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We study a model equation of motion describing the dynamics of isotropic antiferromagnets near the critical
point. We perform a renormalization-group analysis of this equation of motion correct to O(e), where

a = 4 —d, finding recursion relations and analyzing their fixed points and their stability. For the one stable

fixed point we obtain the dynamical index z = d/2 = 2 —e/2. We also calculate the response and correlation
functions in the scaling region using perturbation theory correct to O(a). Our calculation gives analytical
forms for the correlation functions for the staggered magnetization and the magnetization. These correlation
functions can be written in the dynamical scaling form. The shape function that characterizes the frequency
spectrum for the staggered magnetization is Lorentzian in the hydrodynamical regime, but shows fluctuation-
induced peaks at and near the Neel temperature. The shape function for the magnetization is essentially
Lorentzian for all x = q$ (where q is the wave number and ( is the correlation length) and shows a narrow

hydrodynamical width as x ~0.

I. INTRODUCTION

A. General comments

We now believe that the generalization of the
Landau-Ginzburg-Wilson"' effective-free-energy
treatment for static critical phenomena to dynam-
ics corresponds to studying a class of model equa-
tions of motion obeyed by the order parameter and
the other slowly varying variables of a system
near its critical point. These model equations are
determined by specifying the Landau-Ginzburg
free energy appropriate to describe the statics,
choosing a set of bare Onsager or transport coef-
ficients L, (winch requires specifying the conser-
vation laws for the system) and determining cer-
tain Poisson-bracket relations among the slowly
varying variables.

These equations of motion can be derived from
the microscopic equations of motion using ideas
similar to those used' to justify the use of an ef-
fective-free-energy approach to static critical
phenomena. A key point is that the L, are the lo-
cal and Markoffian limits (k, &o- 0) of certain
memory functions. The calculation of the bare L„
which are insensitive to critical behavior, is a
formidable task if one begins with a fully micro-
scopic theory. ' It involves solving the Bethe-Sal-
peter' equation or equivalently a Boltzmann-like
equation while being careful to treat the conserva-
tion laws properly. ' We can avoid this microscop-
ic analysis if we use our knowledge from general-
ized hydrodynamics' of which memory functions,
on the time and distance scale of interest for cri-
tical phenomena (small frequency and wave num-

ber) can be replaced by simple constants. ' These
constants are identified with the bare Onsager co-
efficients and are taken as input in the model. The
resultant equations of motion are a considerable
simplification on the original microscopic equa-
tions of motion since they are directly amenable
to renormalimation-group (RNG) treatment.

The universality classification for static-criti-
cal-phenomena properties of a system is specified
by choosing the appropriate free energy E. E spe-
cifies the dimensionality d, the vector nature of
the order parameter, and the existence of any
long-range forces. The universality classifica-
tion for dynamic critical phenomena depends not
only on choosing the effective free energy F, but
also on the conservation laws and the Poisson-
bracket relations.

The pioneering work in developing these models
was carried out by Kawasaki' "building on the
earlier work in generalized hydrodynamics by
Green, "Zwanzig, "and Mori" and the mode-mode
coupling ideas of Fixman. " Kawasaki studied non-
linear models arising from the Poisson-bracket or
streaming-velocity terms. He" and others"
showed that these "mode" coupling terms can lead
to divergent transport coefficients near the criti-
cal point. The models studied by Kawasaki ig-
nored nonlinear couplings through the effective
free energy. These models were, therefore, not
stable below the transition and would not generate
the correct static correlation functions beyond the
mean-field result. The generalization of these
models to include the proper statics with a stream-
ing velocity was first carried out by Halperin,
Hohenberg, and Siggia" (HHS) for the cases of a
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binary mixture and a planar ferromagnet. Ma and
Mazenko'o (MM) pointed out that the HHS models
were a subset of a large class of models" and
pointed out the importance of the Poisson-bracket
relations in determining the streaming velocity
which strongly influences the universality class
with respect to dynamical properties. These au-
thors also discussed a number of general proper-
ties of these models some of which we summarize
in Sec. II.

All of these models result in a nonlinear field
theory which requires, for systematic treatment,
the use of RNG techniques.

The first application of RNG methods to these
model equations of motion was carried out by Hal-
perin, Hohenberg, and Ma." These authors stud-
ied the dynamics of systems described by the time-
dependent Ginzburg-Landau (TDGL) models. ss

These models ignore streaming velocities. Re-
cently De Dominicis'4 has shown that these models
are equivalent to a class of simple Lagrangian
models. Subsequently Brbzin and De Dominicis"
have used the Callen-Symanzik and Weinberg for-
mulations of the RNG to study these models to
O(es). Thus far there has been only limited work
on models including streaming velocities. HHS'""
have studied models for binary mixtures, super-
fluid helium, planar ferromagnets, and isotropic
antiferromagnets. For the antiferromagnet these
authors find that the dynamical exponent z for the
order parameter (the staggered magnetization) is
given by z = 2 -

& e (e = 4 -d) in agreement with our
work (see Sec. III). MM"'" have reported on a de-
tailed study of the critical dynamics of isotropic
ferromagnets in 6 —q dimensions. This work is,
to our knowledge, the only RNG work on critical
dynamics that considers T& T,. More recently
Gunton and Kawasaki" have studied the critical dy-
namics of ferromagnets, planar ferromagnets,
binary mixtures, helium, and the tricritical be-
havior of 'He and 'He mixtures using RNG meth-
ods.

In this paper we use RNG methods to study mod-
el equations of motion for the isotropic antiferro-
magnet. Our work will be similar in spirit to that
of MM and we shall, to a large extent, follow their
methods. A number of our results have been re-
ported in a recent letter. "

B. Isotropic antiferromagnet

A classical isotropic Heisenberg antiferromag-
net can be described by the Hamiltonian"

1H=-2 J pS 'S~,

where J z is an antiferromagnetic exchange con-

stant and S is the spin value on the lattice site a.
Let us, for simplicity, consider spins arrayed on
a simple-cubic lattice. If we consider only near-
est-neighbor interactions then J z=J and, for anti-
ferromagnets, J&0. Each spin, therefore, will
tend to align itself antiparallel to its six nearest
neighbors. One then has the usual picture of two
interpenetrating sublattices of spins. On each sub-
lattice the spins are ferromagnetically aligned,
but the two sublattice magnetizations are opposite-
ly aligned. The order parameter for the antifer-
romagnet is the staggered magnetization density
defined by

N(x, t)=g)) S,(t)5(x -x ), (1.2)

where the sum is over all sites in the magnet and

q =+ 1 for spins on the "up" sublattice and g = -1
for spins on the "down" sublattice. For T& T„(T„
is the Noel temperature) the spine are antiferro-
magnetically aligned so that (N(x, t)) ss 0. We can
also define the magnetization density

M(x, ())=QS (t)|)(x -x ), (1.2)

where (M(x, (5)) =0 for all temperatures. Using the
standard commutation relations for spins

[5'. , S,'] =Ig 5„,5. ,S'. ,

it is easy to show, using (1.1) that

(1 4)

(H, N]= =/ S,5(5, —5~)(S, HS~}IO, (1.5)

where N is the total staggered magnetization [i.e.,
the space integral of (1~ 2)], so that the order pa-
rameter is not conserved in antiferromagnets.
However, since [H, M]=0, the magnetization is
conserved. As we shall see in Sec. II the above
conservation properties play an important role in
determining the form of the equation of motion and
therefore strongly affect the dynamical properties
of antiferromagnets.

C. Outline of paper

In Sec. II we discuss the generalized Langevin
equations of motion of the type studied by MM.
After a brief review of some of the important pro-
perties of this equation we specialize our discus-
sion to isotropic antiferromagnets. This leads to
the coupled equations of motion describing the dy-
namics for the staggered magnetization density
and the magnetization density. In Sec. III we per-
form a RNG analysis of these equations of motion
correct to O(e), where (.=4-d. We derive recur-
sion relations and their fixed point solutions and
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their stability are studied. In Sec. IV we develop,
to O(e), perturbation theory for the linear re-
sponse functions in the scaling region. We then
use the classical fluctuation dissipation theorem
to obtain C„(q, co), the wave number, and fre-
quency-dependent correlation function for the stag-
gered magnetization, from the linear response
function. Our calculation gives an analytical form
for C„(q, sr) upon which we perform certain expo-
nentiations of logarithmic terms generated by the
z expansion. The resulting correlation function
has the form predicted by dynamical scaling"

C„(q, (o) = [XN(q)/~(q, &)]f,"(v), (1.6)

where X„(q) is the static susceptibility, &o(q, () is
the characteristic frequency, fx(v) is the shape
function, with x =q( (g is the correlation length),
and v= &u/&o(q, (}. We plot the shape function as a
function of v for various values of x. We also
carry out a similar analysis for C„(q, ~), the cor-
relation function for the magnetization. Finally,
in Sec. V. we discuss our results.

II. EQUATIONS OF MOTION

A. Properties of general model

Dynamic critical phenomena are characterized
by the slow variation in time of the order param-
eter and the conserved variables of the system.
Thus we are interested in the equation of motion
for these variables (which are in general N-com-
ponent vectors) whose densities we denote by

W, (x, t), where a denotes a particular variable
(i.e. , energy, magnetization, etc.}and the index

i denotes a particular component of this variable.
Following MM we assume that the slow variables
satisfy a generalized Langevin equation of the form

=0 [» [e ]]-r + '(x f).
sf R 1 0 0 5Q ( ) 1IR 7

(2.1)

If 4 is not conserved, then I' =I' and 1 is as-
sumed to be a simple constant near T=T„, and is
called a kinetic coefficient. If 4 is a conserved
variable, then I" = -I' V', and I' is a transport
coefficient. g (x, t) is a random gaussianly distri-
buted noise source satisfying

(2.2a)

and

( q'. ( t)xrl', (x't') ) = 25„5.,r.5(x —»') 5(f f'} . —

(2.2b)

E[qI ] is an appropriately chosen Ginzburg-Landau
free-energy functional, which determines the equi-
librium properties of the system. V [4 ] is a

streaming velocity in the space of the 4 . If one
neglects this term, then (2.1) reduces to the TDGL
equation previously studied by Halperin, Hohen-

berg, and Ma. The mode-mode coupling effects
which give rise to divergent transport coefficients
are contained in these streaming velocities. The
general form of these streaming velocities, which
follow directly from the work of Mori and collabo-
rators, "is given by

~frV,(x)=,)Q ~(xx )-Q ~ixx ) (,)Sf + gf X

(2.3}

[V'.(x)s-"]= O

xu aI x (2.5}

provided that the Q'~~(xx) are completely antisym-
metric, i.e., Q'~z(xx)= -Qz~~ (xx). From (2.4) we

see that this only requires that the coupling con-
stants be symmetric: X~z= Xzo. MM have shown
that the static correlation functions generated by
equations of motion of the type (2.1) are the same
as those given by the static distribution function
e ~. This insures that the equilibrium properties
calculated from (2.1) will be correct.

B. Specialization to antiferromagnet

In order to specialize the above results to a
study of an isotropic antiferromagnet we must
first specify the variables 4', (x) in (2.1). We
must, of course, include in our set of dynamical
variables the order parameter, the staggered
magnetization density N(x, t}. When we look at the
commutator of N, (x) with N&(x') we see that the re-
sultant is in terms of the magnetization density
M(x, t). Thus N and M are dynamically coupled
through the streaming velocity and we must include
both in our set 4,. A more general model could
include a coupling to the energy density.

The statics of this coupled system can be de-
scribed by the Ginzburg-Landau free-energy func-
tional

E[N, M]= —,jd x[r,N'+(VN)'+-, u(N')'+rM'],

(2.6)

The Q'~z(xx'} are given by

q",( xx) = x,(1/N}[4,(x), W„(x')]v ~, (2.4)

where, after evaluating the commutator in (2.4) we

are to replace the quantum-mechanical fields by
A

their corresponding classical fields (4'-4'). The
X z are coupling constants taken as parameters in
the model. It is easy to show that the streaming
velocity V (x) given in (2.3) will satisfy the diver-
gence condition
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q'&3(zx') = X,s 5(x x') k, lko~@, qq„k(z), (2.V)
f 1

where the Greek indices (a, P, y) can assume the
values M or N, i.e., )lq~, (x) = N'(z) and q'„, (x)-=M'(x). In arriving at (2.V) we have found it con-
venient to introduce o ~„defined by'4

+fogy ~Of N~gf -7 ef& Byr (2.Va)

If we substitute Eq. (2.7) into (2.3) we find, after
some simple algebra,

Vll(z)=x„l(MX Hu+xu~Nx H„ (2.8a)

VN = A,~gN X H~+ X»M X HN, (2.8b)

where we have defined the effective local field

where r, = T —T'„, x, u are positive constants, and,
in momentum space, all wave numbers are re-
stricted to be less than a cutoff A. Since the mag-
netization is not critical at T„, we do not need an
M4 term for stability. We have not considered any
coupling between M and N in E[N, M] since Alles-
sandrini et al. ,

"who studied the static critical
properties of antiferromagnets, showed that the
coupling between N and M is irrelevent near the
critical point.

Since the staggered magnetization is not con-
served, we introduce the bare kinetic coefficient
I'„=—I „, and since the magnetization is conserved
we introduce the bare transport coefficient I'„,
via

If we use the standard spin commutation rela-
tions (1.4) together with Eqs. (1.2), (1.2), and (2.4)
we find

H (z}=5F/M, (x) . (2.9)

C. Symmetrized equation of motion

Before turning to a RNG analysis of these equa-
tions it will be useful, for developing graphical
techniques, to write (2.10) as a single symme-
trized vector equation. First we define the space-
time Fourier transform (in d dimensions)

q, (q, ) f&ee'ee&&q. (e,-e)e «' '-"& (2.11)

Then, after Fourier transforming (2.10) and using
(2.6), we can write the equation of motion in the
form

If we put (2.8) into the equation of motion (2.1) we
obtain the following pair of coupled equations

8N
M X HN+ gg N X HN —FNHN+ ~N

(2.10a)

~M
eg

X»M x H„+ A.»N x H„+ F„V H„+g„.
(2.10b)

Equations (2.10) are the main results of this sec-
tion and taken together with (2.5) and (2.9) com-
pletely define our dynamical model. These equa-
tions reduce to those studied by Kawaskai" if we
set u=O, and A.»=X»=X». These equations re-
duce to those of HHS if A.NN

= X» = 0 and their"
S,=O. We have performed a detailed renormaliza-
tion group analysis on (2.10). We have found; in
agreement with HHS, X», X» are irrelevant.
Since their inclusion only complicates the model
we drop them henceforth.

4'«(qq ~) = q'."1'(qq ~) + ~'."(q ~) I'l jkeky (qq q» q» (d) (d» ~2)+lS(ql, ~1)q'~ (q2 ~2)

+ G ( q +)+1fkl 3)'3(q ql q2 q3 + +1 2 ~3) JS(ql +1} kl ( q2 +2}@l)' (qS +3)
(0) (2.12)

where summations or integrations over all repeated indices are to be understood In (2.12) w. e have intro-
duced several symmetrized vertices. The three-point vertex, [of 0 (X g] is given by

~l jk 3 (q ql q2' ~ ~1 ~2) = (2v)'"5"'(q —ql —q2)5(+ +I &2)~lgk ~ 3)& (q ql) (2.18)

where

VgA 3) (q ql} = [el&/2r. (q)] W.32(q, q,),
3(rs(+ ~ s(rk(q

~.s„(qqq, )=o»„[x „x„"' (q —q, ) —,sxs" (ql)] q

with the zeroth-order static susceptibilities x(S'(q) are given by

X'." (q)=5 (2'o+q')+5. u2",

and o 3„ is defined by (2.7a}.
The symmetrized four-point vertex [of O(u) ] is defined by

(2.14)

(2.15a)

(2.15b)

(2.15c)
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+Uki sra(q qk qs qs ~ ~k ids +s)=( v) 6 (q qk qs qs)6(id idk +s +s)~ski sra(q qk qs}

with

1
likiasra(qtql~q )as+6alv sN r8 6ag( ii ki 6ii6kf 6ik6il) '

(2.16)

(2.17)

In (2.12) we have also defined, for a =M, N and i

G"' '(q ~)=-f /I'a(q)+Xa" '(q) . (2.19)

Using the above definitions it is straightforward
to demonstrate that (2.12) correctly reproduces
the coupled equations (2.10).

D. Graphs

It will be convenient for the following analysis if
we represent our equation of motion (2.14) graph-
ically. We shall use the following conventions.
Let us denote 4', (q, ao) by a wiggly line, 4iI~'(q, &o}

by a broken line, G'a'(q, id) by a heavy solid line
with an arrow. An n-point vertex (here n = 3, 4)
will be represented by a dot with one heavy ar-
rowed line entering and n —1 lines leaving. Each
of the n lines entering and leaving a vertex has
associated with it four indices (saqid). We have
symmetrized the vertices defined in (2.14) and
(2.16) so that the vertices are symmetric under
the interchange of all the indices associated with
any two of the n —1 lines leaving an n-point vertex.
This will enable us to recognize graphs which are
equivalent and will reduce the number of graphs
we need to consider. The 6 functions in (2.13)
and (2.16) indicate that energy and momentum are
conserved at each vertex. Following the above
conventions our equation of motion (2.12) can be
represented graphically as shown in Fig. 1.

+i".(q, ~) = G'."(q, ~)rl'(q, i0)/I' (q), (2 16)

where G'a'(q, id} is the zeroth-order (i.e., A. s
-—0,

ii=0) linear response function,

B. Explicit evaluation of RNG

1. Rb

In order to implement R,' it is convenient to sep-
arate 4«(q, aa) into its low and high wave-number
components by writing

e,„(q, ~) =e,'.(q, ~) +4,'„(q, ~),
where we have defined

q,' (q, (o) = 4; (q, id)e(A/b —q)

and

(3.la)

(3.1b)

scaling of our new equation of motion so that we
end up with the original cutoff A.

Ideas concerning fixed point structure of the
RNG has been extensively discussed in the litera-
ture. "Theindicesy, [see Eq. (3.5) in Ref. 2]describe
the HNG transformation of the ith variable near
its fixed point value. If y, &0, the variable is
relevant, if y& & 0, the variable is irrelevant.
Only t„which we associate with the temperature,
is relevant (y, & 0) in our case. The difficulty is
to find the stable fixed point where all of the other
variables are irrelevant (y, & 0).

In practice the RNG transformation R', can be
carried out only if the nonlinear couplings in our
equation of motion are small. For our equations
of motion (2.12) this (as we shall see) requires that
d be near 4, or & =4 - d be small. In carrying out
an expansion in e, a main concern is to treat the
"slow transients, ""t, 's with y, of O(k), carefully.
In our calculation there are several of these slow
transients.

III. RENORMALIZATION GROUP ANALYSIS

A. RNG transformations

q,'„(q, ~) = 4,.(q, ~)e(q - A/f ), (3.1c)

The equation of motion (2.12) is specified by the
set of parameters ii = (r„r,I, I'„, I'„,X„„).
Under the RNG transformation ' R, p. = p.' these
parameters are transformed to a new set denoted
by p.'. The operations implied by R, consist of
two steps. If we write R, =R;R'„ then under R',
we integrate out of our equation of motion those
components of 4', (q, id) with wave numbers in the
range A/b& q& A, where A is the ultraviolet cut-
off in wave-number space and b&1 is a scale
change. The second step of the RNG R; is a re-

ia ia ia.
qtu qid qid

Ig .
q(U

FEG. 1. Graphical representation of the equation of
motion (2.12).
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where e(x) = 1 for x& 0 and e(x) =0 for x& 0. ff we
denote q4,'„(q, &u) by a wiggly line with an L and
q „(q, a&) by a wiggly line with an H, then after sub-
stituting (3.1) into (2.12), we obtain two coupled
equations for q,', (q, 4d) and 414,'„(q, 4d) which are
shown graphically in Fig. 2.

As we mentioned above we can only carry out
A,' if the nonlinear couplings are small. For con-
sistency we must assume u-O(e) and X-O(e ').
We then need to iterate the equation for 41,

'
(q, 4d)

[Fig. 2(a)] to O(e' '). This means that we keep
terms of O(X', Xu). lf we then substitute the iter-
ated equation for 0,' into the equation for 4,' and

keep terms of O(e'), we obtain the equation shown

graphically in Fig. 3. We need to keep terms of
O(e') here because we are doing a self-consistent
calculation to O(e) and therefore in correcting
quantities which are of O(e) we must keep correc-
tions of O(e'). Figure 3 does not include diagrams
which will vanish on averaging over A/b & q& A

(i.e. , those containing an odd number of 414", will
vanish because of the statistical properties of the
noise). The next step is to average over the com-
ponents of the noise limited to the region A/h & q
& A. In principle, since 4,' is a functional of
+,', we expand 4,' in terms of 4,"' and 4,' '
average over the 4, ~' and then resum the result-
ing series to obtain equations in terms of the full

4. ~4-

'44

4

I a.
L

~ 4

II II

II

6 Ml ~ ~ ~

I m Ilm
sr~ w

1L 1l

I6

/ /
i ~ M ~ M J
L r — ~ — C

FIG. 3. Equation for 4;~{q,ro) iterated to 0 (e ).

where we have carried out the high momentum
average. We can carry out this resummation to the lowest order in the interaction by simply

writing, for example,

(0)

3

~ a]+~ +

3

but if one works to higher order, one must be
more careful. To save writing we will still denote
&4P,'„&s by q4 after the averaging. When we aver-
age q,' (q, 4d) (Fig. 3) over A/h & q& A we find aver-
ages of the form &4 i4'l(q, 4d)q ~lsd(q', ru')& which are
easily evaluated using (2.18) and (2.2b):

&q l,'l (q, (o)+~t'q'(q', (o')& = 5,,5„8(2 v)~"5(q +q')

x6(w+4d')S~„(q, &o), (3.2)

where we have defined the zeroth-order correla-
tion function

(b)
+

S„s(q, (d) =(2/4d) lmG (q, 4d). (3.3)

+

3 4 gt+3.
FIG. 2. Coupled equations for (a) 4«(q, ~) and (b)

'0 - (q fa)).

The average in (3.2) corresponds graphically to
joining together pairs of dashed lines with H's and
are denoted by lines with a circle. Using this con-
vention we obtain, on averaging 414,.' (q, 4d) (Fig. 3),
the equation shown graphically in Fig. 4. Note
that the application of 8, to our original equation
of motion (Fig. 1) has generated a new equation of
motion (Fig. 4) which has 16 additional terms.
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4

+ 4

(4)
"

6
(7)

+ I6

(io)

(i3)

+ + I-- g~=

+ 8

(2) (5)

(5) (6)

i8 ': ~~= +i6
(8) (9)

12 ': ~'g+ 12

(I i) (12)

(i4)

and

pl y yg-4/2-1
aS a8

u' = b4~u

Xa =b't'I .

(8.5b)

(3.5c)

(3.5d)

q„can be set equal to zero. It is a simple matter
of dimensional analysis to show, using (2.10) and

(3.4), that the parameters X
&

and r& transform in
the following way under R', :

(3.5a)

where the extra factor of b ' in (3.5a) for a =M
arises from the conservation of the magnetization.
%e also find that

+ 2, 4 t=-~~-c + 8

FIG. 4. Equation of motion for 4&~(q, ~) after averag-
ing over A/b & q & A. For ease of discussion we number

the terms generated in perturbation theory.

The evaluation of these diagrams is straightfor-
ward, although too lengthy to present here. After
a few simple algebraic manipulations, we can see
that the new terms can be grouped together to give
an equation of motion of the same form as (2.12).
One difference is that the corrections to the vari-
ous vertices are now frequency and wave-number
dependent. Vfe can however expand these vertices
in a power series in q and co. The lowest-order
terms in q expansion have the same form as the

original vertices. One can then show that the co-
efficients of the q- and (d-dependent terms are
irrelevant in the scaling region, and we need keep
only the lowest-order terms. %'e find then that
under A', our original equation of motion (2.12) has
been transformed to an equation of identical form,
the only change being new parameters.

2. Rb

Under R'„ the second step of the RNG transfor-
mation, we rescale our equations of motion ac-
cording to the following prescription:

C. Recursion formulas, fixed points, and stability

Using (3.5) and the results of the explicit evalu-
ation of the diagrams in Fig. 4, we find, for the
full RNG p' =RP,' p, , the recursion formulas,

1'„' = b' 'r„(1 +f„„K,lnb},

r'„= b' 'r„[1+2af„„K,lnb/(1+ a)],
yg 4l2 ly

NN NN y

u'= b' u(1 -11K,u lnb),

r'=a+,
and

ro= b'[ra+ ~K,2A'(1 —b ')],
where we have defined

K, = (8v')-'

f„„=~2„a- /r„r„,
a= rur/r„.

(3.6a}

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.6f)

(3.7)

ln obtaining (3.6a) and (3.6b) we have dropped cor-
rections of O(1/r) since from (3.6e) it is clear that
near the fixed point (b- ~) these terms become
vanishingly small. The recursion formulas for
I'„', I'„', and X„'N can be written in terms of the di-
mensionless quantity a = rr/ „rnafd„„. The
fixed-point equations for these quantities are

a*=a*[1+fld*„2Kd[1—4a*/(1+ a*)] lnb] (3.8a)
t'=b 't,

x- x' = x/b,

(3.4a)

(3.4b)
and

f„*„=b' f„*„,
with

(3.8b)

4, (x, f)- e,' (x', t')

b d/2+ 1 & a ~d-@ (x/b b dt) (3.4c)

where the exponents z and g are, in principle,
determined by the fixed-point equation R,p. ~ = p. *.
However, since we work to O(e) and the magneti-
zation is not critical the "anomalous dimensions, "

x *=zf „*„Kd[1+4a */(1+ a*)] . (3.8c)

=0 (3.9a)

or

We therefore see from (3.8b) that there are two

fixed-point solutions for f„*„given by
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f„*„=2e/K, [1+4a*/(1+ a*)] . (3.9b)

We now consider (3.8a). For the case f„*„=0we

have that a* is arbitrary. For the case Eti. (3.9b)
we find the solutions a*=0 and a*= 3. Therefore
the three fixed-point solutions of (3.8) are given by

TABLE I. Summary of the main results of the RNG
analysis performed in Sec. III for the dynamical fixed
points. The exponents y; are related to the eigenvalues
of the linear transformation R~ appearing in the linear-
ized recursion formulas.

Stable

f~„=0, a* arbitrary

f„*„=2e/K, , a*=0

f„*x= e /K, a*= 3 .

(3.10a)

(3.10b)

(3.10c)

arbitrary
0
i
3

0
2 e/E4
e/K4

2
2
-d
2

-3
8

No
No

Yes

5fxx=&' 5fsN (3.11b)

which is clearly unstable. In the second case a*
= O,f„'„=2e/K„we have

We now consider the stability of the fixed points
given in (3.10). The linearized recursion formula
for a and f» at the fixed point f„*„=0 are easily
found to be

5g' = 5a+ z a*K4[1 —4a */(1+ a *)]ln55f»

(3.11a)

and

by the equation for l „. The value of z associated
with the stable dynamical fixed point

1 1z=2-~c=~d (3.17)

is in agreement with the results of Kawasaki" and
dynamical scaling. "

From the above analysis we have seen that the
parameters a and f» transform among themselves
under R, and determine a stable dynamical fixed
point [see (3.10c)]. This concludes our discussion
of the RNG and the main results of this section
are summarized in Table I.

and

(3.12a) IV. PERTURBATION THEORY ~~T~

A. Equation of motion in external field

5fsN=5fsN (3.12b)

so that this fixed point is also unstable. Finally
we consider the fixed point a"=—,, f„*„=e/K4, for
which we find

In developing perturbation theory it is convenient
to calculate the linear response to an external
field. Following the general development in Sec.
II D of MM we can introduce this external field
into the model through the replacement

and

gaP y-3/Ss g (3.13)
dxh, x t4 x (4 1)

5f~~= & '5fsN (3.14) in the equation of motion. The linear response
function G&& z(x -x', t -t') is then defined by

so that this fixed point is stagle. Finally we con-
sider the static quantities u, r, and r,. From
(3.6e) we see that r~-~ in agreement with the cal-
culation of Allesandrini et a/. " The fixed-point
values of u and r, have been determined by Wilson
and Fisher. " The results are summarized in Ta-
bles I and II.

We can determine the dynamical index z by re-
quiring that the equation of motion be invariant at
the fixed point. We see therefore that this is ac-
complished if I'„and I'„r are invariant under R, .
From Egs. (3.6a), (3.6b), and (3.6e) we find"

(3.15)

x h&~(x,T)+ O(h') . (4.2)

TABLE II. Summary of the results of Sec. III for the
static parameters r, ro, and u (we find it convenient here
to consider r ').

We introduce G because it has a more convenient
perturbation-theory expansion than the correlation
function. We can calculate the correlation function

(4.3)

(3.16)

The results for z for the various dynamical fixed
points are given in Table I. We note that the fixed
point a*=0 requires I'„r= 0 and z is determined

e/i 1Z4 -g cA5 2

=2
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C, ~~ 2(k, &u) = (2/(4)) imG,
& 2(k, v), (4,4)

where C,~, (()k, &u) is the Fourier transform

C,s,s(q, ~ )=J sqstde"'"'"' Css (set) . (4.4)

In terms of Fourier transforms

(+, (k, (d)) =QG„,(k, (d)k~(k, (d)+ O(h') .
Bf

(4.8)

After we include the external field, our equation
of motion takes the form

=V (x, t) —f H +I'„h (x, t)

using the classical fluctuation dissipation theorem
la

n
qftl

ia

qfP k

by

lf244ST(q 4 ql t q2t t l t 2}

= (2w) "5l2)(q —ql —q2)5((d —(d, —(0 )

x Z(sG2T(qtql) (4.8)

where

FIG. 5. Two terms which must be added to our equation
of motion (see Fig. 1) in the presence of an external mag-
netic field (represented by a cross).

X,o,„4„x,t x,t + g t ~ll2NBT(qtql} ~qsloqqaTeu2/Fqt(q) ~ (4.8a)

(4.7}

where the last two terms contain the dependence
on the external field. The contribution of these
new terms to the equation of motion are repre-
sented graphically in Fig. 5 and are to be added
to those in Fig. 1. The first term in Fig. 5 cor-
responds to the term f' k„(x,t) in the equation of
motion. The x at the end of a propagator repre-
sents a factor of h, (q, &c). The second term comes
from replacing E with 4 h in the streaming ve-
locity (2.3) and gives rise to a Larmor precession
term in the resulting equation of motion. The
three point vertex with an external field line (rep-
resented by an x attached to the vertex) is given

B. Iteration to first order in e

%e can calculate the response function in the
scaling region if we fix s = I'„r/I'„, f= A„'„A '/
I"„I'„,and u at their fixed-point values. " Thus
we can take X- e' ' and u - c and expand 6 in pow-
ers of X and u. After iterating the equation given
in Figs. 1 and 5 to first order in q. (second order
in X and first order in u) we find, after averaging
over the noise, that(44, (q, &o)) is given, to first
order in the external field, by the graphs in Fig.
6. %'e note that graphs with a closed loop on a
three-point vertex vanish by symmetry. If we now
define the self-energy via the equation

G s.s(q, ) = Ggq, )t.sess+/ G:(4, )Z.'„(4,~ )G„s„(q,~ ),
we find to O(c),

I:,",(q, &o) = 5„5„[Z"'(q, (o) + Z,'2)(q, (o) + Z"] ,

where

(4.9}

(4.10a)

4~
2'."(q, ss)=

4 4; 4q.s, «(4 q)Gs(q G)q:(4 -4 —G)"s ss.,(q, q))2w 2w)
(4.10b)

4~
Z.'"(4, )= t,t „t)t.s„e,(q, q)G„'(4 —q, ss —G)qs(q, «)g,s ss(q-q, q)G, '(q, ss)),7l' ( 17)

(4.10c)

dd g ()Z.=t )t...„„(q). Gs(q, )) . (4.10d)

The last term is just the usual Hartree term that shifts the value of T„ from its zeroth-order value. It is
easy to show after integrating over an internal frequency that the sum of Z'" and Z"' take the simple
form

(2v)G~G " iur+L (q--q)+L„(q) I"(q)
' (4.11)
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where W „,(q„q,) is defined by (2.15b), the X'" '(q) are the seroth-order inverse static susceptibilities
(2.15c) and

L.(q) = 1'.(q)x'" '(q) ~ (4.12)
Note that Z is proportional to ~ and vanishes for zero frequency. This is in agreement with the the-

orem, discussed by MM, that the streaming terms (which are proportional to X} can not contribute to the
static correlation functions.

We can then write the linear response function in the form

G ~~(~(k, (u) = 5 qb, qG (k, (o),

G-.'(k, ~)= [ i~/r. (k, ~}+x.'(k)]

where

x.'(k) = x."' '(k} —~."
f' (k, s))= I' (q)[1+@,(q, (o)],

(4.13)

(4.14)

(4.15}

(4.16)

d'q ~ x.(q -q)x. (q)g"...(q, q)
r, (q) (2v)' ~ i(u+L,-(q q)+ L„(q-) (4.17)

The last equation follows from some simple rearrangements of the integrand of (4.11}. Since X
' differs

from X'0' ' only by a shift in T„of 0(e}, we can consistently use X in place of X,"' in the Q 's. Note that
is still of the Ornstein-Zernike form. We obtain more explicitly,

q (q )
2XNs &q Xv(q -q}Xv'(q)

(2w)' -i(o+L„(q q)+ L„(q)- (4.16)

(q
xNN +q xN(q —q)xv(q)[xN (q q) - xN @}]-
1'sq' (2n')~ i(u+ Lv(q— q)+ Lv(q)— (4.19)

The calculation of the correlation functions cen-
ters on the explicit calculation of Q„and Q„.

C. Calculation of CN (q, u)

These integrals can be evaluated explicitly. If we
neglect, as we must for consistency, contribu-
tions of order q/A, snd &o/1'vA' relative to 1, we
obtain

l. E}valuation of Q~(q, ~)
We can write the integral for Q„(q, &u) in the form

(remembering r-~ in the scaling region)

@v(q, ~)

Q„(q, &u) = (2t/x2} Q x ''[1+ in((A)'] —tA 1no

+ (t —~ b}ln(1+ t —
~ b}],

where

(4.21)

4g & q'dq
Sw 0

q'+$"'

sin'8 d8X
i~n„+q + s(q'+-q 2qq cosa)—

(4.20)

x=q&,

v = &u/r„q'(1+ x-'),

t= --,' [(1-x')+3iv(1+x')],

A = (1+b/t2)~ ~ &

(4.22)

(4.23)

(4.24}

(4.25)

(4.26)

o'=[2t(l+ t)(1+ &)+ b]/[2t(1+A) —b]. (4.27)

FIG. 6. Graphs which contribute to (4;~ (q, ~)) to 0
(e ).

One simple check on our result is to calculate the
integral in (4.20} for q = &o =0 directly and compare
with the corresponding limit for (4.21). One finds
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in both cases

Q„(0,0) = —,
' a[2 1n()A) —3 ln —,] . (4.28)

6 '(q (u t ')=b ""G '(qb, (ob', b/)).
If we use (4.14) and note the static result

x '(q $ ') = b ""
x '(q» b/&)

we find

(4.30)

(4.31)

I'(q, s), $ ') = b "' "I'(qb, (ob', b/$) . (4.32)

If we successively choose to set two of the three
variables q, ~, $

' to zero and make appropriate
choices for b, we obtain the scaling relations

r(q, o, h=")=(q/A)"" 'r(A, 0, $="), (4 33a)

r(0, ~, ~= )=(~/r„A2)' """'r(o rA' ~=-)
(4.ssb)

I'(0, 0, $) = ((A) '" "I'(0,0, 1/A). (4.33c)

If (4.29) is to agree with (4.33c), we must perform
the first of several exponentiations. To O(c) we
can rewrite (4.29) as

r„($)—= I'„(0,0) =- r„()A}'t 2(1 —~e ln ~), (4.34)

which agrees with (4.33c) to 0 (e}. r„(() is the
physical kinetic coefficient for the staggered mag-
netization and the inverse relaxation time v„'(g)
=- r„(()X„'(0)governs the long time decay for uni-
form (q =0) modes in the system. The conventional
van Hove4' theory of critical slowing down predicts
that r„($)- P. We see that a diverging kinetic co-
efficient rv($) corresponds to a shorter relaxation
time than that predicted by conventional theory. It
is worth noting that I'„ is related to the correla-
tion function by

rv($) = limlim[&C„(q, &a)X„'(q, g)] ',
tu~O q~O

and the response function by

(4.ss)

8 1

r„($)=limlim . 6 '(q, &o)
g)~p ~ ~ 8 —ical

r„($) is therefore real and observable since both

(4.36)

2. Renormalization, dynamic scaling, and exponentiation

Combining (4.16) and (4.28) we easily calculate
the physical kinetic coefficient as

r„(o,o}= r„[1+q„(0,o}]
= rx{1+—,

' e[21n()A) —3ln —3]}. (4.29)

According to (4.29}as T -T„ the physical kinetic
coefficient I'„diverges logarithmically. This re-
sult must be modified if it is to agree with the
form predicted by general RNG arguments. We
know that in the scaling region4'

where

x (1 —3iv) W„(x, v), (4.38)

W„(x, v) = 1+ (2c/x ) [—', x '(3+ jn-';) - tA in@

+ (t ——,'b) ln(1+ t —,'b)—
+ —,'x'lnt '/v ——,'x'ln7],

t = (1+x')(1 —Siv),

~ = (1+x')(1-4iv) .

(4.39}

(4.40a)

(4.40b)

Although the function W„(x, v) looks very compli-
cated it is a rather slowly varying function of x
and v that has the simple limiting behavior

w„(o, o) =1,

W„(x=~, v=0) =1+—', g(1-21n4+slns)

(4.41a)

(=1.38 for e=l), (4.41b)

W„(x=~,v=~}=1+-,' e(21n4 —Sln3)

(=1.131 for &=1), (4.41c)

C„(q, &o) and the static susceptibility X„(q}are
measurable. The quantity I'„and the cutoff A are
not observable. We can eliminate them in terms
of r„($}and assume r„($) can be obtained from
experiment. Once we make this replacement I'„
and ~ are removed from the theory. Note, how-
ever, that our theory predicts that the physical
kinetic coefficient r„($) has the nontrivial tem-
perature dependence - $' '. In principle I'„A' '
x (1 —4z in-';} can be determined experimentally as
the coefficient of the $'I' dependence. We note that
our result for r„($) disagrees with that found by
HHS." We do not know the reason for this dis-
crepancy. If we now go back to our general ex-
pression for I'„(q, &o), we can write, to O(e),

f'„(q, (u)

= rv(0, 0)(1+(2c/x') [—,x'+ 6x'ln-', —tA inc

+ (t --.'b)1 (I+ t —.'b}]) .

(4.3V}

Our result for I'„(q, &o) is still not completely sat-
isfactory. The reason is that the limit T-T»v -0
will lead to logarithmic divergences. This will
violate equations (4.33a) and (4.33b). Further ex-
ponentiations are therefore necessary. These ex-
ponentiations are not unique, consequently we dis-
cuss the method we use in the Appendix. We find,
following the exponentiation procedure described
in the Appendix, that '

rv(q, ar)=rv(0, 0)(1+x') (1 —4iv)
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O'. Characteristic frequencies

In order to present our results in the usual dy-
namical scaling form we need to define a charac-
teristic frequency &o(q, $). There are several ways
of introducing sr(q, $). In MM the characteristic
frequency was identified with the poles in the re-
sponse function

G '(q, (d)=0, (4.42)

which can be solved to give a frequency (d, = (d(q, $).
This is a convenient definition if the correlation
function is essentially Lorentzian but other alter-
natives are preferable if one has a non-Lorentzian
form. We can also define the characteristic fre-
quency as

WN(»=0, v=~) =1+c(1+ln3 ——', ln4)

(= 2.883 for (. = 1) . (4.4ld)

We see that S'„remains close to 1 except for
small g and large v. This corresponds to a region
where the shape function is small, so our results
should be reasonable for all x and v.

has the same qualitative behavior as that calcu-
lated by Resibois and Pyette" and Huber and
Krueger4' and compared with the neutron scatter-
ing data of Nathans et al. and Lau et al."

We note that if the spectrum is not Lorentzian
in character, these definitions of ~(q, $) are not
necessarily the most convenient since they lose a
simple physical interpretation. In the present
case, where the spectrum turns out to be non-
Lorentzian, it is more convenient and more natu-
ral to choose (d, (q, $)}f(q, $) in terms of the factor
in I'„(q, &o) that is independent of v. This choice
leads to a characteristic frequency

(g(q $) = I' A'~ ~q~~&&(I+»-~)~~1~ (I 4$ In~/) .

(4.50)

This choice for a characteristic frequency is much
simpler than &2„. While (d(q, $) and (d„are equal
for small x, they dif'fer for large x by

lim ~' ' = W„(~, 0)(d((((q| &).-- ~(q, h)

= [1+~c(1+ln4)] (= 1.597 for a = 1).
(4.51)

(4.43)

If the spectrum is Lorentzian this definition is es-
sentially the same as obtained from (4.42) and

&o(q, $) is a measure of the width of the Lorentzian.
According to dynamical scaling we can write

4. Shape function

Using the characteristic frequency (4.50) we can
write (4.38) in the form

I N(q, &o) = x„(q, ()&uN(q, ])r„(»,v), (4.52)

where

(d(q, ()= q'0(»), (4.44) r„(», v)=(1 4iv)"~-'(I 3iv) 'W„(»-, v). (4.53)

where Q(») is the scaling function. We can easily
compute from (4.14), (4.36), and (4.38) that

We can then write the response function in the
form

(d„(q, g}=q 'I'0"(»}, (4.45) G~(q &) = x~(q}r~(» &}/[ i~+r (»-, ~)], (4 54)

where

0"(»)= I'„A'~'(1 -—,'fin —', )(1+x ')' ~'W„(», 0)

(4.46)

where, to lowest order in &, we identify v in y~
as &o/ar(q, (). The correlation function can be ob-
tained using the fluctuation&issipation theorem
(4.4) and can be written in the dynamical scaling

W„(», 0) = 1+—,
' c (1 —(4/» ') ln(1+ —,

' x ')

+ln[(1+x')/(I+ 4xm)]}.

It is convenient to plot

rP(») = 0"(x)/9"(~),

where

(4.47)

(4.48)

I

l.IO—

I.05—
8

I t.oo

c: 0.95

0"(~)=I'„A' (1 ——a in~} [1+~e(1+ ln4}].

(4.49)

We have plotted &"(») in Fig. 7. Note that A"(»)

0.90

FIG. 7. Plot of 6+(z) = 0+(z)/0+(~).

] I I I I ] I

O. I 0.2 0.3 0.4 0.5 0.6 0.7

X
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served in the isotropic antiferromagnet RbMnF,
by neutron scattering. " Peaks similar to those
in Fig. 8 have been found previously by Wegner"
for T = T„by numerically solving a set of coupled
equations similar to (4.14), (4.16), and (4.17}in
three dimensions. Wegner" derived these equa-
tions using a mode-coupling approach.

D. Calculation of C& (q, u)

We can treat Q„(q, u&) in much the same manner
as Q„(q, &u). We present only the results here
(after exponentiating as in the Appendix}:

I'„(q, u)) = I'~'[1+Q„(q, (o)]

$6/2q2 ~/2xs/2(I & ~)
(1 2)6/4(I 1 )8/4 //( I ) ~

(4.55)

W„(x, v}= 1+—,'&[4 —x '({[p—(1 —a)]' -x'}
x lnR, —(1 —a)plnR, )],

(4.56)

I

0.5
I

I.O
I

1.5
I

2.0

(1+x'}'(1—,' iv)' —F(x,v)S(x, v} '

W'(x, v) = 2(P+ a —I)/(& —2),

Y(x, v) = 2a (P+ 1 —a)/(& -2a'),

(4.5V)

(4.58)

(4.59)

FIG. 8. Plot of the shape functionf„(v) for e =1 (a)
in the relaxational regime x = 0 (x =q$) and in the critical
regime x = ~ and (b) for intermediate values of x = 1.0,
2.0, and 5.0.

form (1.6). The behavior of the shape function
f„"(v) is shown in Fig. 8 for @=1. The shape func-
tion exhibits the following behavior4':

(i) In the relaxational regime, x«1, f „"(v) is a
Lorentzian centered about v= 0.

(ii} A.s x increases and we move toward the criti-
cal regime x»1 we find that two fluctuation-in-
duced peaks appear in the spectrum displaced sym-
metrically about the origin. For & = 1 these two
peaks first appear for x-2.

(iii) The position of the peaks moves continuously
outward from the origin until x-10 where the posi-
tion of the peaks attains a limiting value v„=+0.65.

(iv) The height of the peaks relative to the value
of f,"(0}increases as x increases reaching a maxi-
mum of 15% for x»1.

(v) For «(1 f„"(v) is a Lorentzian centered
about v = 0 for all values of x. In the critical re-
gime the two-peak structure first appears for z
-0.45.

These peaks we find are similar to those ob-

(1+x')(P+1+x')+a(x' —1)
a[P -x'+1 —a]

& (x, v) = P'+ 2a —P' [1+4(a/P')]'/',

a =1-iv(1+x'},
P = —[x'+ 2x'(1+ a)+ (1-a)']"'
R, (x, v) = (1+x')(1 --,' iv) .

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

~v(q 5)Xv(q t')=I (q, o)

A q~ (1+x ) 4(1. —3c)

x (I+ e [1 -x 'ln(1+x')]}

(4.65)

or

~v(q, 5) = q' "flu(x},

n„(x)= II„( )~„(x),

(4.66)

(4.61)

where

Q„(~)= I'„rA'/'(1+-', e) (4.68)

Our definition of v is still given as above (4.23).
We can define a characteristic frequency for the
magnetization as in (4.43}. We easily find
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du(x}=(1+» ) '~ (1+&) '(I+a[1 —x ~ln(l+»2)]].

(4.69)

starts Rt 1 for x -~ and decreases monatonically
to zero as x decreases in qualitative agreement
with the results of Joukoff-Piette and Resibois. "

It is easy to extract the physical transport coef-
ficient f'u($) from (4.65), we obtain

Fu($}—= lim lim —,f'u(q, to)

= r„(ag)'»(1 —', &). (4.VO)

We see that the transport coefficient diverges as
T -TN. Our result is in agreement with that of
HHS~ to O(e).

In evaluating the shape function for the magnet-
ization it is convenient to use the same character-
istic frequency as for the staggered magnetization.
We can write

Using our results for I'u(g) and I'u(() we obtain
the results

R =(sf) "'(I--'~»-,'),
Ru=(a/f}' '(1-8 e),
Rugu=(1/a)[1+ 8 a(1 —2 ln~ )] .

We can consistently only extract the leading term
in an e expansion for these terms. In R„i„, for
example, the O(a) correction to a = 3 is of the
same order as the 8(1 —2ln4) term Sinc. e we

(4.80)

(4.81)

(4.82)

20.0

HHS have defined the ratios, in our notation,

R, =r,(t)t"*r-' "/X„X.„„, (4.VV)

R„=I „(~)/X„]'~*v-'~', (4.V8)

Rusu =Ru/Ru ~ (4.VQ)

Fu(q& ~}= ~(qi ~)Xu'Yu(xi v)~ (4.71)

where ur(q, $) is given by (4.50), so that

Gu(q ~)=X (q)r (» )/[-i +r (», )1 (4 72)

1 (1—8 e) (1 —2ln-,') Wu(x, v)
3 (I - -,' i )"v4(1 x+-')

In arriving at (4.73) we have used the result
rI'u/F„=1/3. '4 We can extract the correlation
function using the fluctuation-dissipation theorem
(4.4) and write it in the dynamical scaling form

l5.0--

1')((&)

5.0

-qI,f=0.7

~u(q, ~) = [Xu(q)/~(q &)]f."(v) . (4.74)

We plot fu(v) in Fig. 9 for &=1. The shape func-
tion is essentially Lorentzian for all values of x
showing the characteristic hydrodynamic pole at
v=0 as x-0. This behavior is in qualitative
agreement with the experiments of Tucciarone
et al."

E. Universal ratios

(b)

Because of the fixed point structure of the RNG
the parameters 1~, F„r, and A» are interelated
(only one is independent). We note then that cer-
tain ratios are universal. In particular the ratio
of the characteristic frequencies [as defined by
(4.43}] are universal

.0

~u(q, t') IIu(") &u(x)
~u(q, &) flu(") &u(x)

(4.75) 0.5 t.o t.5

Qu(~)/A„(~) = a*[1+8 e(3+ 4ln4 —6ln3)] .
(4.76)

FIG. 9. Plot of the shape function f«~(v) for e = 1 (a) in
the hydrodynamic regime z = 0.7 (z =qf) and in the criti-
cal. regime z =~ and (b) for intermediate values of z = 1.5
andz =10.0.
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have not calculated the first-order corrections
to a = 3 and f= ~/K, we can only conclude,

R =(3/8v a)

R = (1/247r ' a)'

(4.83)

(4.84}

RN&sr =3 (4.85)

in agreement with the results of HHS. Similarly
we can only conclude that Q„(~)/Q„(~}=

& + O(a).

V. DISCUSSION

Our calculations to O(e} for the isotropic anti-
ferromagnet have led to nontrivial results. We
have been able to carry out the complete calcula-
tion for T greater than or equal to T„. We see that
the three point vertex (which arises from the
Poisson-bracket terms) leads to qualitative cor-
rections to the TDGL model. We found a new dy-
namical fixed point corresponding to nonzero X».
The TDGL fixed point (X„„=O)is unstable. A par-
ticularly interesting feature of our calculation is
the establishment of fluctuation induced peaks in
the shape function. This feature could not be es-
tablished from general arguments. " Although
peaks of this type have been observed in neutron
scattering experiments, ' we have not found the
central peaks observed in these experiments. One
possible resolution of this discrepancy is that we
should include a coupling to the energy in our mod-
el. Halperin, Hohenberg, and Siggia point out that
for magnetic systems, where d=3 and X=3 and the
specific-heat index is believed to be negative, the
energy coupling should change correction terms
but not the leading singularities near the critical
point. This does not rule out the possibility of en-
ergy conservation changing the shape functions
near the critical point.

Since we have only carried out a calculation to
first order in q we must consider the effects of
higher-order terms in q. We know from &-expan-
sion calculations for static indices that second-
order corrections can be significant and second-
order results have given, in the static case, the
"best" values for the indices' (that is, they repre-
sent the best truncation of the asymptotic series).
It seems fairly evident, from the involved analysis
of Sec. III, that any attempt to carry out the RNG
to O(e ') will be extremely complicated. However,
if we believe that the stable fixed-point structure
we found to first order in & persists to higher or-
ders in q we can avoid an explicit discussion of the
RNG and use a generalization of Wilson's'"' Feyn-
man-graph method to calculate to higher orders in
&. Halperin, Hohenberg, and Siggia have developed
such a Feynman-graph approach. " %'hile the value

of z is not changed by higher-order terms, due to
symmetry considerations, the corrections they find
to the ratios defined by (4.77)-(4.79) due to O(e ')
terms appear significant. The development of this
technique from our point of view involves a detail-
ed discussion of higher-order response functions
which serve as dynamical generalizations of the n-
point vertices treated by Wilson in his Feynman-
graph method. We will discuss these points in de-
tail elsewhere.

The next logical step in studying the antiferro-
magnet is to calculate the response and correla-
tion functions below T„. Even before we carry out
this calculation, we can note, from continuity
arguments, that the fluctuation induced peaks that
we found at and above T„will persist below T„.
The very interesting question is whether these
peaks go continuously over into the usual spin
waves as one goes from large x to small x. We
are presently investigating this question.
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+aC(x, )), (A1)

where we have renormalized at q = or =0 such that

q P [a&(0, 0) ln b&(0, 0)] + a C(0, 0) = 0 (A2)

and I'(0, 0) =const(' ', thus satisfying (4.32a}.
There will be divergences arising from the a,
terms in (Al) in the limits of large x or v. We de-
fine C such that it has no divergences for large x
and v. Because our choice of renormalization
point (x = v =0), we have a good description of the

APPENDIX

Our exponentiations are guided by the simple
guidelines: (a) Preserve the predictions of dynam-
ical scaling as given by (4.31); (b) preserve the
positivity of Rel'(q, &o) which is demanded by the
positivity of the correlation function; (c) perform
a minimal amount of exponentiation (i.e., exponent-
iate the simplest possible function).

In developing an exponentiation procedure we
deal with quantities of the form

)'(q, )=)'{O,o)(l+cQ[a(x, )lna, (*, )]
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small x, v behavior, but now we must treat the
large x, v behavior accurately. We can see how

things go for large x and v by allowing x'- M and
v-xv and expanding a, and b, in powers of X:

a& = X a ' x iv+ X(a x + a& 'iv)+ a& '+ O(l/X) I

b& =X'b "x'iv+ X(b"'x +b',"iv}+b,"+O(1/X)

There are several cases of interest:
(i}If a[{"IaP', or a',"do not vanish, then b',",

b,"', b',"must vanish and b,"'=1 or we have a
breakdown in scaling. In this case we need not
exponentiate and can include these terms in the
C(x, v) terms.

(ii) The main case of interest is where the a[,",
a,"', and a',"vanish. In this case we need to ex-
ponentiate and &a',"will contribute to the exponent.
We then need to choose that part of b, to exponent-
iate. We will define this piece as b', . Clearly b',

should give the large x' and v behavior correctly

and we can assume the form

b'. =g (b")x'iv+b"'xq+b', "iv+J3}

We include the factor A since we take a logarithm
of b', and an overall scale factor can not change the
large x, v values of lnb, . We include B since it
also can not change the large x, v limits. We
choose A and B by requiring that b', be separable
in x and iv (this is for convenience) and that H&(0, 0)
= 1 (which makes it easy to maintain the original
normalization at x = v =0). With the proper choice
forA and B we can write

b', (x, v) = [1+(b"'/b"') x'] [1+(b"'/b"') iv].

Here we must look at the explicit values of the
b, 's and be sure that b',(x, v) has no zero, other-
wise we may violate condition b and introduce
spurious behavior in the shape function. If there
is a zero then we must choose B in a different
manner. In the cases treated thus far this situ-
ation has not developed. We can then write

I'(q, v)=1'(0, 0)(1+xI alg lgglgg(x v)vxg[ag(x v)lgglgg —ag" Inb]]+0),
f

which can be written to O(e) as

I'{q, }=I'{0,0)(1+xI agg 'Inbg(x, v) I+g C{x,v}vg[ g(x, v)lnbg —ag 'lnl, .]
i

=r{0,0)11[bg(*, )]"g I+g C(x, )vt [ag(x )lnbg ag Inb]])

This form satisfies all of our requirements. "
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