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A quantum-mechanical formulation for multiple scattering of thermal neutrons is presented and applied to
double scattering. The contribution of double scattering to the cross section for quasielastic magnetic

scattering of neutrons from ferromagnets slightly above their critical temperature is calculated for relevant

experimental parameters. The effect is to alter the usual Lorentzian line-shape dependence on neutron wave-

vector transfer. Comparison with corresponding deviations in line shape resulting from the use of a modified

form of Ornstein-Zernike spin correlations within the framework of single-scattering theory leads to values for
the parameter q of the modified correlations which reproduce the effect of double scattering.

I. INTRODUCTION

Thermal neutron scattering is one of the most
powerful experimental tools for investigating the
atomic structure and dynamics of materials. The
primary quantity of interest in slow neutron scat-
tering by macroscopic materials is the dynamic
structure factor S(k, ~) which gives, within a nor-
malization factor, the first-Born-approximation
cross section for a neutron to be scattered with
momentum and energy transfers to the material of
hk and 8&, respectively. For magnetic scattering
of neutrons from a magnetic material, S(k, &u) is
the Fourier transform of the space- and time-
dependent spin-spin correlations of the scattering
system. The dynamic structure factor can be ob-
tained theoretically from microscopic models of
the scattering system.

Experimentally observed scattering intensity is
linearly proportional to S(k, &u), but only provided
that the sample is small enough and neutron wave-
length short enough that multiple scatterings are
negligible. However, while multiple scatterings
may be small, they are often not negligible, and
the observed scattering intensity is not simply
proportional to S(k, &u).

In this paper, we present a general quantum-
mechanical formulation for the thermal-neutron-
scattering cross section which depends on higher-
order correlations between target variables beyond
the bilinear correlations involved in S(k, &o). For
experimental conditions such that double scattering
is a small, but significant effect, and higher-order
scattering is negligible, the scattered intensity
depends on quadrilinear correlations between tar-
get variables, which can be well approximated by
products of bilinear correlations. The double
scattering can then be expressed in terms of prod-
ucts of two dynamic structure factors. Under the
special conditions of small angle, thermal-neutron

scattering slightly above the critical temperature,
this decomposition becomes virtually exact. W' e
consider the case of quasielastic magnetic scatter-
ing from ferromagnets slightly above their Curie
temperature in detail, and derive a cross section
including double scattering in a form useful for
analysis of experimental data.

Conventionally, experiments in this area have
usually been interpreted by assuming multiple
scattering effects to be negligible, implying that
the observed scattering is proportional to S(k, &o).

Observed discrepancies between experimental re-
sults so interpreted and theoretical predictions
for S(k, &o) have sometimes been taken as indicating
a failure of the Ornstein-Zernike (OZ) theory' of
spin-spin correlations. A modified theory has
been proposed to remove this discrepancy. The
modified OZ theory of spin correlations, inserted
in the first Born approximation for scattering,
produces a deviation from the usual Lorentzian
line shape of quasielastically scattered neutrons
as a function of wave-vector transfer. A similar
qualitative effect is produced with double scattering
included, but with no modification of the OZ theo-
ry. So the presence of even a small amount of
double scattering in an experiment, when inter-
preted within the framework of a single-scattering
theory, can appear to require a modified OZ theo-
ry. We quantitatively estimate this effect for typi-
cal experimental parameters.

In Sec. II we present a general expression for
the transition probability for a probe particle in-
teracting with a target, which contains target dy-
namical variables only in the form of averages
over initial target states. The first term in a
series expansion of the general expression is
shown to yield the time-dependent correlation form
for the single-scattering cross section first given
by Van Hove. 3

Section III treats the next relevant term of the
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general expression derived in Sec. II. This term
contains the double-scattering contribution as well
as negligible refraction and extinction effects,
and contains the average over target initial states
of products of four target variables. Approximat-
ing this quadrilinear correlation by products of
bilinear correlations, the magnetic double-scat-
tering cross section is expressed in terms of
products of dynamic structure factors, Eq. (3.24).

Section IV considers the double-scattering con-
tribution to neutron magnetic scattering from fer-
romagnets slightly above their Curie temperature,
and results in a simple formula for the cross sec-
tion, Eq. (4.42). Numerical estimates of the
double-scattering contribution are made, using
relevant experimental parameters. Values are
given for the parameter g of the modified OZ theo-
ry which, when used in a first-Born-scattering ap-
proximation, reproduce the effect of double scat-
tering.

H =H~+HH + P((4, B), (2.1)

where Q represents the interaction between R and

S, A represents some dynamical operators of 8,
and B represents some dynamical operators of R.
The density operator for the total system at time
t is determined in terms of the density operator
at time t p and is given by

p(t ) e vl( s t )0/ R p(t )e(H(s so)l» (2.2)

The reduced density operator for $ is obtained
from Eq. (2.2) by tracing over R states,

pH(t) =Tr„p(t) (2.3)

Now, assuming that the interaction is turned on at
t„we can write the total density operator at t, as

other system S, with Hamiltonian H~, representing
the probe, the neutron, so that 8+S form a closed
system. The total Hamiltonian is given by

II. GENERAL THEORY
P(t(&) =P)s(t(&)PH(to) (2.4)

In this section a general expression for transi-
tion probabilities is obtained, Eq. (2.17), that can
be applied to the scattering of a probe by a target.
The practical utility of the formulation given here
is that target variables appear only in the form of
averages over initial target states. Connection is
made with Van Hove's expression for the first
Born approximation for scattering.

Consider a system 8, with Hamiltonian KR, rep-
resenting the target, which we will take as a fer-
romagnetic crystal in Sec. IV, in contact with an-

p, (t,) =Is, &&s, I

while in terms of eigenstates, IR,.), of H„,

(2 6)

p, (t,) =g P, IR)(R;I,
R ~

(2.6)

where PR is the probability of the occurrence of
IR, ). Therefore, the reduced density operator,
Eq. (2.3), can be written as

For simplicity, we assume that S is initially in an
eigenstate, Is, ), of HH,

( )=peep P„( ~

Re(""' (R ')"ls )(s"l(R,
(

'"" ' '"(Re) .
f

(2.7)

Using the appropriate time ordering operators, we can write
~ t

+-iH(t -tp)l& -$(glR +H~ ) t /& T sa~ —— dt' ~(t tl ei(HR +Hg) tp/&

tp

(2.8)

t
e(H(t p / & (HH + HH)s(&/» T ~sees dte +(ts) &l(Hz + HH)s/R--" s t

tp

(2 9)

where (t&(t ) is in the interaction picture and the operator T, (T ) time orders products of the Q(t) s with
the earlier (later) time to the right. Now, the probability of finding S in eigenstate Is/) at time t is given

by (Sz I pH(t) Is/), therefore from Eqs. (2.7), (2.8),. and (2.9) we have,

(se le(e&
I &=/ s(es, I(RR, Is exp sf se s(e') ls. & (s,. l's. ees sf s( (& )) lR

&Is�

&''
i to tp

(2.10)

where closure has been used:

else)(Rel =&.
f
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To proceed further in obtaining the reduced density matrix elements in terms of target averages, we in-
troduce the subscripts 1,2 on operators and state vectors of S, write E&I. (2.10) as

&s„Ip&t) Is, & =gy„&st I&, Ir exy(» f dt y (t )) Is, & &s„Ir exp(. »'f-dt' y (t')) IR & Is d'
Q p

(2.11)

and introduce a new position ordering operator, S», which moves all operators and state vectors with sub-
script 1 to the left. Introducing this operator into E&I. (2.11) allows us to freely move all operators and

state vectors with different subscripts past each other since P» will restore the correct order:

&s, I
p (t) Is, &

= s „(s, I
&s, I(r exp (»f dyt(t )) re'xy

»f dt—y(t')) )'Is, & Is, ),
p tp

(2.12)

where

(2.13)

and

A, (t) = exp(t'Hz t/t)A, exp(- fez t/I).

We now assume a specific form for tt&(t), namely,

&t&(t ) =A (t )B(t).

(2.14)

(2.15)

(2.16)

This form for the interaction is found in many processes, including magnetic scattering of neutrons [see
E(I. (3.11)]. Inserting it into E(I. (2.12) and setting T, = T, T„T = T T, the transition probability is

"t
&s, (p&t&ls»=,y„&stl&s,,(r" r, (r exp» dt A(t )s&t'r', e y- —' dt A(t )R&t )))is,, &'Is, )'.

I p "tp

(2.17)

In order to obtain a perturbative expansion, ' we expand E&I. (2.17) in a Taylor's series, i.et»

t ~
& t oo

r(X)-=(T exp X— dt A, (t')R(t') T, e'xp —X —
~ dt A(t )R(t''), '

g y + (2.18)

where

d" I'(X)
dX" ~=p

(2.19)

and where finally, ~ is set equal to unity. The first three terms of the expansion are

1'R = T(0) = 1,

F, = —
J dt, [A, (t,) -A, (t,)](B(t,)),

dt j I dt2Aj tj Ax tm B t~ B t j + —2 l dt, dt2Aj t~ A~ t~ B t, B t2

dt, dt,A, (t, )A,(t,)(B(t,)B(t,)).
tp p

(2.20)

(2.21)

(2.22)

It is easily shown from E(I. (2.17) that all terms in I'„ that contain only A, operators or only A, operators
do not cause a transition in S, i.e., ~ S,) =~ S~) for such terms. In terms of scattering, these would rep-
resent forward scattering terms. The lowest-order term capable of causing a transition is the middle
term in E&I. (2.22) and retaining only this term in the expansion, we will obtain a first-order perturbation
theory. From E(I. (2.17), we get for the lowest-order transition probability
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&s, ls(),)(s, &"'=s„s,&s, (&s, , ( 4, f e,s(~,)s,() .)&s.((,)s(),)&(s, &Is, &.
0 0

(2.23)

Equation (2.23) can be transcribed into Van Hove's form for the first-Born-scattering approximation
containing the target dynamic structure factor. For an interaction depending on distance only, we have

4(t)=24[ (t)]=K g g(k. ) *'"'"""'""" (2.24)

where r(t) = r„(t) —r&(t), r„(t) being the neutron position vector, r~(t) being the position vector of the jth
target atom and g(%, ) is the Fourier transform of Q(r}, i.e.,

g(k, }= d're '"'' 'Q(r), (2.25}

where we have set the quantization volume equal to unity, a convention we will follow henceforth. Thus,
the operators A(t) and B(t) are represented by

A(t)-e'"s '""', B(t)-Qe '"s' s& "=n-„(t), (2.26)

where nk (t) creates a density fluctuation in the target of wavelength A. = 2)i/k, . With initial and final plane-
wave states for the neutron, l S, z) -l%, z), and with to = 0, Eq. (2.23) becomes

P
g

&Sils*(&)ls&"= s,gg u, $ s(s(s)s(s)(s is'"''"'"'l%~&&s le'" '' '"'l s &i&(s()s„,(()&.
0

(2.2V}

The neutron matrix elements are

(k l
e'~s' s( lk ) =e(~s, 5

s e

&k le'"s''N"2llk ) =e-' "5--
a'

(2.28}

or

S(k, &s&') = — dre ' '(n„(0)n „(7)) (2.31)

where 7 = t, —t, . Inserting Eq. (2.30) into Eq.
(2.29) gives, in the limit t

d, &k lp (t)I&)"'=—ig%)l'S(k, ) (2.32)

Converting this probability per second into a

where N (d =8,. -E& is the neutron energy loss and
+k =ti(k, -%z) is the neutron momentum transfer.
Using Eqs. (2.28) in Eq. (2.2V), the probability
for a transition from l k, ) to l kf) is

& kg[ pe(t)l kg) "'
1 tt ff

= —,l g(%)l
'

J dt, Jl dt, e(~ 's-"'
0 0

x(nk(t, )n ), (t,)). (2.29)

The target density-density correlation function
can be expressed in terms of the dynamic structure
factor S(k, (d') in the form

( s(t )s s(st ))= (ss' '"~' ' 's(sa') (2ss)

cross section by multiplying by the density of
final neutron states, p(E& )dE&, and dividing by
the incoming neutron current j,„,

p(E~) dEqjP =
(

"p ~ dQdE~ (2.33)

where m„ is the neutron mass, yields the well-
known form for the scattering cross section first
given by Van Hove'.

(x)

dQdE 4N'+' kf
(2.34)

It is clear from the perturbative expansion, Eq.
(2.18), that higher-order scattering terms beyond
I', will involve target averages of products of in-
creasing numbers of target operators B(t) beyond
the bilinear product involved in I', . The present
development thus seems to be a natural extension
of Van Hove's first Born formulation to higher
orders. Although the problem of precisely evalu-
ating higher-order time-dependent correlations
of target operators is a formidable one, these
higher-order target correlations can be well ap-
proximated by products of lower-order correla-
tions and such a decomposition is utilized in Sec.
III.

HI. THERMAI NEUTRON DOUBLE SCATTERING

In Sec. II, we showed that the probability of
finding S in eigenstate l Sz} at time t after having
interacted with R from time to is
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&s„l p, (t)ls, &=a„&s, l&s,. I
r"~r+ g —")s,. &)s, &

ff= Q

(3.1)

with I'„determined by Eqs. (2.18) and (2.19). The 12 term was shown to reproduce the first-Born-ap-
proximation scattering. This section treats the 14 term which contains the double scattering and is shown
to result in a simple formula for the cross section, Eq. (3.24), which is bilinear in dynamic structure
factors.

To obtain a multiple (double) scattering theory, we consider higher-order terms in Eq. (3.1). If multiple
scattering is to be a small effect, we can, to a good approximation, neglect the interference term l",. In
fact, when we specialize to small-angle thermal-neutron magnetic scattering in Sec. IV we will show [see
discussion following Eq. (4.15)] that all I „, where n is odd, are zero if ft is a ferromagnetic crystal just
above its Curie temperature. Therefore, we now consider the l 4 term. Explicitly,

Z y « f t~ tp t3

dt's l dt2 dt3 dt4Ai tx Ax t2 Ax ts A~ t4 B t4 B t3 B t2 B
tP tp tP to

t t

4 dt~ dt2 dt3 dt4Ai ti A, t2 Ax ts A2 t4 B t3 B t2 B tz B t4
tQ tQ tp tp

+ 4 dt's dt2 dt3
'

dt4Aj tl Al t2 A2 t3 A2 t4 B t2 B tz B t3 B t4
tp tp tp

t t Pt2

4 dt's dt2 l dt3 dt4A j tg A2 t2 A2 t3 A2 t4 B t j B t2 B t3 B t4
'o 'o 'o "'o
Pt t~ t2 t3

+ A dt, dt, dt3 dtAA2(t, )A2(t2)A2(t~)A2(t~)&B(t, )B(t2)B(t~)B(t~)&.
to to to 0

(3 2)

The first and last terms in Eq. (3.2) contain only A, operators or only A, operators, and hence contrib-
ute only to forward scattering and are not treated here. Detailed investigation of the second and fourth
terms in Eq. (3.2) indicates that they make small adjustments in the single scattering corresponding to the
processes of refraction and extinction, which can be neglected for neutron scattering. The third, or
middle term in Eq. (3.2) represents the true double scattering, and will now be considered in detail. It
gives a second-order correction, 6"", to Eq. (2.23),

5 "'=-&S„~ (t) ~S„&"

=P„+,(Az ~(A,.
~ f Chfdtfd, tf, dt, A, (4)A, , (E, )A, (t,)A, (t, )

to to tp tp

x &B(t ) (B)t(B)t(B)&tIS,,& IS, ) (3 3)

containing the average over initial target states of the product of four target operators B. Again, if mul-
tiple scattering is to be a small effect, then to a good approximation, the four B operator correlation func-
tion in Eq. (3.3) can be decomposed into products of pair correlation functions:

&B(t2)B(t~)B(ts)B(t~)&= &B(t2)B(t,)&&B(t,)B(t~))+ (B(t2)B(t,))&B(t,)B(tA)&+(B(t2)B(t4))(B(t,)B(ts)) . (3.4)

For small-angle thermal-neutron scattering from a ferromagnetic crystal just above its Curie tempera-
ture, this decomposition is virtually exact [see discussion following Eq. (4.15)]. In fact the two approxi-
mations made thus far, i e , settin. g. all I'„, n odd, equal to zero and the decomposition in Eq. (3.4), be-
come exact for targets composed of noninteracting bosons in thermal equilibrium if &B(t)) vanishes. '
Thus, this formalism is fully applicable to neutrons magnetically scattered from low-temperature spin
waves' as well as critical magnetic scattering, and should provide a good approximation for other types of
multiple scattering, such as nuclear multiple scattering.

Of the three terms on the right-hand side of Eq. (3.4), only the last term is found to contribute signific-
antly to double scattering and will be the only term retained. The first two terms are treated in Sec. IV
for the case of critical magnetic scattering (see discussion preceeding Sec. IVA).

So far in the formalism, the interaction is suddenly turned on at t,. To describe a scattering process,
the initial probe state ~S,& should be localized in space, i.e. , represented by a wave packet, to reflect lab-
oratory conditions. To circumvent using a wave packet for ~S,) and use, instead, plane-wave initial states
which are mathematically more tractable, we adopt the following well-known ansatz. ' Representing the
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initial probe state by a plane wave, we let t, —-~ and adiabatically turn on the interaction, i.e. , Q(f) is
modified thusly,

y(f) - y(f}e" (z)0)
so that lim, „.„it)(t) =0. Finally, we let z -0. Therefore, from E(I. (3.4), E(I. (3.3) becomes,

t1 t t3"'=lim — dt dt dt dt e"'& '& '3'&'
a4 1 3 4

6-0 w kO oo ()0 ~ oo

(3.5)

)& (Si iA(t, )A(t, ) iS/)(3/iA(t, )A(t, ) iS,)(B(f,)B(t,))(B(t,)B(t,)) . (3.6)

We now specify a form for the operators A and 8 in the interaction Q =AB that will encompass the case
of neutron magnetic scattering. The specific details of the magnetic interaction are considered in Sec. IV.
The interaction Q is written as

0= g ei[r(f},u», V)(f}], (3.7)

where r(t) = r»(t) —ri(f) is the relative neutron-target-electron separation, r„is the neutron position vec-
tor, r& is the position vector of the jth target electron, p,„is the neutron magnetic moment, and p.

&
is the

magnetic moment of the jth target electron. The Fourier transform, Q&, of fII)» is defined as

i«((«((=f «(, '«« "«r«(r(t(, (« «««(()]„., (3.8)

Thus,

y
- p p @

ik i r»(t) Pi(t)]it (k f)j 7 (3.9)

Because of the simple form of the magnetic dipole interaction Q&(r, )i», ii&} [see E(I. (4.2)], p, (k, f) can be
written

Q, (k, t) = a(k) b, (k, t) = g (ak)b g(k, t), (3.10)

where a contains the neutron spin operator, b, contains the spin operator of the jthe target electron [see
Eils. (4.7) and (4.8)], and a=x, y, z refer to rectangular coordinates. For the case of neutron nuclear
scattering, the sum over j in Eq. (3.V) refers to target nuclei and (t)&

= const = 2})blk/m», b representing the
S-wave scattering length.

Inserting Eq. (3.10}for (b, in Eil. (3.9} for (3I),

y(f) = g g W (k, f)a (k, f), (3.11)

where

g«k(k f) +ik.P»(t)a(k(k (3.12)

Bo(k f) —P + ik P&(t}bo(k-f) (3.13)

Making these identifications in E(I. (3.6} and writing iS«) = ik«) icr, z), i.e. , a direct product of neutron
spatial and spin states, there results,

t tj t t36'"' = lim —, dt, dtk dt, dt, e"')' 'k'k'&' g P M"M»M
6 ~0 ~ -oo -()o ~ is) «0 + «0

(3.14)

where M"„stands for the following product of neutron spatial matrix elements,

Mr - (k
i
+ i kk P»i tk )e i kk P»(t) }

i
k )(k i

& i kk P»i ik )+ i k4 8»(i+ }ik ) .

M„' stands for the product of neutron spin matrix elements,

M„'= (o, ia (k, )a'(k, ) [o~)(o~ ia'(k, )a'(k, ) i o,);

(3.15)

(3.16)
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and M~ stands for the target space and spin average,

Mr=(B™(k2)t2)Bs(kd,td))(B (k„t,)B"(k„ts)}. (3.17)
The neutron spatial matrix elements in M„of Eq. (3.15) are expressed in terms of intermediate neutron

states with energies E„E,and wave vectors k„k, in the following form:

I» ~ e t(B& -Ea)t2~he t(Ea- Ey)tl i h f(Ey - By) t3/hfdf (Ey- E])t4lh
N 2+ a k sky+ kf kacy k3+k~ k~wk4+ k]

ka ka

Following Van Hove, "we define a dynamic structure factor" S,(k„k„(d')

(B (li, t, )B (k, t,))-=f d 'S (k„k„')e'" '"

(3.18)

(3.19)

or

S (li, k, et)= —f d (B (k, D)B (k, t'))e

Therefore, from Eq. (3.17)

(3.20)

M = c4' d(d $, k„k4, (d' $~„k„k„(de'" '4 '2'e'""3 (3.21)

Using Eqs. (3.18) and (3.21) we can now perform the time integrations in Eq. (3.14). In anticipation of the
limit &-0, we obtain

d tj t3
dg g'«1+t2+t3+t4)g&(E~-Ea h I ')t2~"1 2 3 4dt m t)0

&& e&(Ea-Ey-h~d) tX~h e&(Ey-Eg+h ~) tst'h e&(Ep E]+h~') t I h

= 2wR'[(EB- E e+ II(t)'+f5&)(E~ —E,+ K(d' —M&) j '5(E,. —Et —R(dt —}f(J). (3.22)
From Eqs. (3.18), (3.21), and(3. 22), Eq. (3.14) is expressed in the form

=C'l'm g g M„'f detd„(k, —k„k,—k„')S,(k, —kt, kt-k„— ')
8 ~ 0 at)»6 "a ka

where

x (k', —k,.+ 2m()t(k)'/g+ie) '(k'k —k, + 2m((t&o'/h- ie) ', (3.23)

C' = 8wmNs/ks, (o = (I/k)(E, —Et) .
We now let the sums over k„kk go over to integrals and multiply Eq. (3.23} by the density of final neutron
states and divide it by the incoming current, as given in Eq. (2.33}, thereby obtaining the general double
scattering cross section

d 2O(2)
=C llm~ g d'k, fd'k, f dte M S(k—k'„k', —,k;,, ')A~ d(0 ~ 0 kg

x Sz„(k, —k&, k& —ks, (d —(d')(k, —k, + 2mN+t/0+ ~} '

x (k', k', +2m~'/k- ie) ', (3.24)

(2wI)'(2w)' (2wI)' '

which is bilinear in dynamic structure factors.

IV. CRITICAL MAGNETIC DOUBLE SCATTERING FROM
FERROMAGNETIC CRYSTALS

The results of Sec. III are now applied to the
case of critical magnetic scattering.

We let our target be a ferromagnetic crystal
just above its Curie temperature and specialize
to the case of magnetic scattering, where the spin
of the incoming neutron couples to the spin of the
unpaired target electrons. We only consider tar-
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gets where the orbital contribution to the magnetic
moment is negligible or can be taken account of by
simply adjusting the electronic spin quantum num-
ber. The interaction Q& between the magnetic mo-
ment of the neutron p,„at r„, and the magnetic mo-
ment of the jth electron p, , at r& is"

Q~ = —p. ~ HN (4.1)

where

K(k}= —4»p, »,

bJ(k, t) = pt(t) —&rug(t) ' &].

(4.4)

(4.5)

The magnetic moments are related to neutron
s„and electron s& spins by

where 5=k/k. The operators a, bz appearing in
Eq. (3.10}become

p, g xr
HN-V X y'

V x p.»x V(1/r)

p» = —g(etf/m~) s„,
p~= —(ek/m, c) Iq,

(4.8)

r=r„- r&.

By standard vector algebra,

(jh~= —0 ~'&[p»' &(I/r)] —4»p~' t(»5+r).

Therefore, from Eq. (3.8) we have

Q~(k, t) = —4»t(»'Ppq(t) —S[,p~(t} ' Sg

(4.2)

(4 3)

where e and ns, are the electron charge and mass
and g=1.91. Replacement of these moments in
Eqs. (4.4) and (4.5) gives

a(k) = 4wg(ek/m~) s„,

b&(k, t) = —(eh'/m, c)[s&(t)—S[s&(t) ' 5]].
(4 I)

(4.8)

From Eqs. (3.13) and (4.8), the dynamic structure
factor defined by Eq. (3.20) can be written as

4 (k, k ts')= —f ds(le '&"ss'0'(k, 0) Ie "skt'(ls s))s' "

ds(k„k„ is) = —fds(gs s" "'bs(k, 0)I e'4" "'4"(R„s))e ",
(4.9)

(4.10)

where b& is the & component b~, given by Eq.
(4 .8).

We now assume the target to be a crystal made
up of identical atoms whose nuclear thermal mo-
tions can be neglected. Writing the electron posi-
tion vector rz(v) as r&gv) =R&(v)+ups), describing
the position of the j'th electron of the jth atom, these
assumptions imply thai the jth atom's position
vector R&(v}—= Rz(0), a fixed "c number. " Inserting
a complete set of electronic spatial states into the
target averages in Eqs. (4.9) and (4.10), we neglect
all matrix elements that involve transitions to
excited electronic states, since thermal neutrons
have insufficient energies to cause such transi-
tions. Now we assume that the electronic spin
states are adequately descibed by the Heisenberg
model, which ascribes to each atom an effective
spin operator 5 of fixed length, and that the crys-
tal lattice is a Bravais lattice with one atom per
cell. Equations (4.9) and (4.10) then become

S~(k„k, (d)

= —F(k,)F(k,) Qe 4("'('R(s 3 Rm)2'

where

x 'd~ ~ k„0 ",7

(4.12)

(4.14)

S(M} being the normalized spin density. The aver-
age is over the target eigenstates of the Heisen-
berg Hamiltonian,

B~(k, v) =- (eK/m, c)g~(v) —k[8~(r). k]f . (4.13)

Here %~ stands for the effective spin operator of
the jth atom, and F(k) is the magnetic atomic
form factor, i.e.,

S ~(k, k„(e') (4.15)

F(k }F(k ) Qe i(kk'Rye' Rk)
2s 2 4

j~n

X dT ~,0 ~ AT
(4.11}

which determines the time evolvement of the
Heisenberg operators 5~(v)

At this point, we now digress to show that the
approximation of decomposing the four target op-
erator correlation function into the sum of bilinear
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products is virtually exact for the critical mag-
netic scattering treated here. If this approxima-
tion had not been made, we would have arrived at
this point in the formalism with a correlation func-
tion containing four B operators, instead of a bi-
linear product of pair correlation functions. How-
ever, if we restrict ourselves to small-angle
scattering, then for the very small neutron wave-
vector transfers involved, the neutron is probing
fluctuations in the spin operator Bz (k, v) over
very large distances on the microscopic scale.
Therefore, a classical description of the system
in terms of these long-wavelength fluctuations is
adequate for determining the correlation function.
In terms of the fluctuations of Bz, the free energy
of the system can be expressed as a quadratic
form, "and since g&) = 0 above the Curie tempera-
ture, i.e., (B))=0, it immediately follows that the
correlation of any odd number of B& 's is zero.
Similarly, the decomposition of the four BI(k, v)
operator correlation function becomes exact.

Since long-wavelength spin fluctuations are
known to relax very slowly over times for the
neutron to traverse an effective scattering volume
B~(k, v) =B&(k—, 0), i.e. , the scatteringis predom-
inately quasielastic. Therefore from Eqs. (4.11}
and (4.12) we have

MN--1 age k
NSNSNSN Vf
e B y 6

2 mNC
Qf

(4.18)

As previously remarked, we adopt the Heisen-
berg model for the spin system of the crystal, with
Hamiltonian given by Eq. (4.15). For this Hamil-
tonian the spin system is invariant to simultaneous
rotations of spins, i.e. ,

(SgS,') = —,'6.,( S,.5,). (4.19)

The sum over spin components e, P, y, and 5 in
Eq. (3.24) can now be performed. Using Eqs.
(4.13)- (4.19), one obtains

Q Me(B)(f(,)B~(k,))(B)e(k,)B)'$,))

f(f„%„%„f,)( 5, .S„)(S, ~ S.),
mNm C

The neutron spin matrix element term M„given
by Eq. (3.16) is evaluated for an unpolarized neu-
tron beam. Summing over final neutron spin states
and averaging over initial neutron spin states gives
from Eq. (4.7},

S 6(k, k4, (0'}=F(k2)F(k4) Qe "2'"s'"(' n

pan

x(B;(k.}B'„(k.))6(~'),

(4.16)

where

f=~([1+(3), 5,)'][1+(5, k,)']

(4.20)

S~(k,k, (7)}=F(k,}F(k~) pe
x (Be)(k,}B)'(k, ))5(9).

(4.17)

—(k, k,)(k, .)),)(k, xk,) (k, xk,)). (4.21)

From Eqs. (4.16), (4.17), and (4.20), the cross
section for double scattering, Eq. (3.24), becomes

(2)
= C, lim d k, d k~ k, —ky, kf —k„ky —kf„k~ — g k; —k, E k, — + k~ —kf, I' kf, —

)( Q e-((f(-I(g) Rg -((t(N-1y) R) -((t(l-f(t)IX~ e-((Xy-%() ~ %„

jlntn

x(Si ~ S„)(S,~ SJ(k,' —k(+ie) '(k,' k,
' —ie) '6((d-), (4.22)

where

C, =4(ge'/vm, c')4.

For the spin system, we assume a translationally invariant system, i.e., neglect boundary effects, so
that (S„. Sg will depend only on the relative separation between spine. The sums aver target atoms in Eq.
(4.22) then become

e-((1(-t )~ Ri - (f& k().R&/(S, S-z ~e-((k(-kz). RPe a (hb t() ~ (RP+RJ)(Q ~
~~ ~~

nt mo @pl
ggn JsP

e((%((iy)i Rye ((Ey f()'RNI8-- (4.23)
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where the last equality is obtained by replacing p by n. Similarly,

~ ~ ~ ~ ~
~e ««ga "1)'age ««uf 3«)) am&S ~ g ) = V e ««fa f3» 'ge«ga-uy ) R

&S ~ Sl m Rm (4.24)
l, m lcm

At this point, the sum over j in Eq. (4.23) and the sum over l in Eq. (4.24) could be performed the result
of which for small-angle scattering from a macroscopic target would yield zero unless Ik, —k3I& l ', where
/ represents a linear dimension of the target, i.e.,

k, =—k~.

The exact equality, k, =k~, is rigorous only for a truly infinite spatial target, and using it, we would lose
all target geometry which is inherent in multiple scattering from finite targets. Therefore, we will not
perform the j, l sums at this stage, but rather perform the k„k, integrations first. Before we do and re-
alizing that Eq. (4.25) must, none the less, be valid, we use it to simplify the factor f in Eq. (4.22}, which
is a much more slowly varying function of k, and k, than the exponential factors. Thus, from Eq. (4.21)

f(k, —ky, ki —k„k~ —kg, k3- k, )=f(k, —k—~, k, —k„k~ —k„k, —k,}= 33 . (4.26}

Using Eqs. (4.14), (4.23), (4.24), and (4.26), we now perform the k, , k, integrations in Eq. (4.22) and ob-
tain for the cross section

4 ge2 4a
dQ~ 9 @pe g2 P & 2 I I 4d3g«d3gi I d3gi l d3g«e iipu-leig«u2eitf 33 e iu«'uug(u )2(u )6(u )3(u )

ik 11l Rj-R ul+u2(
g&&l'Rne-& ~y'Rm

j
Ck31@l~5j~Rnaau3+u4I

- &S0'S«g &&go'gR &6(0»).
IR, —Rj —Rn —u +u41 m

(4.2'I)

Since R and Rn appear in the spin correlation functions, they are restricted to microscopic distances by
the spin correlation range, «g, ', i.e., IR I

& «g, '. Also, the u vectors are restricted by the normalized spin
density functions Sgu, which are of microscopic range. Therefore, since R, and Rg are free to range over
the entire target which is of macroscopic dimensions, the overwhelming contributions to the sums over

j, l come when

IR —R«l~+~IR I IR I luI.

Thus

ul+ u31= IR«gl Rgg
' (Rm+ ul —u3}, IRg —Rg —R„—u3+ uJ =IR««I —Rg«

' (R + u3 —uu),

where Rig =R, —R, . The exponential terms in Eq. (4.2V) become

(4.28)

ik/Rl Nj Rm ulema
«3«ag«) e«3' «Zmaug

IR« -%« —R„-u, + u31

where

p gk) R l Rj Rn uu +u4I

IR I

ge«3««R««)e-«g) (g«„+u3-uu)

R, —Rj —R -u, +u4I

(4.29)

q=u, Rlj (4.30)

represents the wave vector of magnitude k, along the direction R,j. Identifying Rj as locating the first
scattering event and R, as locating the second scattering event, q is the intermediate wave vector of the
neutron between scattering events.

Integrating Eq. (4.2V) over 0), using Eqs. (4.29) and letting the sums over j, l, m, and gg go over to inte-
grals, retaining only the & =0 reciprocal-lattice vector, we get for the double-scattering cross section,

d'R
I

d'R'R', -q ' q-k, rk, — yq-k, , (4.31)
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(4.32)

y(r)=&s, s;&, (4.33)

v, is the unit cell volume and we have let R&- R and R» R'. The limits of integration on R, R' go over the
target volume V. However, the limits for R depend on R. We also have let the limits of integration in
Eq. (4.32) extend to infinity with negligible error due to the short-range nature of y(r).

We use for y(r) the asymptotic expression for the spin correlation function first determined by Ornstein
and Zernike' and given by

vP(S+1) e "P
y(r) = 4„2

j.

where r, is a relatively temperature-insensitive microscopic length. Then Eq. (4.31) becomes

(4.34)

where

=C d'R d'R'R' ' E . -q E q — -q '+z' '
q —Zy +z'

v

4 S S+1 ~ e~g

(4.35)

Remembering that q depends one(!; it becomes evident that the double scattering depends on the target
geometry. Now, using Eq. (4.30) for (I,

I ki -q
I
'=4k( stn'48,

I q hf I
4-k sill 8„ (4.36)

where the intermediate scattering angles 8, and 8, are depicted in Fig. 1. As the Curie temperature g is
approached, tc,-0, the cross section, Eq. (4.35), is very sharply peaked around 8, =8, =0 and Et' lies in a
very small solid angle centered about h( with vertex at R. Therefore, defining l(R) as the length from R
in the direction of k, to the boundary of the target (see Fig. 1), to a very good approximation, we may
write

(a) 2F fr

=C, d'R l(R) dg d8, sin8, (4k~ sin' 28, +K',) '(4k,' sin'&82+x, )
dQ v 0 0

=—C, d'R l(R)G(k), 8~, x,).
v

(4.37)

The angle 8, will depend on Q» 8» and the scatter-
ing angle 8~. We have also used the fact that form
factors are slowly varying functions of their argu-
ments and are normalized to unity, F(0) =1. De-
fining

easily evaluated in general, but we choose to evalu-
ate it in the small-angle approximation, i.e.,
sin8 = 8, which gives

(l) =- V ' d Rl(R))

the critical magnetic double scattering cross sec-
tion is

=fv(()(, ) (,) G()'g, &, ,).
(4.38)

The length (l) will be of the order of magnitude of
the linear dimension of the target. For a, spherical
target of radius R, (1) = —,'R, and for a slab of
thickness L„(l) = ~I, . The integral G(k;, 88, K,) is FIG. 1. Double-scattering geometry.
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x'+3x+ (x'+1)(x'+4)'i'
Q= lnk'~'x( '+4)'i' (x'+4)' ' -x

where

(4.39)

(4.40)

do i'~ 2 ge' 'S(S + 1}=N- (I+x'} '.
dQ 3 mc xr, (4.41)

Therefore, the combined scattering cross section,
single plus double, from Eqs. (4.38) and (4.41) is
given by

dQ dQ dQ dQ
(4.42)

where

2v(I) pS(S+1) ge'
3k'r' m c' (4.43)

x +1
(

2 4)lf!
'+3x+ (x'+1)(x'+4)'+

(x'+4)'~-x
(4.44)

and k =k;8~, the wave-vector transfer.
With the same appropriate approximations made

in this sec tion, the first Born or s ingle- scattering
cross section is

A. Numerical results

r, =—a &6, (4.46)

where ao is the nearest-neighbor distance.
Using Eq. (4.46) and relevant parameters from

an experiment on Fe by Passell et al. ," the
double-scattering cross section per target atom
given by Eq. (4.38} is plotted in Fig. 2. Also
plotted is the single-scattering cross section per
target atom, Eq. (4.41).

It has been suggested' that the form of the OZ
correlation function Eq. (4.34) should be modified
by the introduction of a new critical exponent g,

y (r) =A(ri) e-""/r" & (4.47}

Before any numerical results are possible, the
magnitude of r„ from Eq. (4.34) must be deter-
mined. In the derivation of Eq. (4.34) by Ornstein
and Zernike, r, is given in terms of the second
moment of the so-called "direct correlation func-
tion, " a short-ranged function whose form depends
on the Hamiltonian, Eq. (4.15). From mean-field
theory, r, can be determined" and is given in
terms of J(R), the exchange energy in Eq. (4.15),

1 QR 8 J(R) (4.45)
6 Q„Z(ff)

Thus, considering nearest-neighbor interactions
only,

and p is the density of target atoms. Since H(0)
= 1, P is the fraction of double scattering at
x =0. Note that the double scattering will become
more pronounced, i.e., P will increase as (i) p
increases, (ii) the target size increases ((I) in-
creases), and (iii) the neutron initial energy E,
decreases (kf decreases). In fact, double scatter-
ing will be more sensitive to the neutron's initial
wave vector (P going like kP) than to target size.

We now return to the decomposition of the four-
B- oepr tarocorrelation function given in Eq. (3.4}
and consider the first two terms which, up to now,
have been neglected. The second term in Eq. (3.4)
gives rise to a cross section for critical magnetic
scattering that represents a quantum interference
term and can be neglected for macroscopic targets.
In terms of order of magnitude, this term goes
like (k, I )

' dgt'l/dQ, where I represents a linear
dimension of the target and doer'/dQ is the cross
section given by Eq. (4.38).

The first term in Eq. (3.4) gives rise to a cross
section for critical magnetic scattering that repre-
sents a diffraction term and is essentially all for-
ward scattering for macroscopic targets. This
term is non-negligible only for scattering angles
8~ &(k, I)

Z0
o 12
I-

M
M

o 10
K
O

8

O
Q)

M~~
o~ 4

I

w O
Z
U

X

I I I I I I I I I I

5 4 3 2 1 0 1 2 3 4 5

X= k;BSK1

FIG. 2. Theoretical single- and double-scattering
cross sections using relevant parameters from an ex-
periment on Fe by Passell et a/. Experimentally probed
region corresponds to 2.1& x & 3.9.
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This suggestion was motivated by the fact that an
Ornstein-Zernike-Debye (OZD) plot of the recipro-
cal of the first-Born-scattering cross section, Eq.
(4.41), vs x' should be linear, yet experimental
plots for critical light scattering from liquids dis-
played a downward curvature for small x'. The
g -modified OZ correlation function y produces
such a downward curvature. The possibility of an
apparent g due to multiple (double) scattering ef-
fects has beeri investigated in connection with light
scattering from liquids. " An OZD plot of Eq.
(4.42), which includes both singly and doubly scat-
tered neutrons, for Fe using experimental para-
meters of Ref. 15 is shown in Fig. 3, and a defin-
ite downward curvature is noticeable. This curva-
ture is difficult to detect in experimental neutron
work in ferromagnets owing to small-angle limita-
tions. For example, the minimum value of x' in
Fig. 3 attained by Passell et aL. corresponds to
x'=—4.5.

To obtain values of an apparent g due to double
scattering effects, we proceed as follows. The
coefficient A, (q) in Eq. (4.47) is determined by
requiring that

dryr = dryr. (4.48)

I I I I I I I I I I I I I I

U)

Mcv 11
oQ - -1

$ ~10—
1 clo

(1)

9 —
N dC}

aI- I8
Mm'-

g 6—g 8
I- o

1 dO 1 do
()) (2]

.N aQ NdQ
|3=0.O325
k)-—1.47 A

K1'-55.2 A

0 I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 1011 'l2 1314'l5 16

X' = {k,e,K1)

FIG. 3. Theoretical OZD plots of single-scattering and
singl, e-plus-double-scattering cross sections using re-
levant parameters from an experiment of Fe by Passell
et a/. Experimentally probed region corresponds to
4.5 &x2& 15.2.

Replacing y(r) by y(v') in the first-Born-scattering
cross section, i..e. ,

g d3 ( )
ff'I

(4 48}dA 3 plgc vo

performing the integration, expanding in terms of
q and retaining only terms linear in g, there
results

[ 1+@A(x)j,
da det'&

(4.50)

where

J(x) = 1 -x ' tan ' x + -', in(1 +x') (4.51)

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a general for-
mulation for multiple scattering of thermal neu-
trons and have applied it to double scattering. Ne
have tried to assess the importance of double scat-
tering on critical magnetic neutron scattering from
ferromagnets slightly above their Curie tempera-
tures. For typical experimental conditions, the
double scattering produces small, but non-negligi-
ble deviations in Lorentzian line shape of magneti-
cally scattered neutrons. In this regard, it com-

20—

15—

X
~ 10—

I I I I

lim K(X) = m
X-0

Iim KtX) = 4
X CO

K „=2.49 at X=2.1

I0 I I I I

3 4 5 6
X= k,esK1'

I I

7 8

FIG. 4. Fmction X{x)appearing in Eq. {4.51) vs x.

and doi'~/dQ is given by Eq. (4.41). Now, equating
Eq. (4.50) to the cross section containing both
single and double scattering, Eq (4..42), we obtain

(4.52)

where E(x)=H(x)/-J(x), H(x) given by Eq. (4.44).
The function K(x) is plotted in Fig. 4. As T- Tc
for a fixed nonzero scattering angle, x- ~. In
this limit, g =4/. Therefore, for an experiment
yerformed in this region, an apparent g, induced
from double scattering, of 0.05 or greater would
result for experimental conditions where P ~ 0.0125.
The function X(x) has a minimum of 2.5 at x -=2,
therefore this would be the optimal region to probe
experimentally in a search for a real g . However,
even at x = 2, exyeriments for which P & 0.02 will
produce an apparent g ~ 0.05.

Table I gives values of Ie corresyonding to ex-
perimental conditions for several neutron scatter-
ing experiments from ferromagnetic crystals in
which a value for g was sought. Also tabulated
are the values for g experimentally measured.
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TABLE I. Experimental parameters and theoretical p values for several experiments on

magnetic scattering of neutrons from ferromagnets.

Sample ks (A ~)

Target size:
r& {A) ' Thickness (~~)

Experimental
range of x

Experimental

Feb

Fe
EuO
EuS '

1.47

5.03
4.30
4.30

1.01

1.01
1.48
1.72

12
4.3
2.5

&1

0.35K~ S3.9

0.2 &+~4.0
0.1 ~~&5.4
0.35» x &3.5

0.032
0.012
0.000 58
0.000 35
0.000 17

c
0.07 + 0.05

—0.10 «g&0.06
-0.07 &g& 0.11

' Theoretically determined from Eq. (4.46).
Reference 15 ~' Curves with g=0.10, 0.15, and 0.20 fitted experimental curve about as well as curve with

r]=0.
Reference 17.

e Reference 18.
f

p determined by scaling relation: &=2 —p/&.

petes with similar line-shape deviations predicted
by modifications in the spin correlations from their
Ornstein-Zernike form used in a single-scattering
theory.

Critical magnetic single scattering from anti-
ferromagnets is pronounced in nonforward direc-
tions around magnetic Bragg peak positions.
Double scattering, therefore, makes a negligible
contribution.

Although our interests were primarily directed
toward scattering near the critical region and in

the quasielastic approximation, we have presented
a formulation for double scattering which should
be applicable to more general conditions of inelas-
tic scattering. " To efficiently treat such cases
when the target average (B)e 0 (magnetic systems
below the critical temperature, spin-wave scat-
tering, or nuclear scattering from liquids) it

would be desirable to write the probe-target in-
teraction, Q =AB, in the form P =A(B) +A(B —(B)),
so that target correlations involve fluctuations
around their average value. Such a modification
of the formulation given here presents no prob-
lems '0

The assumed interaction form (I) =AB, will also
accomodate light scattering in the dipole approxi-
mation. The internal variables a and 1& described
in Sec. III are then the photon polarization and
target-atom dipole moment, respectively. How-

ever, for multiple light scattering, refraction,
and extinction effects cannot be neglected" as
they may be for neutrons. Also, the critical
scattering of photons in the optical region is not
restricted to the forward direction, therefore,
determination of the target-size parameter (l) of
Sec. IV is more complicated. "
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