dna(84r/BP)r, ,

(5. 14a)

(5. 14b)

(5. 14c)

1 Bp —', (n o/p)(ap/BP), , r(a/~/8 T)p, g

p BT, 1+ 'no(ag, /B—P)r„
(5. 14d)

Equations (5.4) and (5. 10) constitute a complete
description of the hydrodynamic mode structure of

The thermodynamic derivatives evaluated at con-
stant PL are not easily identified with a simple ex-
periment. However, we can easily relate these to
the corresponding constant-pressure derivatives
with use of (5.9). For example,

a cubic crystal when the wave vector is along cer-
tain special directions. For these directions of
propagation, we do see the predicted eight hydro-
dynamic modes; two longitudinal diffusive modes,
two longitudinal propagating sound modes, and
four transverse propagating sound modes. We
would expect that the spectrum of light scattered
with momentum transfer in the [100], [110], [111],
or equivalent directions would be indicative of this
mode structure. The sound modes are well known
as the Brillouin components of both polarized and
depolarized spectra. ~'8 In the case of the polar-
ized Brillouin components, the width of these com-
ponents (2Fk ), which represents the sound-ab-
sorption coefficient, contains an extra term due to
vacancy diffusion. The two coupled diffusive modes
described by D, and D2 should appear as the central
(unshifted) Rayleigh component of the spectra. This
component could be resolved into two components
(exponential in time or Lorentzian in frequency)
described by D and DT if the thermal diffusion co-
efficient kT is negligible or if" DT»D; both are
reasonable assumptions.

To our knowledge, these components have not
been resolved for the spectrum of any crystalline
system. Such a resolution may be possib]. e in the
spectra of light scattered from crystals near their
melting point. At these relatively higb tempera-
tures the vacancy concentration should be high
enough that their diffusion will give an appreciable
contribution to the scattering.

VI. DISCUSSION

In this paper we have derived the general hydro-
dynamic equations for solids. This derivation has
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0

0 rc

0 gT

(6. 1)

The reactive coefficients can be represented by a
matrix of thermodynamic derivatives which relate
the fluctuations of the conjugate variables to those
of the direct hydrodynamic variables:

(6. 2)

been based on the recognition that a crystal has
three continuous broken symmetries in addition to
the usual conservation laws of mass, momentum,
and energy. Since a crystal breaks the transla-
tional invariance of the Hamiltonian of the system,
it is necessary to treat the distortion R (here ac-
tually its gradient) as a hydrodynamic variable.
The recognition that lattice motion and particle
motion need not be identical required that no
= —V ~ R and the density p be independent variables.
This led us naturally to introduce the vacancy con-
centration as an auxiliary variable. The additional
hydrodynamic mode omitted from previous ' treat-
ments of hydrodynamics of solids was identified
with vacancy diffusion.

For particular propagation directions in cubic
crystals the longitudinal hydrodynamic equations
obtained are identical to those of a binary mixture.
In that case vacancy diffusion indeed plays the role
of particle diffusion in a binary mixture. It is
reasonable to expect that this interpretation is still
approximately valid for arbitrary directions of
propagation even in anisotropic crystals.

As in ordinary simple fluids, the hydrodynam-
ics of solids are characterizedby twokinds of co-
efficients, thermodynamic (reactive) and dissipa-
tive. The dissipative coefficients can be repre-
sented as a symmetric matrix of transport coef-
ficients which connect the currents o, J', and J"
[cf. Eq. (3. 11)] to the gradients of v, T, and P:

be equivalent to symmetric matrices.
One thermodynamic derivative,

1 1 Bv

p mn eg
(6.4)

is omitted from the matrices (6.2) and (6. 3) since
it is trivially separated from the others by Galilean
invariance.

For a general (anisotropic) crystal there are
21+6+ 6+ 9 = 42 independent elements in the dispa-
tive matrix (6.1) and 21+6+6+3=36 independent
elements in the reactive matrix (6.2) or (6. 3).
This is too large a number to reasonably sort out
in any set of experiments. However, for a uniax-
ial crystal these numbers reduce to 5+2+2+2 =11
transport coefficients and 5+ 2+ 2+ 3 = 12 thermo-
dynamic derivatives. In a cubic crystal there are
3+ 1+1+1 = 6 transport and 3+ 1+1+3 = 8 reactive
coefficients. For an isotropic (amorphous) solid
there is one less viscosity and one less elastic
constant than in a cubic crystal. This count of co-
efficients is summarized in Table I. In cubic and

amorphous solids it seems reasonable to hope to
determine the reactive and dissipative coefficients
in a small set of mechanical or scattering experi-
ments.

As pointed out in Ref. 2 the hydrodynamic equa-
tions for smectic 8 liquid crystals are identical to
those in a uniaxial crystal except that two of the
five elastic constants, (sa~/su), „must be of or-
der k . Thus our equations are formally valid,
with the appropriate modification for smectic I3

liquid crystals. Recently" it has been shown that
the low-temperature "crystal" phase in phospho-
lipid bilayers and biological membranes may be
described essentially as a smectic Bliquid crystal.
Our equations would hence also describe the me-
chanical and hydrodynamic properties of certain
biological membranes.

In a subsequent paper we will apply our equations
specifically to amorphous solids. In particular we
will discuss in detail the expected spectrum of
scattered light in amorphous solids.
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APPENDIX A: MAXWELL RELATIONS

In this appendix we derive the other Maxwell re-
lations which must be employed in the thermody-
namics of solids. We have already derived the
relations involving the variables p, s, g, and u
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TA3LE I. Number of independent components associated with the various dissipative
(transport) and reactive (thermodynamic} coefficients.

Dissipative

21 6 9 6

5 2 2 2

3 1 1 1

2 1 1 1

General crystal

Uniaxial crystal

Cubic crystal

Isotro pic

Reactive

1 1 1 6 6 21

h=(e+ P)/p .
Then we have

(A1)

dP ~ u
cN = TGs+ + v ~ dv+ Trf ~ d

p p
(A2}

The natural variables for h are s, P, and u/p
(strain per unit mass). The corresponding Max-
well relations are

from the differential of the energy density. %e ob-
tain the relations appropriate for the variables P,
s, v, and u from the enthalpy (per unit mass)

ap (ap/as)J', u

as p -„„1—( u/p) ~ (ap/a u },p

'

Thus equating (AV) and (A8} and simplifying the ex-
pressions, we obtain

+Tr — — — A9

Similarily, we have

p — = — + — — '. — 410

BP s&u/n P BS p u/

8 u p & Bs

BP / p 8 u p p

(A3a)

(A3b)

8$ Bp 8$ u 1 Bp

f =E —Tps, (A12)

Next we derive the Maxwell relations appropriate
for the variables T, p, g, and u. Thus we con-
sider the Helmholtz free-energy density

%e can convert these to relations involving the
variables s, P, and u via an exercise in partial
derivatives. For example we have

which has the differential

BP @„/p BP s „Bu s p BP s „/p

But

BP s~u!p p BP s u/p
(A 5)

+v dg+ Trg ~ du

This leads to the set of Maxwell relations

(A13)

(A14a)

So

(ap/a P)s.".
1-Tr(%/p) (ap/au)„~

'

BP;u/. » s, u

Tr( u/p) ~ (a r/a u ).,p(ap/a P)., U

1 —Tr(u/p) ~ (ap/au), p

By a similar argument we can show that

e =e —Trg ~ u, (A 15)

In order to obtain the Maxwell relations appro-
priate for the variables s, p, g, and Q we consider
a quantity which is equal to the energy in equilib-
rium, but differs from it outside,
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(A17b}

(A17c)

Next, the free energy which has as its natural
variables T, P, v, and u/p is the Gibbs free ener-
gy (per unit mass},

&+ P- Tps —g ~ v
p, =

P
(A 18)

p, is equal to the chemical potential in equilibrium.
Its differential is

P+& —g ~ v
dE = Tp ds+ dp+v dg —Truo dQ ~

P
(A16)

Hence we obtain

P+f ~ge
df =-sdT+ dp+v-dg-Tru dP .

(A28)
From this we obtain the Maxwell relations

(-")..;— -'(—':)..; (A 24a)

('i). .-(—::)...- (A24b)

Finally for the variables P, T, and P we need
consider the chemical potential (2.6). From (2. 8)
we can obtain

A25a

d(it'+ 2)11=-dP/p —sdT+ tf1 ~ d(u/p) .
Thus we obtain

r ill@ ~ P ufo

pr 87 nufp

J,r 8P r, ufp

(A19)

(A20a)

(A20c)

It might seem that we could obtain additional
Maxwell relations from (2. 12) in terms of the vari-
ables s, c, and u or their conjugates. For example,
we could obtain

8T mno 8II

But (2. 15a)

To obtain the relations involving the variables
T, P, and u we employ a procedure similar to that
used to obtain (AQ). This procedure yields

(A27)

8p „ fflplo 8c ™ (A28)

Substitution into (A27) yields (A26).
Thus we can obtain all the relations involving s,

c, and u and their conjugates from the ones already
obtained.

In order to obtain the Maxwell relations appro-
priate for the variables T, p, g, and Q we need to
consider a free energy which is equal to the Helm-
holtz free energy in equilibrium,

f =f —Tru ~ @. (A22)

Its differential is

APPENDIX B: THERMODYNAMIC DERIVATIVES AND
TRANSPORT COEFFICIENTS IN CUBIC CRYSTALS

For cubic crystals the thermodynamic deriva-
tives and transport coefficients are more isotropic
than any other crystal. In particular, we have for
the fourth-rank tensor elastic constants and vis-
cosities

8cr
C BO (C11+2C12)TOTO+ (C11 C12)(T1T1+T2T2)+ 2C44(T3Y3 + T4T4+ T5T5) y

SIC

, eQ
G -nO — —(G„+2G12)TOTO+(G„G12)(TtTt+ TOTO)+2G44(TOTO+ T,T4+ T,Y,),

(Bla)

(Blb)

( tt + 2 /12)TOTO+ ( ~tt 712)(Y1Y1+YOY2)+ 2 l44(YOY3+ Y4Y4+ Y5Y5} s
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T, =-,'&6(e,e, ——,
' 1), T, =-,'&2(e„e, —e,e,), (Blc)

T, =-,'v 2(e,e, +e,e,), T, =-,'&2(e„e,+e,e,), T, =-,'u 2(e,e, +e,e,);

e„e„and e, are the unit vectors along the coordi-
nate axes which are taken to be the principal axes
of the crystal.

Equations (Bla} and (Blb) are the form that the
elastic constants would take in cubic crystals if the
strain u really had six independent components.
However, as we' ve stated before, the strain can
only have three independent components. This is
most easily seen in a Fourier representation in
which

So

C n=okk — +pno —
~

kk+G .
Su ~c ~~ )su

From the Maxwell relation (2. 15c)

(B8)

(B9)

u(k) = due "'u(r) = --[kR(k) + R(k)k], Thus we have

It then follows that

u(k) = n, (k)k k+ u, (k)(ke, + e,k)+ u2(k)(kez+ e,k),
(B3)

where e1 and e2 are unit vectors transverse to k.
That is u cannot have any components which are
totally transverse to k.

Therefore when applied to the Fourier repre-
sentation of the hydrodynamic equations, only the
components of (Bla}and (Blb) which are compati-
ble with (B2) and (B3) can contribute. The cor-
rected expressions for C and G can be most easily
obtained by multiplication on both left and right by
the projection operation

A A A A

rye&=2( & a y+ y I ta) ~ (B4)

Then, for example, (Bla) becomes20'~'

C = (Cqq + 2 C~a )To(k)TO(k)

+ (C„—C,2)[T,(k)T, (k) + T,(k)T3(k}]

+2C44[T3(k)T~(k)+ T4(k)T4(k)+ Ts(k)Tq(k)],
(B1a' }

C11 —C12 ~11 012 y (Bl lb)

(Bl lc }C44= a44 .
The tensor coefficients C'and C must be of the

form

and

C'= ~ = C'kk = C'P: 1
u. c

(B12a}

C'=no = C'kk . (B12b)

The tensor transport coefficients must be propor-
tional to the unit tensor

C =nokk — +no — kk+p — kkkk+G.

(B10)
We obtain the corresponding components by identi-
fication of components,

l arr BII
3(C«+2C12) =2no + p „+r(~«+ G&2) ~

(81la)

where

T~(k}= ~ (T„~ kk+ kk ~ T~}, A. = 0-5 .
The scalar coefficients of C and G are not all in-

dependent of one another. We see this since
7=el =(n —$'/Tr) 1 .

(B13a)

(B13b)

(B13c)

Similarily we have for the other tensor coefficients

But

and

C =no

=nokk = +no = (B5)

(B6)

kk,

kk,

kk .

(B14a)

(B14b}

(B14c)

(B14d)

(BV) The sixth-rank tensor D" then takes the simple
form
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(D11 + 2L 18)TO+ (+11 D1R)(Tl + Tz)

+ D„(TS+T, + vs),
(Td~&N .=z [« '4(k)i. + &g Ti(k)~.)T~(kyar,

The fourth-rank tensor coefficients D"' and D~
are of the form

+11+ +12 Y(G11+2G12)
Pg 0

+ 3&@0 — + 3—
(816a)

ail D18 Y(G11 ~1?}
R 0

Pl 0

sc
g + P

(al6b)

The other fourth-rank tensor coefficients 0'" and
D'" are more complicated,

8T P3ot. + 3$—— TOTO(k}+ ~6
800 a c +0 8~ s

(al Va)

3p) 8+ 3Cp ~4' ~ Y p P" (Sl vb)

The remaining second-rank tensor D's are

Q g $ QQ ~M ~~ QD'= + —— kk -=D'kk+ (l- kk),
MyC CyU ~ P SIC

I

DqC + ] $ yy —Dff CyP

(Bise)

APPENDIX C: PROOF THAT k ~ P'(k z) ~ k= 2
A; ~ p(kz) ~ k

The easiest way to see this is to recall that Q

actually appears only as V' ~ Q. That is to say,
rather than having the freedom to independently
specify the tensor P, we only have the freedom to
specify the vector V. Q. Clearly this must be the
case since all that can be relevant is a vector vari-
able conjugate to the vector distortion H.

Therefore we can write for the Fourier trans-
form of V ~ @

F(kz) = —sk ~ P(kz) = Fi(kz)k+ F,(kz)e, + (Fk ) z,ez
(C l)

where el and e2 are any two unit orthonormal vec-
tors orthogonal to k. (Cl) allows us to identify

Q(kz) = Q~(kz)kk+ &f&~(kz)(ke|+ e|k)

+ P,(kz}(fez+ ezk) „ (C2)

Q~(kz) =k Q(kz) k =

F,(kz)
Q~(kz) =k ~ Q(kz). eg ——

Q (kz)=k P(kz) ~ e = Fz(kz)
ik

%'e have symmetrized p, although this is un-

necessary, because we have chosen to woxk with
the symmetric strain. Of course (Cl) only deter-
mines Q up to terms which are totally orthogonal
to k (i.e. , orthogonal in both indices). But such
terms must be irrelevant and cannot contribute to
either the thermodynamics or hydx'OdyIlaIQics,

It then follows that

P'(kz) =P(kz)- —, Trg(kz) 7
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= (h~ (kz)(kk ——,1)+ p, (kz)(ke, + et')
~ P, (kz)(kes+ e,k), (cs)

and therefore

k ~ p'(kz) ~ k = ppt, (kz) . Q. E.D.
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by V at constant V and N at constant P4, where P = gV
and/ =uV. If we chose u' as the strain variahlethenfor
g' =u'V we have

dg =du' V+™u'dV

= d Q+ (™u'—u) d V

=dQ+(a —s) (np+& R) 1dV.

When this is substituted into the expression for dE it
becomes

dE=TdS P'dV+ p dN-+v dP+Tr Q ~ dP

where

P =P + 3 (a —3) (np + V ' R) Pp,
with Pp= & Tr@. Thus the only effect of transforming
from ™uto™u'is to redefine the pressure. Note, how-
ever, that P'=P in equilibrium (Pp=0) The "inte-
grated" form of this equation [cf. (2. 6)],

E= TS -P'V+ pN+v ~ p+ Tr 0 ~ K"

= TS —[P+3(a —q) (np+V R) Pp] V+ pN

+v ~ P+ Trg ++ V(a —s) (np+V R) I

= TS —PV + )pN + v P + Trpp. p
is independent of a.

SSince the main difference between our treatment and the
usual one is the appearance of an additional diffusive
mode, our solution of the Euler equations for the prop-
agating modes must be identical to the usual one.

"p. C. Martin, in Statistical Mechanics of Equilibrium
and Non-Equilibrium, edited by J. Meixner (North-Hol-
land, Amsterdam, 1965).

' (a) C. Cohen, J. W. H. Sutherland, and J. M. Deutch,
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R. S. Krishman, in The Raman Effect, edited by A.
Anderson (Marcel Dekker, New York, 1971), p. 343.

~SL. Powers, Bull. Am. Phys. Soc. 19, 374 (1974).
20Note that (Bla') only contains contributions from the

part of the stress ™0.~ which contributes to the hydrody-
n.amic equations, i.e. ,

=P:™(r+=kkII+no P .
[That P:™P(k)= P(k) follows from the devel, opment of Ap-
pendix C. ]

2~It is interesting to note that when applied to spatially
dependent variables (Bla') is nonlocal in space. How-

ever, when it is multiplied either left or right by the
strain it becomes effectively local.


