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Renormalization-group approach to two-dimensional quantum models
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The two-dimensional XY and Heisenberg models are studied with a quantum-mechanical generalization of
the Niemeijer and Van Leeuween renormalization-group method. In second-order cumulant expansion a fixed
point exists for the XY model, giving a critical temperature at J/kT,20.87 + 0.05. For the Heisenberg model
we find a fixed point at K* = 2.8. This result may not be reliable, since the truncation of the cumulant expan-

sion is only valid for small XK.

I. INTRODUCTION

Although Mermin and Wagner® showed that no
long-range order can exist in a variety of two-
dimensional models, including the XY and Heisen-
berg models, there is strong evidence, mainly
from series expansions,*? for the existence of
pseudo-Curie points in these models. For the XY
model on the triangular lattice, Betts ef al.* give
K,~0.667+0.003 and y~1.50+0.02 as their best
estimates. Series analysis for the two-dimension-
al Heisenberg model did not give a convincing
argument for the presence of a singularity.?

It is possible to study these models with a quan-
tum-mechanical generalization of the Niemeijer
and Van Leeuwen® approach to the renormaliza-
tion-group calculations.® In this method, we con-
struct a transformation from the original basis
vectors in spin space [{s,}) (where s,=+% indicates
the z component of the spin on the jth lattice site)
to new basis vectors characterized by a cell spin
variable s;, and some dummy variable 7, (for the
Jth cell). Since such a transformation is not
unique, let us indicate the possible new basis
vectors by [{s,, 7,}; k), where & runs over all pos-
sible transformations. The partition function Z ~
may then be written as

The p, may be chosen arbitrarily apart from the
constraint

Zp,:l.
k

They should, however, be such that the symme-
tries of the Hamiltonian are preserved in the
transformation. We have
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II. XY MODEL
We have studied the XY model with Hamiltonian

BT =K 3 (SiS;+ 515, (4)
{if)

where the sum runs over all nearest-neighbor
pairs (only once) on a triangular lattice. We have
chosen the cells as in Ref. 5, and may write

XY _~pXY
7 = Tre® =3+ V, (5)
B s} l *| s 3 where 3¢XY contains all intracell interactions.
- E Syle l $55) We have taken several sets of renormalization
tss} transformations, obtaining slightly varying re-
= E P Z s, 1,5k [exl{sJ, T,hk). (1) sults. We mention two of them: (i) the spin inver-
kR {spy 7 g} sion symmetric set
J
|+;1)=|++-), |+;2)=,+-+), l+;3)=[-++), [+;4)=l+++), (62)
[—5D=[-=+), [=32)=]-+=), |=33)=]+=-=), |-;4=]|-==)

and (ii) a combination of the following two sets with equal weights pk=%,
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k=1: |+;1)=|++—), |+;2)=|+—+), |+;3)=[—++), |+;4)=|+++),

|=s=[=+=), |=52=]+==), [=3B=]==+) [=i®=]--=):

(6b)

R=2: |+;0=|++=), [+52)=]+=+), [+:8)=]=++), [+;4)=]+++),
[=sD=l+==) [=5D=]==4), [=5D=]-+=) [-50=]---).

Each state |a1a2a3) is a direct product of eigen-
states of the three S% operators in a cell.
To obtain (3¢*Y)’, we first write

= T e, (1)

e =e
where
W=V +3[V,5657] - 267 + V, [V, 557 )]+ -+,
(8)
which follows from the Baker-Campbell-
Hausdorff formula.” Then
(6eXY)’ = In(Tr’e%3” e¥)

=1n(Tr'e¥”) + Inle"), 9)

where the cell- spin-operator-valued expectation
value is defined as

(A)=Tr'e%s A (Tr’e“cfj’w)'1 . (10)

This procedure is justified only if (Tr’e%) is a
multiple of the unit operator in cell spin space,
which is indeed the case for this transformation.
We apply a cumulant expansion to the last term in
Eq. (9):

In{e¥ )= (W) +z((W2) = (W)?)
+E (W3 = S(W2N W)
—HWXWH+2(W))+ 0. (11)

All expectation values can be determined exactly,
and we have calculated the renormalized interac-
tions up to second order in K.® This induces next-
and third-nearest-neighbor XY coupling, which we
have given interaction coefficients L and M, re-
spectively, and also a (S§S5) coupling for nearest
neighbors with a coefficient R. The renormalized
Hamiltonian is

(3¢X¥)’ = 3N[- In(h +g - ) + 3g,R
+3K%(1 - 2f *+ 2g) ] +3CXY | (12)

where N is the number of lattice points. 3 is of
the same form as 3¢*Y with interaction coefficients

K’ =f2(2K + 3L + 2M) + 2f%(1 + 2g - 2 ®)K?,
L' =f2M+3f*(1+14g - 8f)K*,

(13)
M’ =2f*(2g - f?)K* .
R’ =2h?R +2(2f * - K®)K>.

Here

g=q**-1),
h=q(e3*+3e¥+2),
g =3 +e¥+2),
4g,=h - 2f+2g,

and for the transformations (6a) and (6b), re-
spectively,

f=2q**-1), (15a)
f=q(2e’*+1). (15b)

In each case, a nontrivial fixed point is found: at
K*=0.8554, L*=0.2131, M*=0.0774 and R*
=-0.2030 (6a), and at K*=0.7566, L*=0.1502,
M*=0.0491 and R*=- 0.1362 (6b).

Linearizing the equations around the fixed point
gives us values for the eigenvalue related to the
temperature A, and an estimate of the critical
temperature (K;).> The magnetic eigenvalue is
obtained by evaluating the linear part in H of (12)
if we include a term H 2, (S5+S3) in the Hamilton-
ian. We did this calculation up to second order in
K. In Table I we give the results for x,, A,, K.,
and some exponents. The negative values for 6
and 7 might be due to the rather crude approxima-
tion.® If these negative values should persist in
better approximations, this would suggest that the
phase transition is of a more complicated type.°

Other sets of transformations give results which
are only slightly different from the previous val-
ues, and we may summarize them by

(14)

K.=0.87+0.05, =0.8+0.2,

y=2.0£0.1, v=0.6+0.1, (16)

III. HEISENBERG MODEL

We have repeated the same procedure for the
Heisenberg Hamiltonian.
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37 = 2K Z (S35% + 5353+ 555%) . am)
{1, §)

Using the transformations (6a) and (6b), we gen-
erate a renormalized interaction which is aniso-
tropic in spin space, i.e., we obtain

@ety = Z [2K}(S3S5+ S383) + 2K3S55%) . (18)
(1, 1)

This anisotropy, introduced by the normaliza-
tion, cannot be tolerated and must be removed.
Its appearance is completely different from the
appearance of next-nearest-neighbor interactions
when starting from a nearest-neighbor Hamilton-
ian.® Indeed, if there is a fixed point for the
Heisenberg Hamiltonian, it should by symmetry
reasons be an isotropic fixed point (or else there
should be an infinity of them). It happens, how-
ever, that one can remove this artificially intro-
duced anisotropy by using in the renormalization
(3) more sets l{s,, 7,}; k) of new base vectors,
chosen in a more symmetric way. This can be
achieved by using either three transformation sets
like (6a) (with equal weights p,=3), or six sets
like (6b) (with p,=%), which are obtained by inter-
preting the original base vectors in (6) as eigen-
states of S*, S¥, and S*, alternately.

This gives an isotropic interaction parameter
KI

K'=32K!'+K?). (19)
1 2

For these isotropic generalizations of the trans-
formations (6a) and (6b), we obtain the renormal-
ization-group equations (20) for the nearest-neigh-
bor (K), next-nearest-neighbor (L), and third-
nearest-neighbor (M) interaction parameters. L
and M are supposed to be of order K2,

TABLE 1. Relevant eigenvalues, critical temperature,
and critical exponents for the XY model for transforma-
tions (6a) and (6b).

Transformation (6a) (6b)
Ap 2.797 2.285

Ay 4.910 4.113

K¢ 0.917 0.816

a 0.932 0.671

Y 2.026 2.093

[ -3.230 —4.482

n -1.794 -1.149

v 0.534 0.665

K’ =[2K+ 3L + 2M + K*(1 + 4g) | £

- K (67 1+ 45~ 4737,

(20)

L' =[M+K*(z +Tg)|f2 - $K*(2f1+1D),

M’ =4K*%g - 3K*2f 1 +13),
with

f2=3Q2r3i+f3), (21)

g=1itanhiK, (22)

f2=%+g5 (23)
and

f1=2g ’ (248.)
or

fi=2fa, (24b)

for the generalizations of (6a) and (6b), respec-
tively. With (24a) we find a nontrivial fixed point'!
at K*=2.8170, L*=0.5870 and M*=-.00033. With
(24b), the nontrivial fixed point is located at
K*=2.8147, L*=0.5863, and M* =~ .00025. The
value of K is rather large, so that the argument
for the truncation of the cumulant expansion (11),
namely, that higher-order interactions decay with
a power of K, fails. Essentially, we make an ex-
pansion in K, a parameter which is not small at
the fixed point; it may therefore be inappropriate
to apply this method to the two-dimensional
Heisenberg model.

IV. CONCLUSION

We have generalized the renormalization-group
approach of Niemeijer and Van Leeuwen to quan-
tum-mechanical systems in two dimensions. For
the XY model, we find a nontrivial fixed point,
which suggests a possible phase transition. The
values of the exponents are still questionable, and
may give an indication of the strange nature of
this phase transitions. For the Heisenberg model,
the nontrivial fixed point is not consistent with the
basic assumption justifying the truncation of the
cumulant expansion, and the existence of a phase
transition is questionable.
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