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Hydrodynamic modes in the spin-flop phase of an antiferromagnet*
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A linear theory of the hydrodynamic modes in the spin-flop phase of an antiferromagnet is outlined, The
theory applies to systems with weak anisotropy in the basal plane. A variety of dynamical correlation
functions are calculated in the adiabatic limit. The theory is used to interpret recent nuclear-magnetic-
resonance experiments in MnF, by King and Rohrer which show evidence of a low-lying electronic mode near
the spin-flop-paramagnetic phase boundary. The mode is identified as a zone-center magnon which is
coupled to the nuclear spins through off4iagonal components of the dynamic electronic susceptibility
tensor.

I. INTRODUCTION

In a recent paper we have outlined a quasihydro-
dynamic theory for the dynamics of a uniaxial anti-
ferromagnet in a longitudinal external fieM. ' The
theory applied to the paramagnetic and antiferro-
magnetic phases where the magnetization, the
staggered magnetization (when different from
zero), and the field were collinear. In this paper
we extend the analysis to the spin-flop phase. In
this phase the staggered magnetization is perpen-
dicular to the magnetization and the applied field.
An important stimulus for this work comes from
recent measurements carried out on MnF, by
King and Rohrer. ' Using nuclear-magnetic-
resonance (NMR) techniques they were able to
obtain indirect information about the frequency
and linewidth of a low-lying electronic mode. We
will show that our approach provides a natural
interpretation of their experiment, leading to the
identification of the mode as a hydrodynamic
spin wave at the center of the Brillouin zone. In
addition to the interpretation of the NMR experi-
ments we obtain expressions for the dynamical
correlation functions characterizing the various
hydrodynamic variables. It should be emphasized
that the present theory includes only linear terms
in the hydrodynamic equations. Nonlinear inter-
actions among the variables are expected to be
important near the phase boundaries but probably
can be neglected otherwise. Furthermore, even
near the boundaries they should not affect the
qualitative features of many of our results.

Insofar as its hydrodynamic behavior is con-
cerned, a uniaxial antiferromagnet in the flop
phase closely resembles a planar ferromagnet in
a longitudinal field. There is thus some overlap
of our work with earlier studies of the hydrody-
namics of planar magnets. ' Most of these, how-
ever, were limited to zero field. To our know-
ledge previous investigations of the hydrodynamics

II. THEORY

In developing the theory it will be convenient to
work with the normalized variables A, defined by

A, =N, /(N, )N, )' ',
A, —NJ(N N )»~

A, =I,/(M. , M.)"',

(I)

(2)

(3)

(4)

where we have suppressed the dependence on q.
The symbol (a, b) denotes a "susceptibility" inner
product defined by

(a, (t)= I (e"" e "5~)dz —()(a)(b ), t
0

of a planar magnet in a finite field have not in-
vo)ved calculations of the correlation functions,
which is an important feature of this work.

As in Ref. 1 our analysis is based on kinetic
equations of the form proposed by Mori. ' With x
defining the direction of the average staggered
moment and g the direction of the applied field,
the relevant dynamical variables are the trans-
verse components of the staggered magnetization,
Ã„(q) and N„(q) (q denotes wave vector in a Fourier
transform over lattice sites), and the longitudinal
component of the direct magnetization, M,(q). In
addition we must also consider the energy density
E(q). We do not include the momentum density
of the magnons since we assume that the tempera-
ture is sufficiently high so that umklapp processes
bring about rapid relaxation of the quasimomentum.
We postulate that the spin Hamiltonian has approx-
imate rotational symmetry about the direction of
the field so that M,(0) is close to being a constant
of the motion. As will be discussed below this
appears to be a very good approximation in MnF, .
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where P = 1/kT, T being the temperature and the
dagger denotes adjoint. The symbol H is the
Hamiltonian and the brackets refer to a thermal
average.

In the Mori formalism the A, are elements of
a, column vector X which obeys the equation

(f,(t),A, (t')) =0,

while P is a matrix defined by

[0(t));,= g(f„f,(-t))&„. (10)

dX(t) = i (u ~ X(t) — d s y(t —s) X(s) + f (t) .
dt 0

(6)

In this equation 2 is a frequency matrix with ele-
ments

dA; ». Vus

U(( = U, (
= (A),A)) .

Also, f (t) designates a random force which is
orthogonal to X in the sense'

(6)

where V is the inverse of the generalized suscep-
tibility matrix U defined by

Unlike the paramagnetic and antiferromagnetic
phases, ' spin hydrodynamics in the flop phase is
characterized by finite values for certain of the
elements of ~. To see this we make use of the
identity (5 = 1)

*,A) ——-t([A„AtJ) .~

~

Since we have

[N„(q),N, (q)' J = igq, M,(0),

[N,(q), M~(q)t) = ig p~„(0),
where g is the electronic g factor and p. ~ is the
Bohr magneton, we obtain the equation

1V11.+ &2V13 1.3 2 33 l &4 2 34

where n, and z, are defined by

~, =gt .&M.(0)&/[(N„N g(N. ,N.))"',
a, =g Ps(N, (0))/[(N„N, )(M„M,)]"' .

(13)

(14)

We have also made explicit use of the result V„
= V„=5,, This follows from the equation

It should be noted that the diagonal form for I' is

which is a consequence of the fa"t that y and -y
are equivalent dj.rections.

In order to obtain a proper characterization of
the dynamics it is necessary to take into account
the relaxation terms in the kinetic equation. An

approximate treatment of the dampling involves
replacing the damping terms on the right-hand
side of Eq. (6) by the vector -I' ~ V X, where F
is a diagonal matrix. ' The elements of I', I'„,
I'„, I'„, and I'E, characterize the intrinsic de-
cay rates of the corresponding fluctuations and
are expressed formally by an integral of the form4

in itself an approximation. More general I" are
allowed with both diagonal and off-diagonal ele-
ments. However, in view of the uncertainties
about the relative sizes of the elements a more
complicated form for the damping matrix appears
to be an unnecessary refinement at this stage of
the development of the theory.

In the analysis we make the conventional as-
sumption that l „ is large in comparison with

a„a„ I „,I„, and I'E. Since these param-
eters characterize the spin-wave frequency and
linewidth and the decay rate of the energy fluctua-
tions this assumption is equivalent to postulating
that I'„' is the smallest characteristic time in
the problem. Although it is usually not possible
to obtain reliable theoretical estimates of the
elements of I', the consequences of this hypothesis
can be tested experimentally, at least in principle.

The relative magnitude of I'E is also a matter
of importance. If I'E is greater than the spin-wave
frequency, the spin waves are isothermal modes
whereas if the opposite holds the modes are adi-
abatic. As will be discussed below, there is in-
direct evidence in the case of Mnp, which suggests
that the response at q=0 is adiabatic. The wave-



4924 D. L. HUBER 13

dt
A(t—) =i(d ~ A(t) —I' ~ V ~ A(t) . (16)

Equation (16), the principal result of this section,
is the starting point for the analysis outlined in
Secs. III and IV.

III. DYNAMIC SUSCEPTIBILITIES AND CORRELATION
FUNCTIONS

In order to obtain expressions for the dynamic
susceptibilities we make use of the equation'

*t* ( te ) )t* *) f e ' (t) (t) 3'
) )e t (17)

vector dependence of the decay rates I'„and I'„
Ny 2

reflects the symmetry of the Hamiltonian. If there
is perfect symmetry I'„and I'„vary as q', the

g
latter because M, (0) is a constant of the motion,
the former because I'„„(x(N„N, )

' and (N„N, )
varies as q

' for small q. In the absence of exact
rotational symmetry a variation of the form
a, + b, q' is predicted for both I'„and I'„.

Omitting the noise term and utilizing the matrix
I to characterize the damping, we obtain an ap-
proximate kinetic equation of the form

of the A„viz. ,

tt(te)=J e ' ' t((t)et
0

=(i(t) I —i(t)+ I" V) ' ~ A, (18)

where I denotes the unit matrix. Equation (1.7)
then becomes

y„,„(00) = }(„,„—i~([(i(uI -i&0+ r ~ V) ' ~ A], ,A, )

(19)

Equation (19) is appropriate for all values of
the parameters. As was mentioned, in the inter-
pretation of the data on MnF, we are particularly
interested in the behavior when I'„» spin-wave

x
frequency» I'E. As a consequence we will limit
our detailed analysis to this regime. In this sec-
tion we calculate the diagonal elements of the
dynamic susceptibility tensor. These elements
are conveniently represented in terms of the line-
shape functions f„( )(ddefined by

f~, (00) = X'„',„,((d)/3)0)y„, „,. (20)

As a result of the Kramers-Kronig relations the
f„have the normalization property

where we have identified (A, ,A,.) with the static
susceptibility X„.„.. The integral can be computed
by taking the one-sided Fourier transform of (16)
and expressing the transformed variables in terms

(21)

After some straightforward but tedious calcula-
tions we obtain the results

(22)

(23)

w
' " ((u —(00)'+ a' (u)+ (u0)'+ (),' uP+ I's, ' (24)

(25)

In these equations ~„ the hydrodynamic spin-
wave frequency, is given by

U=V '=C. F ~ C,
where

(28)

&0 = (D3/Vll)(Vll 33 l3) ) (26) (29)
and the spin-wave damping L by

(27)

for L«u„which follows from the assumption
that the anisotropy in the basal plane is small.

In order to interpret these equations we make
use of the result that in the small-q limit the
matrix U can be written in terms of the derivatives
of the free energy. ' Vfe have

8 F
ex.ex. '

J
(30)

In (30) we have 3(, , =H,*, x3=H,*, x H3„dan
x4= 7 with H* denoting the staggered field and H,
the uniform field, all thermodynamic derivatives
being evaluated with H*=O. (Strictly speaking,
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when there is rotational symmetry about the z
axis X» as well as y» diverges as q-0. Since

X X

all real magnetic systems are anisotropic to some
degree their susceptibilities are finite in the
small-(I limit. )

From Eqs. (28)-(30) we have

(31)

Using standard thermodynamic analysis' we can
express the matrix 5 ' in terms of the second
derivatives of the internal energy with respect
to the extensive thermodynamic variables con-
jugate toH„*, H„', H„and T. We have

(32)

where X,=Z„, X, N„X,=M„and X,=S (S being
the entropy), while the two thermodynamic energies
are related by

(33)

From Eqs. (28}-(32)we have

(34)

(35)

terms: a fast relaxation term with relative
weight Vyy and linewidth Vyylg, a thermal decay"
term with width I'~ and relative weight U,'4, and
a spin-wave term of relative weight 1 —V,,'- U', 4.
The fast term characterizes the decay of the spin
fluctuations at constant magnetization and entropy,
the spin-wave part a decay at constant staggered
field and entropy, and the thermal part a decay
at constant staggered and uniform field.

Equation (23) contains only spin-wave terms.
The thermal term is absent because Ã, and hence
sNgsT are equal to zero. On the other hand,
SM,/B7' is in general different from zero. As a
consequence there is a thermal term in f„,of
relative weight U,', . Finally, Eq. (25) shows that
the energy fluctuations relax at a rate which is
independent of the dynamics of N„, N„, and M„
provided I'E is the smallest characteristic fre-
quency.

Equations (22}-(24) are potentially useful in the
interpretation of inelastic-neutron-scattering
data. They are expected to be valid throughout
the spin-flop region as long as I."„V„»~,»6, FE.
Near the spin-flop-paramagnetic phase boundary
nonlinear terms in the hydrodynamic equations
become important. Nonlinear processes may
affect the relative weights of the different terms
in (22) and (24). In addition they will influence the
temperature dependence of the decay rates,
which would follow the conventional theory of
critical slowing down were the linear theory exact.

BH, „&H, (36)
IV. NMR STUDIES IN MnF,

V, ,'(V„V„—V,', ) (') ( ')=. (37)

As a consequence of (37) Eq. (26) can be written

', =(((3 N, V/()7 )))(„,,
g g+, Sx '

(38)

a result analogous to that obtained for the planar
magnet. '

Thus when I'~«co, the square of the spin-wave fre-
quency is inversely proportional to the adiabatic di-
rect susceptibility at fixed staggered field, whereas
in the opposite limit it is inversely proportional to
the isothermal direct susceptibility. Likewise the
term involving I'„ in the equation for 6, is renor-
malized by the ratio of isothermal to adiabatic
direct susceptibilities whereas were the response
isothermal there would be no renormalization
factor.

Equation (22) is seen to contain three types of

In the work described in Ref. 2 the "FNMR in
MnF, was investigated. In a configuration with the
oscillating field parallel to the z axis a strong res-
onance was observed in the flop state which was
characterized by a phase that underwent a contin-
uous change through nearly 2m as the temperature
was lowered below T,. The amplitude showed a
broad maximum about 1 K below the transition
temperature, dropping rapidly to zero at T,. The
authors interpret their results in terms of a reso-
nant enhancement model in which the frequency of
a low-lying electronic mode coupling to the rf field
passes from above the nuclear resonance frequency
co„ to below ~„as the transition is approached from
the low-temperature side. By using the Bloch equa-
tions and the NMR enhancement factor given by
molecular-field theory, they were able to infer
both the frequency and the linewidth of the elec-
tronic mode.

In this section we will outline an interpretation
of this experiment based on the hydrodynamic
model developed in the preceding sections. We
will show that the electronic mode seen indirectly
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in the NMR experiment can be identifed with a hy-
drodynamic spin wave whose frequency is given by
Eq. (38).

The coupling of the nuclear spins tothe electronic
system is through the hyperfine interaction. If we
neglect the "back reaction" of the nuclear system
on the electronic spins we can view the hyperfine
coupling as an effective field acting on the nuclei.
It is the rf component of the hyperfine field per-
pendicular to the direction of the total (external
plus hyperfine) static field which is responsible
for the enhanced absorption. Immediately below
T„as in the paramagnetic phase, the total static
fieM at the nuclear sites is parallel to the z axis.
As a consequence it is the oscillating component
of the hyperfine field perpendicular to the z axis
which is induced by an rf field parallel to the z
axis that causes the absorption near the phase
boundary.

In terms of the variables N and M the transverse
hyperfine field at a nucleus coupling isotropically to
spins on the A sublattice is proportional to M+ N,
whereas were the coupling to the Bsublattice it would
beproportionalto M —

¹ Of the components of M~
and N~ only N, has a finite thermal average in the flop
phase. As a consequence all the static off-diagonal

susceptibilities of the form X»„,and ~», vanish ex-
cept y„,„,. Hence the effective transverse rf field
which is induced by a spatially uniform oscillating
field of frequency ~„along the z axis is determined
largely by the q = 01imit of the off-diagonal electronic
susceptibility y„„„,((d„).

We can obtain an approximate expression for
g„,„,((d„) from Eq. (19)evaluated in the limit I'„
» co„I'~, &. The magnitude of I'~ relative to ~,
and & is somewhat of an open question. Estimates
of p and & given in Ref. 2 are ~p ~ & = 2- 6 6Hz.
To our knowledge there have been no direct mea-
surements of I'E' at q = 0 in MnF„which we iden-
tify with the electronic spin-lattice relaxation
time T,. However, indirect information about the
relaxation time can be obtained from ultrasonic
attenuation data. ' For MnF, these lead to the esti-
mate T,=3X10' sec for T=T„H,=O. ' Adopting
this value for the relaxation time in the flop phase
we obtain max((d„h)T, ~ 40. As a consequence the
response of the system at q=0, co=cup appears to be
adiabatic, so that the limit l ~ «~„b, is probably
justified.

In the low-frequency regime ~„«I'„ 1/'» we ob-
tain from Eq. (19) the expression

(39)

aSSuming &«(do. FOr (d„=(do»1/T, Eq. (39) re-
duces to

thermal counterparts of (27) and (38):

(do' =( gP, sN„) (42)
eP, (d, (1 —U„U~U„')

~

~

eN„ g COp

BH &4 & ((d„—(do —fn)

the last step following from the thermodynamic
identity

(40)

U y4 U34 py3 (41)

Equation (40) indicates that the enhancement
factor for the NMR is proportional to the off-di-
agonal adiabatic electronic susceptibility. That
it is the adiabatic rather than the isothermal sus-
ceptibility is a consequence of the assumption
I'~ «cop. Were the inequality to go the other way,
i.e. , I'~» ~„ the enhancement would be propor-
tional to (SN„/SH, )s~ r while the spin-wave fre-
quency and damping would be given by the iso-

tan%, =X'/X = &/(~. - ~„), (44)

which is the form hypothesized in Ref. 2.
Strictly speaking, when the spin-wave mode is

overdamped, as occurs very close to T, in MnF„
Eqs. (40) and (44) have to be modified to include
contributions from both the resonance and anti-
resonance terms In the c.ase of (40) the modifica-
tion takes the form

hfs( n+ Fv) + o (45)
(do —(do + o( ))( + s)+T))r

& = k(1'))), + I's,) (43)

Also of interest is the phase lag of the electronic
system Q, defined by the ratio
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where

(46)

From (46) it is evident that in the limit &u, -0 the
dependence on I'„disappears leaving

8177„1g,~
BH ~ r" +i&a '

Hg, S Ng tf

(47)

X»,»,(~„) i(BN„/BH, )„~,
X»,»,(~„) [(N„,N„}(BM./BH. )„~,]"" (49)

for e„=~,. In the overdamped case we find

g»» (a&„) i(BN~/BH, )»+»[uo+ I"» (it@„+1'» )]

X»», (&n) gp, ~N, ~„

(6o)

when u&„» 1/T, .
It is beyond the scope of this paper to consider in

detail the temperature dependence of the various
parameters appearing in the expressions for the
susceptibility. However, we point out that theory
(and experiment) indicates that BF,/BH, is large
near the phase boundary and zero in the paramag-
netic phase. The interpretation of the temperature
dependence of the frequency and linewidth is made

which is the Debye approximation to a nonresonant
susceptibility.

When ~„=~,one has also to consider the y com-
ponent of the rf hyperfine field, which is deter-
mined by }(»+ (&v„}. From Eq. (19) we obtain the
result

igp, ~N„(d'„

(&u„i/T, }-(&u„—&a, i d)—(&u„+ &u, in, )—
'

(48)

The off-diagonal susceptibility }t»»,(&u„) vanishes
in the static limit. On the other hand, when ~„
=re, y»», (&u„) and }(»,»,((u„) behave similarly. With
Eqs. (40) and (46) we have

complicated by the fact that the small but finite
value of v, at q=0 is indicative of a weak anisot-
ropy in the basal plane. As a consequence the
characteristic frequency of the q = 0 mode in the
critical region will not have the scaling proper-
ties of the characteristic frequency of a hydrody-
namic mode in a system with perfect rotational
symmetry about the z axis, where co, o(- q at long
wavelengths.

In the interpretation of the data given in Ref. 2

co, extrapolates to zero at T„whereas & remains
finite. From Eqs. (2V) and (36) it is evident that
such behavior is consistent with (BM,/BH, )„*»
and (N„,N, ) remaining finite as T- T, Gen.eral
thermodynamic arguments" indicate that (BM,/
BH,}»* ~ is finite along a line of antiferromagnetic
critical points, although singularities are possible
at isolated points, e.g. , the bicritical point. In
contrast (BM,/BH, )»+ r has a specific-heat-like
singularity in a finite field. " As mentioned, the
finite value of (N„N, ) is a consequence of the an-
isotropy in the basal plane. Thus it appears that
the ratio of }(»„(&o„)to y»» (&o„) [Eqs. (49) and
(60)] is likely to be much greater than 1 so that
the y component of the effective rf field can prob-
ably be neglected as a first approximation.

Our final comment concerns the question of adi-
abatic versus isothermal response. It is our
opinion that a definite answer to this question re-
quires additional experiments. A possible ap-
proach involves the measurement of }(»» (&u„) at

Z
low frequencies. '~ According to Eq. (24} if the
adiabatic limit is appropriate there will be a ther-
mal part in X» of relative weight U„' and width
1/T, On the oth. er hand if the isothermal limit is
appropriate this term will be absent.
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