
PHYSICAL REVIEW B VOLUME 13, NUMBER 11 1 JUNE 1976

Roughening transibon in mean-field and pair approximation of Jiiing mode)a

J. P. van der Eerden
Laboratory of Physical Chemistry, University of Technology, Delft, The Netherlands

(Received 3 November 1975)

It is shown that the macroscopic phenomena of the roughening transition in an Ising interface model can be
connected with a property, corresponding to a second-order phase transition, of the local thermodynamic

potential for interfaces with an even symmetry. Using this connection a method is developed to evaluate the

roughening temperature in first- and second-order mean-field approximations of a simple-cubic crystal. These
values are compared with Monte Carlo results and with values found from the fundamental assumption that
thermodynamic quantities such as the specific heat should have singularities at the transition temperature. It
turns out that the second-order results are very accurate. Finally then, the method is generalized to give

results for fcc, bcc, and hexagonal structures.

I. INTRODUCTION

Below its critical temperature an Ising system
has two possible bulk phases. An interface model
describes the system if the two bulk phases are
simultaneously present. At very low temperatures
such a two-phase system will contain both phases
separated by an almost flat surface. At higher
temperatures this surface will become more and
more rough until at the critical temperature the
two phases become identical and the surface is no
longer present.

At a certain temperature T„below the critical
temperature the surface becomes so rough that
there is no longer any tendency to form surfaces
that are oriented along crystallographic direc-
tions. We shall call this temperature the rough-
ening temperature and the corresponding phenom-
enon the roughening transition of the Ising model.

In the following we select from the possible ap-
plications of the Ising model the solid-fluid lattice
model, i.e., each cell of the lattice is either solid
or fluid. This interpretation is very useful for the
science of the growth and structure of crystal sur-
faces because it describes various systems such
as crystal-melt, crystal-vapor, or crystal-solu-
tion. Also, the roughening temperature is prob-
ably best visualized with the morphology of a
crystal: Below the roughening temperature a
crystal is bounded by low-index areas that are al-
most flat on atomic scale, above T„ the whole sur-
face becomes rough and the edges between the
originally flat regions become rounded off. The
growth mechanism at low supersaturation also
changes at T„. Below T„ the crystal grows by
attachment of new atoms to step edges (i.e., nu-
cleation or dislocation growth), above T„ these
steps are hardly recognizable because small and
large clusters are present all over the surface.
From this reasoning it is clear that different

roughening temperatures belong to each surface
orientation. The roughening temperature of the
crystal is the highest of these temperatures.

The idea, however, of a roughening transition
is general and applies also to other Ising-type
models such as the magnetic Ising model and the
binary systems used in metallurgy.

Although these macroscopic phenomena are
quite clear and generally accepted it turns out to
be rather difficult to relate them to quantities in
the microscopic statistical-mechanical theory.

Burton, Cabrera, and Frank' pointed out that at
the transition some thermodynamic quantities ex-
hibit singularities. They found in 1951 that the
roughness versus temperature curve has a point
of inflection and the specific heat, therefore, has a
maximum. Temkin' found the same in his model
in 1966. They associated this point with the
roughening transition but neither of them proves
directly that it is really related to the morpholog-
ical change mentioned above.

Leamy, Gilmer, and Jackson' relate the rough-
ening temperature with Monte Carlo data by look-
ing for a temperature where the excess edge en-
ergy of a step vanishes. In this way they deter-
mine the critical temperature for phase separa-
tion in a layer. On the other hand they associate
the roughening transition with what they call a
divergence of the interface: Above the roughening
temperature the surface is free to move up and
down, therefore the interface width will become
infinite at T„. This divergence, however, is of
long-range type and therefore it is not surprising
that such a behavior is not found in static-mean-
field-type models, as was proved recently by
Weeks and Gilmer. " Their conclusion, however,
that these models possess no roughening transi-
tion is premature.

To overcome these difficulties we make a new
start. We shall define a local potential function
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depending on the concentration of the central layer
between the two phases only (by minimizing the
model grand potential function with respect to all
other independent variables). Below T„ this func-
tion will have certain maxima and minima, indi-
cating that some concentration profiles (namely,
those who lead to flat surfaces) are favorable
while others are not, and that, therefore, flat sur-
faces probably occur in the interface. At and
above T„ the function will be constant and there-
fore the interface is free to move.

Using this criterion we give a method for com-
puting the roughening temperatures in mean-field
approximations of Ising models. In such a way we
have succeeded in constructing a logical connec-
tion between the macroscopic definition and a the-
oretically and numerically accessible method for
computing T„.

Two types of lattice models are frequently used,
the solid-on-solid (SOS) model, where each solid
cell is situated above another solid cell (crystal
science), and the unrestricted (unr} model, where
each distribution of solid cells over the lattice is
allowed (metallurgy, magnetism}. The roughening
temperatures of the first- (MFA, mean-field ap-
proximation) and second- (pair) order approxima-
tions for these two types of model are given. The
assumption that the two types are equivalent up to
the roughening temperature is confirmed. Pos-
sible generalizations of the method could be other
crystal symmetries and longer-range interactions.

II. EXPRESSIONS FOR THE GRAND POTENTIAL

The state of a simple-cubic crystal is described
by the distribution of solid and fluid cells over the
cubic lattice. We number the lattice layers per-
pendicular to the z axis with the parameter i and
use the following variables for an approximate
(mean-field-type) description of the system: Nf:
number of cells of type p in layer i; N: number
of cells of type p that have a cell of type q as their
neighbor in the positive a direction; p =S (solid)
or F (fluid); u =x, y or z.

An example of the use of the variables is given
in Fig. 1. From simple geometric arguments it
can be seen that it is possible to express these
dependent variables in terms of the independent
variables N; and N, (N is number of cells in a
layer):

FIG. i. Example of an unrestricted interface (only
x-z plane shown) K& =4, N = f, N '=4, No

' =2,
Ns~ 3 NFS» 3 N = io-1 ~ -1

N '=N; '+N -Ni + &+1 i y

N =N + -Ni+1

Nssg Ns NsF I
i

(5)
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(9)

and the equilibrium value of the chemical poten-
tial is the opposite of the interaction energy per
cell of a totally solid lattice, '

p g/kT = —242 —2(d —2(0 (10}

From straightforward combinatorial computa-
tions the entropy S of the system is found to be'

N', / =* (N, f (N

In general there are nonzero interactions Q~
between cells of both types. We shall restrict
ourselves to nearest-neighbor interactions depen-
dent on the direction a and on the types P and q of
cells whose interaction is considered. In such a
case it is useful to define a generalized interac-
tion parameter ru = (uP, &o", ru'), ' thus establishing
the equivalence of a solid-fluid lattice model and
a lattice gas model (each cell of the lattice is
either empty or occupied), where only interac-
tions between the occupied cells are considered:

uP = (1/2kT)(P + P —2P ) . (9)

The total interaction energy S can be simplified,

Ni =N-Ni,
NFS n NsFa

i

N FFC. NF NSF

Nss~ Ns NSF

if o. =x or y, and

(1)

(2)

(2)

(4)

NkT Nk NkT
(12)

The proper potential function for this open sys-
tem at constant temperature is the grand poten-
tial, and divided by NkT it is given by
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In the following we will use concentrations CP

=Nf/N, CP" =Ã~" /N, which leads to the follow-
ing expressions for the grand potential in the

cases we want to consider:
The unrestricted pair formula is found by substi-
tuting (4) and (V)-(11) in (12):

R R E
0 I I 2IPCf 5CtlllCt 5CflllCf I g Cp lllC ja=x a=x p, q=S

The SOS restriction is built in by substituting Cf~' 0+ in (5) and (13):

(13)

oo E
Qsp~~=2&u'+ P 2aPC& '+2&u~C& "-4C&lnC&-4CflnCf+ g g C~~lnC, +(C, —C&„)ln(C, —C„,).

oo a=x p, q=S

(14)
Substituting C~& =C,C', if a =x or y and C» '=C~Ct„ in (13) we get the mean-fieM expression':

0"„„",= g [2(sP+&g"}C,Cf+2&u'C, C„,+CflnC, +C, lnC, ]. (15)

Finally the SOS-MFA expression' is again found from (14) by C~&' =C~C~'.

0 ~os =2(u'+ Q [2(&u'+(u")C(C, +(C( —C„,) ln(C, -C, ,)].
i=-eo

(16)

III. DERIVATION OF THE MICROSCOPIC CRITERION

The equilibrium values of the variables we de-
fined are those for which the grand potential is
minimal. Taking, therefore, the first-order par-
tial derivatives equal to zero gives for each mod-
el a set of equations for the independent variables
which have to be solved:

pair-unr:

C E Cssx Cssy CssR C EsR
i i -j. 0EE EE EE Ei 1 Ci

(17a)

C C = C Ci (17b)

In the SOS-type models the first term 2+' re-
sults from the boundary condition C„=0 and C „
=1. Therefore, it has no influence on the struc-
ture of the surface (therefore, neither on the
roughening temperature). This is the consequence
of the SOS restriction in which the bulk phases
contain either only solid or only fluid cells. Such
phases are only relevant for physical application
at T= 0, and we have to realize that these mod-
els are in themselves interface models. The
functions given in (14) and (16) are, therefore,
surface quantities. The term, then, enables us
to estimate a limiting temperature below which
the model can be used: If the total expression
(14) or (16}becomes negative the surface tension
also becomes negative; therefore, the tempera-
ture at which this happens is referred to as the
critical temperature of the model. '

pair-SQS:

CE CSSx CSSy CS CS
4 i i i i i+1 0ln s + ln ~EEx CEEy + ln s s (1Vc)

CSEa2 2~ CSSaCEEa .
i & i

MFA-unr:

2((u*+ (g")(I —2C )) +2(o*(l —C(, —C, ,)

—ln(C, /Cq);

(1Vd}

(17e)

MFA-S08:

Cs Cs
2(ru'+ (o")(1—2C() + In (1Vf)

Thus the solutions possess a mirror symmetry
leading to either an atom-center boundary (odd
solution} or an interstitial-center boundary
(even solution) as they were named by Kikuchi
and Cabin. '

In the atom-center boundary the central layer
is half filled, therefore, the roughness of the

From these equations it can be seen that two
types of solution are possible (S =F, F=S):

odd solution:

C', =C „C',"=C", u a=& or y, C", '=C', ~,',
(18a)

even solution:

Csi=CEl i, c~la=celpia u a=x or y, cpiaR=Cq piR

(18b)
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interface will be high, whereas the interstitial-
center boundary corresponds to a more flat sur-
face. So the crystal will have flat surfaces if the

even solution has a lower potential than the odd

solution. At low temperatures this condition will
be fulfilled (at T = 0 the interface is given by C ~

=1,Cf+, =O, i ~ 0, which is an example of an inter-
stitial-center boundary}. The roughening temper-
ature is thus the temperature where the grand po-
tential of the interstitial boundary becomes equal
to the grand potential of the atom-center bound-

ary. At temperatures below T„ the even solution
corresponds to a minimum in the potential, the

odd solution to a saddle point.
Upon minimizing 0 with respect to all indepen-

dent variables except the concentration C, of the
central layer [i.e., solving all the equations (1V}
except the one derived from BQ/8C, =O] these
other variables are expressed in terms of C,.
Substituting these values back in the expressions
for the grand potential (13)-(16)one defines a
probability function for C,:

Qp(CO} =—Q(T, Co, Cg(CO}, C( "(C,}}—Q „„(T),
(19)

where 0,„,„ is the grand potential of the even solu-
tion. The shape of this probability function below

T„ is given schematically in Fig. 2. When C, is
equal to any concentration of the even solution all
the other concentrations will be such that an inter-
stitial-center boundary is formed, so these values
lead to minima in A~. On the other hand when C,
equals one of the concentrations of the even solu-
tion an atom-center boundary will result and

these values correspond to maxima in Q~. When

T rises towards T„ the difference between the
minimal and maximal value will shrink down until

at T ~ TIf the function is constant:

Qr(Co) =0 if T~ T„. (20}

sQ ~ BQ dC)r~Q" +
8C ~ sc sC»0 fg0 0 f 0

&0 dC,
&C &C, dC

(23)

and the dependence of the C, and C, on C0 is
given by the solution of the Eqs. (17) under the
symmetry constraint. The partial derivatives have
to be computed for the odd solution.

The method of finding the roughening temperature
is (i) derive the minimization Eqs. (17); (ii) com-
pute (dC, /dC, )c a, &, and (dC fr'/dC, )ca, &, from

0 0

To get a criterion which is more accessible for
numerical calculation of the roughening tempera-
ture we go one step further. Again we minimize
0 with respect to all variables except C, but now

subject to the constraint that the boundary should
be of the atom-center type for all concentrations
except for C,:

Qr(CO) =Q(T, CO, C,(CO), C~~' (Co))- Q„(T),
(21)

Cf+C f
=1 if i0.

The shape of this potential function is given in
Fig. 3. For T & T~ the function has two minima
corresponding to configurations where the even
solution is best imitated [C,—C, = (C, —C,)„or
C, —C, = (C, —C,)„,these layers give the main
contribution to the potential]. At C, = —,

' a relative
maximum is present and the whole boundary is of
the atom-center type. At temperatures above T„
the interface is by the symmetry restriction forced
towards the atom-center boundary, so then

C, =
& is a minimum. We now have a simple cri-

terion for the roughening temperature:

Q (-,')=o. (22)

This property of 0 can easily be transformed intoa
property for the total grand potential 0 giving:

T TR
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FIG. 2. Unconstrained local thermodynamic potential.
FIG. 3. Evenly constrained local thermodynamic po-

tential.
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these equations; (iii) solve from the minimization
Eqs. (1V} and the roughening Eq. (23} the interface
profile (. . . , C „C0,C„.. .); (iv) determine the
temperature T„ for which this is a physical inter-
face.

IV. APPLICATION TO THE MODELS

The first step of the method has already been
carried out, so now we will look at the second.
Because of the symmetry constraint we have

dC) dC ]
dC

+
dC

0' g 1P2y ~ ~ ~ o

0 0
(24)

This property makes the last term in (23) zero,
so in the MFA models only the first term survives.
From the second term only the horizontal pairs
in the zeroth layer and the vertical pairs in the
zero and minus one layer are nonzero in the ex-
pression. For horizontal pairs the equation
eQ/eCDee'=0 can be solved easily, giving in the
case that C, =2.

C =Ce ~=C, "'e" =-,'(1+e " )
' a=x or y

T —(1/2$)(yssx+ psst+ QFEx+ QEEv 2ysex 2ysFy)

(29)

where we defined the average interaction strength
f by the last equality. From now on we shall only
consider the isotropic case uP = ~"= &o' (anisotropic
results will be given in a paper about the Monte
Carlo simulation of such systems") and use this
definition of P. For the SOS models Eq. (28) can
be seen as an equation for C, . In the pair-unr
model Eq. (28) together with aQ/eCQee' =0 forms a
set of two equations in the two unknowns, Cy and

C, '. So in all cases C0 and C, are known for each
temperature and the structure of the set of equa-
tions (1V) is such that the whole concentration pro-
file is found easily by a numerical procedure. This
profile, however, will only be physically relevant
if it meets the proper concentration boundary con-
ditions. This wi11 happen for only one temperature
(Figs. 4 and 5), which is therefore the roughening
temperature.

V. RESULTS AND DISCUSSION

dc0SF =0, e=x or y.
0

(25)

dC sFs dCsF g

dC0 dC0
(2V)

The roughening equations then are

pair-unr:

-12+4'-~ +4 - "

+ 4C sCF(CFssCFFe+ C sssC sFa) I —0 . (28a)-
pair-SOS:

-8+4e "*+4e '+2(~ —C, ) '=0

MFA-unr:

4 —4W- 4+"= 0;
MFA-SOS:

-4ar'-4ur" +2(~ —C,) '=0.

(28b)

(28c)

(28d)

The roughening temperature for the mean-field
unrestricted model is directly found from (28c):

Finally from the equation BQ/SCee'=0 one derives:

dC SFg dC SFg

dCg dC ]~ ~

1 1 1 1 1 1
+CFSg CSSg CFSs CSSg CSFs CFFs+ + +

f f

(28)

Applying this and the symmetry constraint to lay-
ers zero and minus one gives

Table I gives the critical temperature, the roughen-

ing temperature as computed with our method, the
temperature where the roughness curve has a
point of inflection, and the two-dimensional criti-
cal temperature. The first thing to mention is that
the roughening temperature is predicted very ac-
curately in the pair approximation.

The next important remark is that the roughen-
ing temperature agrees within the given accuracy
of the transition temperature computed from the
roughness curve. This also holds when the inter-
face is restricted to a finite number of layers
(this can be achieved by replacing the proper
boundary condition C„=Cb„»by C, =C„„»for i
greater than a certain number n). Therefor'e it
seems legitimate to identify the two transitions,
although a rigorous proof of this statement has not
yet been found. On comparing then the two ways
to compute the transition temperature our method
has not only the advantage of the clear correspon-
dence between the macroscopic and microscopic
phenomena but also requires less effort to com-
pute the temperature to a great accuracy.

Often the critical temperature of the two-dimen-
sional lattice is used as an estimate for the rough-
ening temperature. This estimate is based on the
idea that below the roughening temperature the in-
terface mainly consists of only one layer. The
roughening equations for a one layer interface
(constructed by the boundary condition C~e = Ce, = 0)
are indeed the equations for the critical tempera-
ture of the two-dimensional latticet From the
table it is seen that this estimate leads to a 12'
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TABLE I. Transition temperature in several models.

kV, A kT,/y kT. ,/y k T2-dim/y

5"
MFA-unr
MFA-SOS
Pair-unr
pair-SOS
Exact unr
Exact SOS

1.5
1.11
1.235'

1.136
1.02

1.0
0.855 0.82+ 0.05
0.676
0.649 0.64+ 0.02 g

-o.6'
0.64+ 0.02 '

1.0
1.0
O 719b
0.719 "
0.568
O.568 "

—0.1 0.0 01
S

Q2 03 04 Q5 I

FIG. 4. SOS profiles, evaluated from Eq. (28b).

'Comment, see below Eq. (16), values from Ref. 9.
Exact formula e. g. in Ref. 12.' Monte Carlo result in Ref. 13.
Low temperature expansion in Ref. 4.

'Monte Carlo result in Ref. 3, low temperature expan-
sion: Tz=0.62.

Value given in Ref. 2.
~ Recalculation from the Bethe method in Ref. 1 which

is equivalent to the pair-SOS model.
"Exact formula from Onsagers method (Ref. 14).

lower transition temperature indicating that the
third dimension tends to stabilize the surface.
Note, however, that in the mean-field-type ap-
proximations (to the same order) this order is re-
versed. This effect should be mainly attributed to
the fact, however, that the two-dimensional criti-
cal temperature is not very well approximated
even in the pair model.

From Table II the convergence from the unr
model to the SOS model can be seen in the pair

approximation. This behavior corresponds of
course to the well-known fact that the SOS model
is equivalent to a unr model with infinite vertical
interactions. The only 4%%uo difference in Ts justifies
the use of SOS models for temperatures below T~.

The whole method can easily be generalized to
more complicated bond structures. If there are h

directions for the horizontal bonds and v for the
vertical ones the pair equations in (17) and (28)
are modified into

pair-unr:
CF Csse

(2h+ 2v - 1) ln —~+ g ln
i

Cs saCF sa
+ g ln '

„' '~=0, (17a')
g i-& i

CSFn e-2(doCssuCFFa
t i

C s FBCFs ij ~
"2 td ~C s s BCFFQ

i i

(171')

TABLE II. Dependence of Tz on the bond strength in
the vertical direction.

kT~/Q"

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
FIG. 5. unr profiles, evaluated from Eq. (28a).

C
S

1.0
2.0
3.0
4.0
5.0

0.676
0.655
0.651
0.650
0.649
0.649



4948 J. P. VAN DER EERDEN 13

-4(2h+v-1)+4 g e " TABLE III. Roughening temperature in several struc-
tures.

+4gsctg (CF$8~EPB+CsslgsEB)-I p. (28ai) Type kTR /P

pair-SOS:

Csea " C OC~ze

f-l f

(I Ic')

(17d'}

Square
(100) sc
(110) bcc
(100) fcc
Triangular
(100) hex '
(100) hex'
(111) fcc

0.568
0.676
0.679
0.694
0.910
1.178
1.179
1.182

0.649
0.664
0.692

1.095
1.122
1.148

-4(h+v —1)+4 Q e " +2v(2 —C, ) '=p, (28b')
' Triangular layers can be packed in different ways to

form one, two, or three nearest-neighbor bonds per atom
between layers.

where 13 runs over all vertical pairs and n over all
horizontal ones. With these equations we evaluated
the results of Table III, again assuming all (d to be
equal. From Table III we see that in general the
horizontal structure determines TR mainly and
that the stabilization from the third dimension is
the largest at the addition of the first vertical
bond. In view of this result (and also on intuitive
grounds} we assume that growth below the rough-
ening transition (nucleation and spiral growth) will
also depend mainly on horizontal bond structures.

Another tendency which is shown in the table is

the closer correspondence between unrestricted
and solid on solid models if the number of vertical
bonds increases. This is another consequence of
the fact that the SOS model is a limiting case of the
unr model, as we mentioned above.
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