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The Larkin-Khmelnitskii theory of uniaxial ferroelectrics is used to derive further pre-
dictions for the critical behavior of ferroelectrics, including 'cvocal properties" and trans-
port properties. Special attention is paid to the experimental observability of the predicted
logarithmic correction terms. In particular, inthe expansion of the electric field 8 in powers of
the dielectric polarization P, i.e., E=PZ j'» (T)P ', the temperature dependence of the co-
efficients f& «(1 n(T/T, -i)( ' andf4 «(T/T, 1) '((ln(T-/T, —1)( 4/tisobtained, deviatingsig-
nificantlyfrom�f2=cons and f4=const of the simple Landau theory. We argue that the nonan-
alytic behavior off2 could be measured more easily than either the logarithmic correction in

fo «(T/T~ 1) [ln(T-/T~-1)( t ~ or the specific-heat singularity C «(ln(T /T -1) jV~. We show
that recent experiments on tri-glycine sulfate by Ehses and Muser are in good agreement
with our predictions. Moreover, we calculate the temperature dependence of the critical con-
tribution to the Debye-Wailer-factor exponent W which corresponds to that of the electron-pa-
ramagnetic-resonance linewidth in the "slow-motion regime. " We find W«;t ~(T/T, -i)
x

~ ln(T/T, -1)( i ~ above T~ and g'«, q «(1 T/Te t -ln(T/T, -1)( ~3 below T, . A reinterpretation
of available experiments is suggested. Finally, we obtain the temperature dependence of the
critical contributions to the dc electrical resistivity ((; both for ferroelectrics and other
structural phase transitions. While dp/dT is shown to have the same singularity as the
specific heat in ferroelectrics both below T, and above T, we obtain in the other cases
dp/dT 0(:(i-T/T, ) " for T &T„anddp/dT(x C~(T/T, -i) for T )T„where P is the order-
parameter exponent. A discussion of a recent experiment in SnTe is given, and our results
for the electrical resistivity of semiconducting ferroelectrics are compared with those for
ferromagnets and antiferromagnets.

I. INTRODUCTION

The basic theory of the critical behavior of uni-
axial ferroelectric materials like tri-glycine sul-
fate (TGS), etc. ' or anisotropic ferromagnets with

dipolar interactions like LiTbF4, for instance, ''
has received considerable recent attention. ' ' The
reason for this interest comes mainly from the
renormalization-group approach"' "which showed
that for uniaxial systems with dipolar forces the
dimensionality d =3 is a "marginal dimensionality"
d*: i.e., for d &4*"classical" critical behavior as
predicted by the Landau theory" of phase transi-
tions applies, for instance, the exponents of the
order parameter and the associated susceptibility
are P = ~ and y = 1. For d ~ 4* fluctuations neglect-
ed by the Landau theory lead to a different critical
behavior: For d(d* the exponents are distinctly
nonclassical and scaling theory' applies. " At d
=d*, however, classical exponents are found to-
gether with fractional powers of logarithmic fac-
tors as multiplicative correction terms, such that
simple scaling behavior does not hold. ' ' %'hile
the renormalization-group approach rests on ap-
proximations for d& d~, exact solutions of the re-
normalization-group equations are possible for d
=d*, and further details like critical amplitude

ratios, etc.' can be worked out. Obviously, ex-
perimental studies for d =d* would be an extremely
valuable check on our modern understanding" "
of phase transitions and critical fluctuations.

Unfortunately, for standard critical phenomena
in usual magnets, fluids, critical binary mixtures,
or structural phase transitions, d*=4 and thus
unaccessible to any experimental study. " Tri-
critical phenomena" where d*= 3, too,"involve a
larger number of critical parameters, and thus a
meaningful comparison with experiment is much
harder. On the other hand uniaxial ferroelectric
systems, to which the original theory of Larkin
and Khmelnitskii is addressed, were usually'"
interpreted entirely in terms of standard Landau
theory or its ramifications, ' without any loga-
rithmic corrections due to fluctuations. Thus the
only experimental example where these logarith-
mic effects have definitively been observed' is the
specific heat of LiTbF„while already studies of
its order parameter and susceptibility gave ambi-
guous results, ' as well as the measurement of
specific heat" and thermal expansion" in ferro-
electrics.

In view of this unsatisfactory situation, we re-
examine in the present paper the critical behavior
of uniaxial ferroelectrics on the basis of the Lar-
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kin-Khmelnitskii theory, 4 calculating the critical
singularities of additiona/ properties which h" ve
not been considered so far.4 In Sec. II we con-
sider the critical singularities of the expansion co-
efficients of the free energy in terms of the order
parameter and compare it to a recent experiment
of Ehses and Mouser. " In Sec. III we extend our
previous analysis of the Debye-Wailer factor at
structural phase transitions ' to derive the ap-
propriate logarithmic correction factors. Section
EV then contains a treatment of the electrical re-
sistivity of (semiconducting) ferroelectrics, which
has recently been shown experimentally" in SnTe
to have a critical anomaly. While our starting
point is similar to the theory of de Gennes and
Friedel" and Fisher and Langer~ for the critical
electrical resistivity of magnets, our treatment
allows for a simple comparative discussion of both
ferroelectrics and other structural transitions and
avoids pitfalls which have hampered the treatment
of ferromagnets" "and antiferromagnets. "
Therefore, we present a unified treatment of these
magnetic cases along similar lines in an Appendix.

II. EXPANSION COEFFICIENTS IN THE EQUATION
OF STATE

Here we are concerned with the free energy
F(T, P) of a uniaxial ferroelectric" as a function
of the order parameter, the dielectric polariza-
tion P in the direction of the preferred axis, in
the vicinity of the critical temperature T,. Since
it is important not only to detect deviations from
classical Landau theory but also to show that they
are not of the type as predicted by a usual scaling
treatment, we discuss the expansion of F(T,P) in
powers of P both from the point of view of scaling
theory" and Larkin-Khmelnitskii theory. '

First we note, from general thermodynamics,
that the electric field E (or more generally, the
variable conjugate to the order parameter) is
given by

sF(T, P}
BP

and that Z has an analytic expansion" in P for all
temperatures T+ T,. Since we have invariance
with respect to a change of sign of both F. and P,
this expansion reads

E =Pf(P, T)-
=P Q f2)(T)P"

=P[fo(T)+f8(T)P +f4(T)P + ~ ~ ],
where f,(T) is the standard inverse susceptibility
and f,(T), f~(T) are the functions on which attention

f,(T) =f:.+f»(T. -T)+"

f,(T) =f, +f„(T,-T)+ "
From these expressions it is already clear that
any logarithmic corrections to the zero-field sus-
ceptibility Xo ~fo

' and the order parameter
~( f,/f, -)'i' will be masked by the leading power-
law critical behavior. In f2, however, a logarith-
mic term would be the leading singularity, similar
to the behavior of the specific heat, 4 and will thus
be easier accessible by experiment. "

First we obtain the temperature dependence of
the f„(T}as it would be predicted from scaling
theory. '~ In the homogeneity assumption
(e =T/T, ——l) the most singular part of E is given
by

E=XO Pf(P & ) Xo=XO&

We expand the scaling function

f (») = l +(f,/X, )» +(f,!X,)»'+"

(4)

for small arguments to obtain, using the exponent
relation" 5 = 1 +y/j3,

f (T) f &Y-&8 f (T) f &8(S-8)

While this treatment does not make a prediction
concerning the magnitude of the critical amplitudes

X„f„f„.. . , the rather generally accepted ex-
ponent estimates for three-dimensional uniaxial
systems 'y= 1.25, 5 =4.8, 8=0.32 implythat
X, '~e'", f,(T)~e'", f,(T)~e '". Thus, dras-
tic deviations from classical behavior are ex-
pected boih in f,(T) and in f,(T) but not in f,(T)

Next we derive the temperature dependence of
the f„(T)as it follows from Larkin-Khmelnitskii
theory. 4 Rather than starting from the original
approach" it is more convenient to use the equiv-
alent results of Bervillier, ' which we rewrite as
follows (a, b, and g are phenomenological con-
stants):

E =a(eP + -', gP'),

P =bP(ln(e +'zga'P ))

(6a)

(6b)

These equations beautifully demonstrate that the
classical Landau expansion is valid only in terms
of a "renormalized" order parameter P, which
differs from P due to a logarithmic correction
factor accounting for fluctuation effects. From
Eqs. (6) we find by straightforward Taylor expan-
sions

is focused in the present paper. Classical Landau
theories require the f„(T)to be analytic also in
the variable (T, T-), i.e.,

f.(T) =f.g(T, -T)+ ",
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E = abPe [Ine (

+ 'ga-bP'(inc) '((& +a')lne) 't')

+ —,', g'a'bP'(I/e)(inc( 't'

&& (-—,'a'+b fine]
' '+3a flue] ')+ ~ ~ ~ . (7)

From Eq. (7), one immediately obtains the stan-
dard' result y,

' ~ e [lne
~

't' and the new results,
to leading order,

f,(T)~(inc( ' =0,
(8)

f,(T) o-e '~inc
~

It can be shown that the inverse of the susceptibil-
ity &t

' =—BE/BP is nonzero for ga'P'/2e « I, where
this expansion is valid, although the leading term
of f,(T) is negative.

These findings imply that while f,(T} is hardly
different from the classical Landau prediction,
the deviations of f,(T) and f,(T) are clearly more
pronounced, since f,(T) should go to zero at T,
rather than staying constant, while f,(T) diverges
strongly. The latter prediction is also qualita-
t:ively different from Eq. (5).

It turns out that these predictions are in very
good agreement with recent measurements" on
TQS, where both f,(T) and f2(T) have been recorded
for 6x10 4se c 3x10 ' with rather high precision,
and also some qualitative features of f,(T) can be
inferred. " These authors' find good agreement
with the Curie-Weiss law f,(T) cce, with a small
dec~ease of the Curie constant which was fitted"
by a power law c'". Obviously, this decrease
can be attributed to the (Ine (

't' correction as
well. The coefficient f2(T) is fitted as~0 eo', but
Fig. 1 demonstrates that the data are very well
consistent with the predicted ~inc

~

' behavior of
Eq. (8). Moreover, the data on f,""(T, P )
= f,(T}+f,(T)P'+ ~ ~ vs P' show that the initial
slope of f'," increases strongly, as T, is ap-
proached, again in qualitative accord with Eq. (8).
All these observations fit nicely in the pattern of
behavior as deduced from the Larkin-Khmelnitskii
theory, but are quite inconsistent with the be-
havior according to the scaling theory [Eq. (5)].
In Ref. 20, ad hoc explanations of the data have
been attempted introducing additional intrinsic
fields the physical origin of which seems some-
what obscure to us. Moreover, no explanation
whatsoever could be given for the temperature de-
pendence of the new parameters" near T, . We
feel that these ad hoc explanations should be aban-
doned, since their spirit is that the behavior of
ideal ferroelectric materials should be strictly
classical, "which is incorrect.

III. LOGARITHMIC CORRECTIONS IN THE DEBYE-WALLER

FACTOR (DWF)

We consider the exponent W„(Q)of the DWF for
the ~th sublattice of a ferroelectric. To leading
order in the momentum transfer g of the scatter-
ing, we have"

(Q}
— ln(e~o G(K O}

= 2 Q ' (U(K, l)u(», l)) ' Q + ' ' (9)

where u(», I) is the displacement operator of a
lattice particle (ion) on sublattice» in the lth unit
cell. In evaluating the thermal averages ( ~ ~ } in

(9) it is convenient to separate the spontaneous
static disPlacements in the cells representing the
distortion to the low-temperature phase taking
place at the ferroelectric ordering and the accom-
paning change of lattice symmetry. This may be
achieved by introducing an operator Q(»l) which is
measuring displacements relative to the equilib-
rium positions R(»l) of the undistorted phase and
whose expectation value (P(»l)} represents a
static displacement, i.e.,

P(»l) = (P(»t)}+u(»l)

= (Nm„)-'&2g e~(»q)A'(q)" ~ "&"'& (10)
qj

In (10) e~(»q) denotes the polarization vector of the
jth phonon branch with wave vector q, m„is the
mass of the lattice particle at the ath sublattice.
We have N unit cells and A~(q) is the phonon nor-
mal coordinate operator. Above „T($(l»))—= 0,
while below T, a soft mode of polarization jo and
wave vector" q, "freezes in" giving rise to

(Q(»t)} = (Nm„) 't'e'0(»q, )(A "(q,)}e"0' &"'&

x0.
Apart from constant factors, the macroscopic
dielectric polarization P is then expressed in
terms of the expectation value of the normal co-

I I I I I
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FIG. 1. Inverse expansion coefficient f 2 (T) plotted
vs In(7'/T, -1). The points are data on TGS taken from
Ref. 20. While Landau theory predicts f 2'(T) to be in-
dependent of T in the regime of temperatures shown, Eq.
(8) predicts linear variation off 2 (T) with In(Z /T, -1).
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ordinate operator in the limit of an infinitely
large crystal by

N- t2&A&0(q )) (12)

i.e., the leading singularity of the DWF ma, y be
related" to the critical behavior of the internal
energy U and the order parameter P. From the
renormalization-group calculation'

&u'},„("P [(A 0(q)A'0(-q)) P'5-, -q ]. (13b)

Following the arguments given in our previous
work, "the critical part of the internal energy
U =&X) = T'[a(F-/T)/aT]~ is also expressed in
terms of a correlation function bilinear in the
normal coordinates of the j0th phonon branch:

&K)„;,= P v'"(q)(A'()(q)A'o(-q)). (14)

It is important to note that the effective potential
v""(q) is nonsingular as a function of e. The sin-
gular behavior of both the specific heat and the
DWF exponent arises from the behavior of the
correlation function in the regime of small K
=~q-q, ~. Hence it is legitimate to approximate
Eqs. (13b} and (14) in replacing the summations
by integrations over q up to some cutoff, K & q, .
Since the main contribution to the integrals does
not come from the limit K - 0 but comes from the
vicinity of the cutoff, we may replace v' (q) by
v"'(q, ), noting that v'""(q,}e0 and v""(q) varies
only slowly" with q in the vicinity of q, . Hence
the critical singularities of both quantities are
still described correctly by

From Eqs. (9)-(12) we note that the exponent of
the DWF may be written as

~.(a) =-'a [&e(«)7(«)}—&7(«))&e(«)}] 4
=(2@m„)'Q IQ. e'(~q)l'

qf

x[&A'(q)A'( q)) P'5„5-„;],
(13a)

i.e., its critical part is given by the critical part
of the mean-square sublattice displacements:

F„„(T,P =0) = ——,'a'e'~-', Inc ~'"

and the Larkin-Khmelnitskii approach4

P,„., "(-e)'t'[In(-e))'t',

(16a)

(16b)

IV. RESISTIVE ANOMALIES AT STRUCTURAL PHASE
TRANSITIONS

combined with Eqs. (15), it readily follows that
the DWF singularity of an uniaxial ferroelectric
is given by

&u'),„,=&u')r C,-e(Inc~'t' for T& T„(17a)

&u'), »(=&u')r, +C,e~ln(-e)~'t' for T&T, , (17b)

where &u')r, C, and C, are positive constants.
Equations (17) describe a cusp, whose tempera-
ture dependence will resemble a linear variation
with e near T, (but different slope above and be-
low T,) very closely. Measurements on" ferro-
electric Ge,Sng Te and" BaTiO, which seemed
to give more pronounced singularities have to be
considered with great precaution, however. More
recent work on" BaTiO, and" SrTiO, (where the
exponent of the anomaly below T, yields a much
more rapid variation with temperature") failed to
exhibit these critical singularities. Since one
must expect" that C, ,/&u')r « I and numerous
sources of error have to be considered' in the
analysis of experimental data on the DWF, it
seems unlikely to us that one can obtain the log-
arithmic corrections in Eqs. (17) experimentally.
The same pessimism applies to the critical con-
tribution of the isomer shift, which is expected'
to vary ~&3C)„;,both below and above T„aswell
as to the EPR linewidth in the "slow-motion re-
gime, " whose critical temperature dependence is
identical to the behavior of the DWF."

«&.„("v'"(q. ) d'q&A"(q}A"(-q)),

(15a)

(15b)

Our discussion of the electrical resistivity at
structural phase transitions may conveniently be
based on a somewhat more general formula for
the resistivity tensor" p 8 expressed in terms of
a two-point correlation function of time derivatives
Ja and 2, of current operators (a, S =1, 2, 3):

2 &fan
1'

p a=, limRe dte'" dX&Ja(0)J (t+i X)}-
8 tl C0 0 0 e Seff7-

(18)

(Ima&0) being interpreted, however, analogous to
the elementary relaxation-time expression.
Therefore, on the right-hand side of Eq. (18), e
is the effective charge of the carriers, m, ff ls

their effective mass, and r ' denotes the scatter-
ing rate from phonons, defects, etc. Anomalies
in the electrical resistivity of semiconducting
ferroelectrics (or antiferroelectrics, etc.} may
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arise from two sources:
(i) The new lattice periodicity below T, which

causes superzone gaps in the electronic band
structure may lead to a reduction in the effective
number of carriers n, ff as compared to its value
in the disordered phase n~, and hence may imply
an increase of the resistivity. In the case of
ferro- and antiferromagnets and order-disorder
transitions it was predicted that4'4'

n, « =n~[1 -n(-e) ], T «T, (19a)

while taking into account thermal smearing of the
electronic band gap44 would lead to" "

n, « =nD[l -n'(-e } ], T «T, (19b)

where n and n' are constants. We expect that a
behavior similar to Eq. (19b) may occur as well
in a ferroelectric.

(ii) Owing to the soft phonon mode (s) a critical
anomaly occurs in 7 '. It is this second effect
which we will consider here in more detail.

The scattering rate r,&' of carriers (e.g. , elec-
trons) from phonons may be obtained according to
Eq. (18) by first determining the time derivative of
the electron current density operator, i.e.,

from the corresponding equation of motion, i.e.,
i'„(rf)=[Z.(rf), ff, ,g.

To this end, we approximate the Hamilton opera-
tor of the electron-ion interaction by the well-
known Hamiltonian describing the electron-phonon

BV
v. ,„»)=-P( (

-( ))) u((r).
l ff

(20b)

Evaluating then the correlation-function expression
of (18) further in the first Born approximation
amounts to calculating the double-differential
cross section for the electron-phonon scattering.
Thus, we calculate matrix elements of (20b) in
the first Born approximation, treating the elec-
trons as free, restricting only their momentum %

to lie within the Fermi sphere (k&k»). Introducing
the Fourier transform V(q} of the potential V(r -R)

V(q) -=fa'r r -""V(r ), (21)

we obtain

&&IV. ,„I&'&=-iu(q) qV(q), (22

where q % -%' is the momentum transfer of the
scattered electrons, and we have used the abbre-
viation

u(q) -=g (Nm„) '~' g e'(«q)A (q) .

inter action4':

OV
H, »„= — dsr g [

— u(l«)))) (r)(l)(r} .

(20a)

Here V(r —R) denotes the effective interaction
potential between an ion at R and an electron at
r, and ()) (r) [(i)(r)] is the electron creation (anni-
hilation) operator. 4' Thus the interaction potential

ph between a single el ectron at site r and the
displacement field u(la) reads

The double-differential cross section then reads

(22)

(24a}

IV(q)l'p &flu(q) qlf&&flu*(q) qli&p 5(~+(e -e )/ )
if

where I(() is the energy transfer in the scattering, li &, l f& denote initial and final state of the phonon

system, e, and e& the respective energies, and P& is the thermal occupation number. In practice only
electrons with 0 =k& contribute significantly to the scattering, and therefore the quasielastic approxima-
tion k'=k is appropriate, which yields [note u*(q) =u(-q)]

2

Vq ' p&i uq ~ q u-q ~ q i,
which may be written as

2

Vq m„'q. e' ~q ' A' qA' -q -P'6jj 5Q q

jx
Now the electrical resistivity [Eq. (18)] can be found in terms of d«/dQ as" "

sym m «k» ~ (1 )do
~ jeff jeff jeff

(24b)

(25)

where the scattering angle is II = (8, (1)). In the quasielastic approximation we have sin8 =q/k», d8 =dq/k»,
0&q& 2k», 1 —cos8= —,'(q/k»)', and hence
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2 2' 3d
p

E fr v
rI '7

I
yq)I2

e jeff 2m~ 0 k~

x p I q e'(qs) I'[(A '(q)A'(- q) ) P—'5» 5(q —q, )) . (26a)
PK

In ~~der to make the similarity of Eq. (26a) and Eqs. (15) as transparent as possible, we rewrite Eq. (26a)
as follows:

pcrit~+eff dqq Vq A qA0 q) P p q qo (26b)

In a simple ferroelectric, q0=0 and the q' con-
tribution of the integrand eliminates the contribu-
tion proportional to P' below T, . The dominating
contributions of Eq. (26b) are then of the same
type as Eq. (14) and hence"

p„;,~ Ie I I inIe I I

'f ' both at T (T, and T )T
„

(27)

disregarding a possible stronger temperature de-
pendencedueto n,«' [Eq. (19}].The situation is dif-
ferent in an antiferroelectric with q, c 0, however,
where the contribution proportional to the order
parameter is not canceled, since then Eq. (26b)
may be reduced to

x d'q [(Ai'(q)A~o( q)} P25(q q, )]

(28)

A critical anomaly in the electrical resistivity has
recently been found in the ferroelectric" SnTe.
These authors ' assumed that the anomaly should
be described by p,„,cc Ie I

', which would be a much
stronger singularity than that of our Eq. (27}. In-
spection of the raw data (Fig. 1 of Ref. 22) readily
shows, that p obviously does not diverge at T„
but has a rather small cusp there only, as pre-
dicted by Eq. (27). It is unclear to us if the accu-
racy of the presently available data" is sufficient
for a more quantitative comparison, however. In
view of the fact that the similarly weak anomalies
at magnetic transitions (cf. Appendix) have found
extensive experimental attention~ and high-preci-
sion techniques for resistance measurements are
available, similar careful work in ferro- and
antiferroelectrics is suggested.

Finally we consider structural transitions where
a transverse acoustic mode goes soft at q =0.
Then Eq. (29) and (26b) yield

since the critical contributions come from the
region where K=q-qo is very small. There we
may use the expansion" ((ccIeI ")

petit cc Iq I

ct

4T C '

V. CONCLUSIONS

(31)

dp
dT C (30a)

dpcrit ~ ( ~)2S-t
dT C ' (30b)

(A tr(q)A'c( q)}

=C,X ""+C (K$) " "r" sgn(1-T/T, )+

K (» 1 (29)

where v is the critical exponent of the correlation
length $, and ti describes the decay of correlation
at T, The leadi.ng term of Eq. (29) gives rise to
a constant, when one works out the integration in

Eq. (28}; this constant depends on the cutoff q„"
and can thus not be obtained reliably. The next
term gives rise to a Ie I' singularity both above
and below T, . While above T, this is the leading
singularity, the term proportional to P' cc (-e)ms
is more singular below T, for T -T, and hence we
find

In the present investigation, we have emphasized
the fact that the Larkin-Khmelnitskii theory of
uniaxial ferroelectrics is very important for the
general theory of phase transitions and critical
fluctuations, and hence a comparison between
theory and experiment is highly desirable. Pre-
vious work, which was directed towards detecting
the logarithmic corrections to Landau theory in
the specific heat [tx IlnIeII'i'~], the susceptibility
[~ Ie I

'I InIe I I'i'], and the order parameter
[~(-e}'i"IIn(-e)I'~'], has been inconclusive, how-
ever. Therefore, we consider other quantities
which may exhibit critical anomalies at T„like
higher expansion coefficients in the equation of
state, Debye-Wailer factor, and electrical re-
sistivity, and calculate the corresponding loga-
rithmic correction terms. We point out that the
most promising "candidate" for seeing such an
anomaly is the expansion coefficient f,(T) cc

Ilute

I

'
in the expansion E =P[ f,(T) +f,(T)P'+ ~ ~ ], for
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several reasons:
(i) In Landau theory, f2= const similar to the

specific heat. Hence it suffices to find the leading
critical behavior, in contrast to susceptibility or
order parameter.

(ii) The power of the logarithm is three times
larger than in the specific heat, and hence the
effect must be visible over a much more extended
temperature interval. This fact is important since
in real crystals rounding phenomena due to imper-
fections, etc. always occur which may obscure the
singularity in the specific heat.

(iii) While in the specific heat the large back-
ground due to ordinary lattice vibrations at the
rather high critical temperature —in contrast to
the magnetic case, where an anomaly was actually
observed' —makes measurements difficult, there
are no such background problems in dielectric
measurements.

Moreover, we point out that an experiment
which exhibits this anomaly exists already, and

reanalyzing the data of Ehses and Miser on TQS
we obtain good agreement with our predictions.
Studying also the behavior of f,(T) and f~(T), we

find at least qualitative agreement, while the data
can hardly be accounted for either by conventional
Landau theory or by scaling theory.

We then proceed to obtain the critical contribu-
tion to the exponent of the Debye-Wailer factor
(as well as to the EPR linewidth in the slow motion
regime) as being given by

dp/dT&)-e above T, and dp/dT~a' ' below T,
at other structural transitions), we argue that
high-precision techniques should allow for taking
temperature derivatives in this case, and show
that measurements by Kobayashi et al. are in
qualitative accord with the theory. Further mea-
surements are suggested.
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APPENDIX: RESISTIVE ANOMALIES AT MAGNETIC PHASE

TRANSITIONS

In order to assess the validity of our treatment
of the electrical resistivity of ferroelectrics in
Sec. IV, it is important to apply it in analogous
manner to the case of magnetic transitions, where
an extensive literature already exists. ' "" Fur-
thermore, our approach enables us to clarify
some of the contradictory or erroneous results ob-
tained there. ""

Following de Gennes and Friedel, "we assume a
contact interaction between the electrons of the
conduction band and the spine S(l, K) which contri-
bute to the magnetic ordering,

d y'Q 5 r — lK)

and by

'"'
CC (ln(-e}[')" for T & T, .

Since the accuracy of existing measurements is
not very high, and can hardly be improved sub-
stantially due to various intrinsic difficulties, it
is not possible to take reliable temperature deri-
vatives, however.

We finally develop a general theory for critical
anomalies in the electrical resistivity, general-
izing also earlier approaches at magnetic transi-
tions, pointing out errors inherent in the earlier
work (cf. Appendix). While the anomaly which we
predict is of very weak nature similar to that of
the exponent of the DWF (dp/dT &&&- [In[e [

~'~3 both
for T & T, and T & T, in a ferroelectric, whereas

tfC

~ [S(lK) —(S(lK))] S. ,

the Fourier transform of which is simply
[5f(IK):5(lK) —(S(lK))]:

(A2}

(k
i V, , ik') = —G Q R(lK) S,e" """&

tlat

(A3)

and the result analogous to Eq. (23) thus reads

x%(lK) &l)~(r)o„.p, , (r), (Al)

where G is a coupling constant and 5,(r)
—=g,(r)5„.$,.(r) the spin density operator of the con-
duction electrons [S,—= (o'„.): Pauli spin matrices].
Scattering of electrons is then caused by the poten-
tial

(A4)

where ~i), ~ f ) now also contain electronic spin states. In &Iuasielastic approximation we find, performing
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the trace over the electronic spin states:

G' v' [&%(00) s(IK)) —(S(00))~ &s(IK))]e«'"""
dA 2' (A5a)

which may also be written as (the order parameter in this case is M=+,„(S(lv})exp[fq, '%(IK)]]'

2

G Sq'S —q —M 5«- (A5b)

which has the same structure as Eq. (24b). The subsequent result for the electrical resisitivity is

2 2Q sd
p= "' v, G'[(S(q)'S(-q)) —M'6(q-qo)], (A6a)

and hence

p.,it ". f't d'qq S q 'S-qi -M'~q-q. )-
(A6b}

In full analogy with Eq. (29) we have~~ [K = q —qo]

(5(q) 5(-q)) =C,K ""
+C,(K() " ~'i "sgn(1 —T/T, )+ '

K(»1. (A7}

In a ferromagnet q =0, hence the extra q term in
Eq. (A6b) cancels the contribution proportional to
M', and we have

dp„«/dT~ i&i for both T)T, and T&T, .

(AS)

This result has been obtained earlier, "but our der-
ivation shows in a much simpler fashion why the
conjecture of Fisher and Langer ' that dp «/dT
~ (-a} ~ ' below T, is incorrect. Above T, Eq.

(AS) agrees also with Ref. 24, of course.
In an antiferromagnet where q, &0, the extra q

term in Eq. (A6b) is nonzero at qo and thus cannot
cancel the contribution proportional to M', and
hence we obtain our asymmetric result, Eqs. (30}.
Equation (30b) agrees with the result of Suezaki
and Mori, "while these authors predict dp„«/dT
cc E'~ ' also above T„which is incorrect. The rea-
son for this failure is that these authors extend the
integrations over q to infinity instead of taking a
finite cutoff q„although the main contribution does
not come from the regime q$ =1 but rather from
the vicinity of the cutoff. Through this algebraic
error too strong a singularity is obtained, similar
to various treatments of the DWF discussed in
Ref. 21. We conclude by stating that our derivation
clearly shows that both p (T = T,) as well as the
critical amplitude of p [i.e. , the constant of pro-
portionality in Eqs. (27) or (30) or (AS)] are cut-
off-dependent, and hence cannot be estimated re-
liably by our present method.
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