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We present the results of computer experiments to determine the localization of the eigenstates of a harmonic

disordered linear chain with equal nearest-neighbor force constants and differing mass ratios, concentrations,

and degrees of short-range order among two constituent atoms. We examine two measures of localization, the

spatial extent of the modes and the decay length of the modes away from the region of appreciable strength.

Experimentally, the two measures are found to agree at low frequencies but to behave oppositely at peaks

of the impurity band. A one-particle Green's-function theory for the decay parameter is developed and is in

good agreement with the experimental decay length in disordered chains. The same theory is applied to the

decay of forced vibrations outside the bands of perfectly ordered chains.

I. INTRODUCTION

This paper is the third of a series of papers on

the vibrations of a disordered harmonic linear
chain. In the first paper, ' we discussed the vibra-
tional density of states of a chain with equal near-
est-neighbor force constants and arbitrary concen-
trations of two kinds of atoms with different mass-
es. In particular, we considered the effect of
short-range order on the vibrational spectrum. By
introducing the short-range order in terms of
first- and second-order Markov processes, we

found a technique for the computer generation of
chains for numerical experiments In the second

paper, we presented cluster-theoretical calcula-
tions of the spectrum, which were compared with

the spectra determined by the computer experi-
ments. A self-consistent cluster method, analo-

gous to the coherent-potential approximation, was

found to be quite successful except for high degrees
of short-range order. In this paper we consider
the localization of the vibrational eigenstates of
linear chains, similar to those of Hefs. 1 and 2.

Our model is the same as that of Hefs. 1 and 2.
The equation of motion for the displacement u, of
the atom at site l is
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where the force-constant matrix (It) is translational-
ly invariant,

The atomic mass m, may take on one of two val-
ues: m„ for host atoms, concentration 1 —c, and
md for defect atoms, concentration c. By conven-
tion the defect atoms are always the lighter atoms
so that p -=m„/m~ is greater than 1. Furthermore,

we choose frequency units so that y/m~ = l.
Substantial work on the localization of eigenstates

in disordered one-dimensional systems has been
reported. Mott and Twose conjectured, and Bor-
land, proved that all one-electron eigenstates of
the disordered chain are localized. This proof is
valid for eigenstates of arbitrarily large energy
for an infinite chain with a finite fraction of dis-
order, and therefore applies to the exact solutions
of a Schr5dinger equation. Demonstration of local-
ization in the lattice-dynamics problem does not
require such a dramatic result. The lattice-dy-
namics problem is more akin to the one-band An-

derson model, ' where a one-electron site repre-
sentation of the Hamiltonian has disordered diago-
nal elements and, usually, translationally invari-
ant off-diagonal elements. Proofs of the localiza-
tion of all the eigenstates of equation of motion (1)
with only nearest-neighbor interactions have been
given by Economou and Cohens and by Deanv for
glasslike chains with disordered force constants.

The localization theorems apply to infinite chains
with a finite (c& 0) concentration of defects. The
defect scattering strength, however, may be arbi-
trarily small. Important as these theorems are,
they do not completely answer all questions about
localization in one-dimensional systems. Though
the states of an infinite system may be localized,
one cannot say that all the states of a finite system
of N sites are localized in the limit N-~. This
appears to be the basis of the counterargument of
Taylor. Moreover, as Halperin has noted, the
theorems are not sufficient to ensure the vanishing
of transport coefficients. Most importantly, from
our viewpoint, the localization theorems do not pre-
dict the length of the region of localization, nor do
they apply to the eigenstates of finite disordered
chains. Therefore, localization in one dimension
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n = 5. 5(N)'&'~ (4)

for a random system with p. =2.
In Secs. II and III of this paper we discuss the

measurement of localization by computer experi-
ments on one-dimensional chains. For two chains
of 1000 atoms we have calculated all the eigenvec-
tors. Most of the eigenvectors have considerable
detailed structure which is difficult to discuss in
general terms. Therefore, we shall discuss the
eigenstates in terms of a model mode shown in Fig.
1. This model mode contains the most important
localization oarameters. Parameter L' is the
length over which the eigenstate has appreciable
strength (approximately I u, I

~ N '). Parameter
A is the exponential decay length away from the re-
gion of appreciable strength.

We now argue that the parameter

is still an interesting problem.
Several attempts have been made to find the frac-

tion of nonlocalized vibrational states in finite one-
dimensional harmonic random systems. Matsuda
and Ishii' found that for mass-disordered chains
the number of nonlocalized modes is

n = (4/v) v N (m )/[((m —(n& )) )]

where (m) is the average mass, —=c,+ (1 —c)m„.
Matsuda and Ishii allow that this formula is valid
only to an order of magnitude since "nonlocalized"
is not precisely defined. Visscher" made numeri-
cal studies of thermal energy transport in chains
of 1000 atoms. He arbitrarily defined the eigen-
frequency above which all states are localized as
the eigenfrequency above which the sum of the re-
maining modes gives a contribution to the thermal
conductivity of only 10/p. Visscher obtained an
empirical formula for the demarcation mode number
of

In the limit A = 0 we have L = L&+ 1 = L' + 1. Alter-
natively, if A~ 7 sites, then

L= (Ly+ A)'/(Lg+ —,'A)

and, therefore,

(Lf + A) & L ~ (L~+ 2A) —= L'.

The equality holds for L& =0.
The quantity L ' is similar to a localization

parameter discussed by Thouless' for an elec-
tron with wave function P in an infinite system

(7)

(8)

o'= Q u', (l —f)',

where

l=glu, .

Moore defines the quantity 2 =o/c~, where o~ is
the standard deviation for a perfect chain, o~
=N(12) ' for both periodic and fixed boundary
conditions. In order to compare the quantity 2
with our measure L we calculate NZ for the model
mode of Fig. 1. The final expression is rather
cumbersome but it has several interesting limits,

lim (NZ) = [Lz(Lf —1)] ' ~. (12)

For A»1 and A» Lf

NZ =Au 6.

where dO is a volume element appropriate to the
system. The decay length A is similar to the de-
cay length calculated by Bush' for one-electron
wave functions of the Anderson Hamiltonian, and
by Rubin' for lattice vibrations.

Another measure of the spatial extent of a mode,
suggested by Thouless" and by Moore, "is the
standard deviation 0 of the mode, where

U2
g

~ I I MI ~ ~ I I I ~ ~ I ~ ~ I ~ ~ ~ 4 I I ~ ~ a ~ ~ ~ ~ I ~ i SMI0 ~ ~ ~ \ \ ~ ~ ~ \ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ '
~ ~~ ~

g (sites)
~ ~

FIG. 1. Squared displacements u& for a model vibra-
tional mode of a disordered chain with exponential decay
A and spatial extent L'.

is a good measure of the length L', expressed as
number of sites. For our model mode of Fig. 1,

L = [Lz+ coth(1/A)]'/[L~+ coth(2/A)].

In the former limit both the standard deviation
and our measure L are the same except for Lf of
order 1. For the second limit we can see that the
standard deviation gives somewhat greater weight
to the exponential tails than does our measure L.
So long as the vibrational states have the simple
form of Fig. 1 we would expect both measures of
spatial extent to give approximately equal results.
However, if a mode is localized in more than one
region of the chain, then the two measures may
differ appreciably. We observe that such modes
with several well separated peaks do occur in our
computer experiments.

II. AVERAGE DECAY LENGTH &A)

One can calculate the displacements u, from the
equation of motion Eq. (1) in the form
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u„, =[2 —(m, /y)(u ]u, —ug „
with fixed initial boundary conditions

Qg=0y and Qg = 1.

As Dean' showed the u &'s will, on the average, in-
crease exponentially as / increases. %'e there-
fore write

u, ~ exp[I/A(&u ')] .

A characteristic (decay) length A can be determined
for the sequence of u, 's for any chain (determined

by the set {m,) for arbitrary &u'. Casher and I ebo-
witz have shown that the spectrum of a infinite
chain is not continuous on any interval. However

we presume that for an infinite or semi-infinite
chain an arbitrary value of ~ within the region of
allowed frequencies is arbitrarily close to an eigen-
value, except for the insignificant number of spe-
cial frequencies discussed in Ref. 1. Therefore,
we presume that the configuration average value

(A(co )), determined by averaging A's over a num-

ber of computations of the sequence of displace-
ments, is equal to the average decay length of
eigenstates of a semi-infinite chain.

%e also wish to assume that the decay lengths
determined by the sequence of u, 's are representa-
tive of decay lengths in long but finite chains.
These assumptions have been discussed by other
authors notably by Roberts and Makinson, by
Matsuda and Ishii, and by Visscher, "and are
further discussed in Sec. IV of this paper.

%e calculate a configuration-averaged decay
length by the following procedure. %e start col-
lecting data after some u, satisfies 1 u, (~~)l ) e'.
%e then store the number of sites n we must pass
before 1 u,.„(cu') I

& e'. We collect 30 values of n

for a given computer-generated chain, i. e. , u, 's
vary from e' to e . The number of sites for an e
increase in u, is A(&o }. We then find the mean and

probable error of A(&u ). We repeat this Monte

Carlo experiment for 10 chains for each (d, find-

ing 10 means and probable errors. %e finally
combine the results using a weighted mean and

probable error. Vfe find that the probable error
associated with (A(&u }) is usually less than 5%

and the variability between chains is of the order
of 101.

Figure 2 shows (A(&u'}) vs cu' for binary ran-
dom chains with c =0. 5 and mass ratios of p. = 1.5,
2, and 3. In each case the frequency scale is such
that y/m, =l or v =4. Therefore, the perfect
heavy chain spectra would have maximum allow-
able frequencies of +~, 2, and +3, respectively.
Some facts are immediately apparent. (i) In all
cases the decay length tends to infinity as (d tends
to zero. (ii) The variation in the data from a defi-
nite functional relationship is small. (iii) The
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FIG. 2. Configuration averaged decay length for
eigenstates of a random semi-infinite chain with 50% de-
fects. + ALs ~ = ~ 5s oooo ~ 2s +~+s ~ 3~ 0. ~he
upward arrows indicate the top of the host band for each
case. The downward arrows indicate the single-defect
local-mode frequency.

data show an almost uniform decrease in decay
length with increasing frequency. (iv} Increasing
mass ratio decreases decay length at a given ~ .
Other trends are not as apparent. (i) An increase
in mass ratio increases localization in both host
and impurity bands. This can be seen by identify-
ing an equivalent point in each case, e. g. , the host
band edge indicated by an upward arrow. (ii) Near
the host band edge a marked drop in decay length
is observed. (iii) The decay length is not monatomi-
cally decreasing with increasing v . The p =1.5

curve shows a peak at (d =2. 94. The p. =2 curve
shows a peak at 2. 66 and other peaks more clear-
ly seen in Fig. 10. The p, =3 curve has a peak at
2. 38, among others. Other plots, not shown here,
for p =4 and p, =8, have peaks, respectively, at

=2. 30 and at 2. 06. The frequencies of these
peaks correspond well with the isolated-light-de-
fect impurity frequency in each case. These local
mode frequencies are ~ =3, 23, 25, 27, and 2+&~

for mass ratios of p, =1.5, 2, 3, 4, and &, respec-
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FIG. 3. Configuration averaged decay length for
eigenstates of a random semi-infinite chain with p =2
and various concentrations of defects: o, c=0.1; g, c
=0.3; &, c=0.9. The host band edge is indicated by an
upwards arrow. The l.ocal-mode frequency is indicated
by a downwards arrow.

tively. We expect similar but smaller peaks at
all the characteristic frequencies of isolated de-
fect clusters in host mass chains. Such peaks can
be seen in Fig. 10, which shows the results of a
more detailed calculation of (A) for the case p =2
and c=0. 5. For this graph we made a least-
squares fit to the exponential increases of 10 dif-
ferent chains at each of 1000 points on the interval
0 & ~ &4. The peak frequencies are independent
of short-range order, which only changes the peak
strengths. Comparing the peak frequencies with
Table I of Ref. 2 we find peaks at all the impurity-
band frequencies of dd, ddd, dddd, and dhd clus-
ters.

Figure 8 shows (A) for random chains with p, =2
and concentrations of 0. 1, 0. 3, and 0.9. From
these curves, and from similar curves for c=0. 7

(not shown) and for c =0. 5 (Fig. 2), we can identify
some trends. (i) The decay length in the impurity

band increases with increasing impurity concen-
tration although not in a regular or uniform fash-
ion. (ii) There is a marked decrease in the change
in decay length at the host-band edge (~' =2), vary-
ing from a change of an order of magnitude at
c =0. 1 to a change of less than 10% for c =0.9.
(iii) The decay length in the host band is smallest
for c =0. 5 and increases as c-0 or c-1. It is
easy to offer a qualitative explanation of these
trends. For c & 0. 5 the chain is mostly made of
heavy atoms with light impurities. As the con-
centration of light impurities increases the length
of modes in the host band decreases owing to the
increasing disorder. However, as the concentra-
tion of light impurities increases the modes of the
impurity band can propagate more readily and be-
come more delocalized. For c & 0. 5 the chain is
made of light atoms with heavy impurities. The
majority band now extends to the maximum fre-
quency &u' =4, and as (l —c) decreases the modes
become more delocalized owing to decreasing dis-
order.

Figures 4 and 5 show (A) for c =0. 5, p. =2, and
for first-order Markov transition probabilities of
p„„=0.1 and 0.3 for anticlustering of defects and
0. 7 and 0. 9 for clustering. Short-range order can
radically modify the decay length at intermediate
values of frequency. The chain with c =0. 5 and
P„„=O.1 resembles the ordered alternating chain
(c =0. 5 and P~ ~=0). As shown in Fig. 8 of Ref. 2

the spectrum for the anticlustering chain is a de-
graded perfectly alternating chain spectrum with
a vestigial gap, 1 & ~ & 2, between an acoustic
band and a vestigial optic band 2» ~ ~ 3. Figure
4 shows that for the greater anticlustering the
modes are more delocalized within the two bands.
Precisely at the vestigial band edges, however,
the two curves cross and the modes of the chain
with the greater anticlustering are more localized
in the "gap" region where propagation tends to be
forbidden. Above the "edge" at ~ =3 the modes
are so localized that they are insensitive to short-
range order.

Figure 5 shows (A) for chains with two degrees
of clustering. For P,,, =0. 9 we have large clusters
of like masses, and the structure of the host band
is partly recovered over the random case, as
shown in the density of states plot in Fig. 9 of
Ref. 2. The decay length in the host band is great-
ly enhanced with a marked decrease outside this
host band. Comparing Fig. 5 for c=0. 5 and P„,,
= 0. 9 with Fig. 3 we see that the short-range order
makes the decay length in the host band greater
than that for the t.-=0. 1 random chain, an unex-
pected result. Near ~ =0, however, this is not
the case. For the clustering chain it looks as if
(A(&u )) approaches 600 sites as a approaches zero
and only the point at lowest ~ indicates that ac-
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ordered alternating diatomic chain because I. be-
comes a weak function of & . The eigenstates of
this chain occur in an acoustic band, 0~ &o'~2/p,
and an optic band 2~ (u ~2(1+ p, ). We may easily
calculate I. at the four band edges because the mo-
tions of heavy and light atoms axe simply related
at these frequencies. The results are shown in
Table I. Qur numerical methods applied to an
alternating chain of 100 free atoms confirm the
values of I. at special frequencies and show that I
varies smoothly between these extreme values at
the band edges as shown in Fig. 7.

The computation of the eigenvectors of a long
disordered chain has pxeviously been a stumbling
block which has inhibited px'ogress ln the study of
these chains. ' We have discovexed that the method
of inverse reiteration is a satisfactory solution to
this computational problem. It is satisfactory in
the sense that with it we are able to solve for the

) 000
800 ~

600 ~
400-

200- ~

I'IG. 4. Configuration. averaged decay length for
eigenstates of a semi-infinite chain with @=0. 5 and p=2
for anticlustering short-x'ange ox'dex', Q» pg g

= 0, 1;
p& &=0.3. The regions of acoustic (ac) and optic (op)
bands of the perfect alternating diatomic chain are shown.

tually A(ur») -~ as &u —0. The curve with p~, , = 0. &

shows similar behavior, through the delocalization
of the host band is less pronounced.

III. SPATIAL EXTENT (L)
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To calculate our measure I. of the spatial extent
of an eigenstate we need to solve the equation of
motion (1) for u, (&u'). These eigenvectors general-
ly depend on the boundary conditions, an effect
which we now consider by examining perfectly
ordered systems. For periodic boundary condi-
tions the normalized eigenvectors are u&-N '
x 8' ' and, therefore, L = N for an ordered chain
of N atoms. However, our computer experiments
require fixed boundax'y conllbonsy gg = Q @~1 = 0.
Therefore, the normalized eigenvectors of a mon-
atomic chain are

I, = sin (~=1,2, . . . , N), (17)

Summing sin~hi over all sites we find L = 3(%+1). -
The situation is slightly different for a perfectly
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I IG. 5. Configuration. averaged decay length for
eigenstates of a semi-infinite chain with c=0.5 and @=2
fo1 clustering shox't-x'ange order: G» pg g=0, 9» A» pg g
=0.7. The host band edge is shown by the upward ar-
row. The local-mode frequency is shown by a down-
wards arrow.
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TABLE I. Spatial extent parameter I at band edges
for a. perfectly alternating diatomic chain with mass ra-
tio p. The boundary atoms of the chain are fixed and N
atoms between the boundaries are free to move.

Mode

~ = 0, acoustic

ZB, ~ acoustic

ZB optic

%=0, optic

~ZB, zone boundary.

eigenvectors of chains which are long enough to
provide unambiguous indications of the behavior of
eigenstates of an infinite chain. However, the pro-
cedure is not inexpensive. A convincing computa-
tion of L for p. =2 requires a chain of =1000 atoms.
The method of inverse reiteration requires 45-min
CPU (central processing unit) on the Univac 1108
to solve for all the eigenveetors of the 1000-atom
chain. Fortunately, the method allows the compu-
tation of single eigenvectors enabling a sampling
of the band if desired. Once an eigenvector is cal-
culated it is a simple matter to find L.

Figure 6 shows the localization plots for tmo dif-
ferent random 100-atom chains with e =0. 5 and
p, =2. Since the chains are generated by a random-
number generator there are different stochastic
relationships between atoms in the two chains.
Clearly L(&u ) does not follow a definite functional
relationship with v . The spxead in values for a
single chain as well as the differences between the
tmo chains might seem to make the data meaning-
less. This, however, is not the case. Because
a 100-atom chain does not contain a representative
set of eigenstates the data are not contradictory
but complementary. We might add the results of
many runs on 100-atom chains to get an improved.
data set. %'e feel that to average the results over
some frequency interval as done by Moore in his
calculations of the standard deviation in glasslike
chains is counterproductive. The spread in values
of I. at any given clearly includes information
about the variety of modes with appreciable
strength at that frequency. Because of the fixed
boundary conditions the values of L are not great-
er than -3N. In order to estimate the fraction of
the entire chain length included in a mode at fre-
quency &u the calculated values of L(&u ) may be
divided by the values for the perfectly oxdered
chains shown in the figures. To help assess the
validity of our results for L we can use the param-
eter (A) previously calculated for semi-infinite
chains. Certainly the values of L((u ) for a 100-
atom chain are not reliable for values of & where
(A) & 50 sites From Fi.g. 2 with p = 2 we can ex-
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FIG. 6. Spatial extent of the eigenstates of two specif-
ic 100-atom random chains (a) and @) with c = 0. 5 and p
=2. The dashed line at 3(M+1) sho~s the extent of
modes in a perfect monatomic 100-atom chain with fixed
boundaries.

pect that our values of L would be good for ~
~1.0 where the exponential decay length is less
than 30 sites, and very good for ~ ~ 2, where
(A(&u )) & 5 sites. The values of L below &u' =0. 5

are almost certainly affected by the chain length,
which means that these data do not have the gener-
ality which we ascribe to the other data. The
eigenvectors in this region are extended over the
whole 100-atom chain.

Figure 7 shows L for 100-atom chains with anti-
clustering (P,,, =0. 1) and clustering (P,,, =0. 8)
short-range order. Fox the former case Fig. 4
suggests that L is chain-length limited for ~ ~ 0.9.
For the clustering case L should be severely
chain-length limited for ~ ~1.9, and not repre-
sentative of the values of longer chains. Kith
clustering of like atoms a short chain gives espec-
ially poor statistical relationships. Looking at
the composition of this particular chain we ean
easily identify the modes in t;he region 2 & ~' &4,
all of which show a rapid decrease away from the
region of appreciable displacements [(A(&u'))= 1].
The chain has the following structure:

11d-9h-6d-Vh-21d-3h-3d-Gh-

Bd-3h-1d-10h-lOd-lh-ld,
with c =0, 61. The isolated impurity at site 78
produces the states at ~ =2. 667, with L =1.55.
The defect cluster of three atoms gives L =3 at
eigenfrequencies (d = 3. 52 and 2. 414. Other points
arise from the other clusters as noted in paren-
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FIG. 7. Spatial extent of the eigenstates of specific
100-atom chains with c = 0. 5, p =2 and a large amount of
short-range order. (a) anticlustering pz &= 0.1; (b)
clustering p& &

= 0. 9. In (a) the solid line shows the ex-
tent of modes in a perfect alternating diatomic chain
with fixed boundary conditions giving the band-edge lim-
its of Table I. In (b) the strings of points with constant
L are identified with the clusters of (i) defects discussed
in the text.

theses on the figure.
Figure 8 shows I. vs (d for a random 1000-atom

chain with c =0. 5, p =2. The maximum L((o ) is
667. 3, equal to that for the perfect monatomic
chain. Figure 2 indicates that some values of L
could be chain-length limited for ~ & 0. 4, but
other values are probably valid. To get accurate
values of I. for the region 0.02& ~ ~0.4 would
require approximately N = 10000. A negligibly
small number of higher-frequency modes can be
chain-length limited because they happen to have
their appreciable displacements near one end of
the chain. It is instructive to compare L(ru ) in
Fig. 8 with the density of states D(&u') in Fig. 5
of Ref. 2 for a 100000-atom chain. The density
of states of the 1000-atom chain, appropriate to
Fig. 8, differs only in details as follows: The
host band is considerably more ragged, exhibit-
ing 50% fluctuations for 0. 5& w «2. Some of the
zeros in the impurity band are almost twice as
wide as those in the case %=100000. However,
the 11 major peaks in the impurity band are the
same for both chain lengths, and for qualitative
comparison all the above differences are unim-
portant. Since a dot in Fig. 8 represents an eigen-
state, the zeros in the frequency spectrum at ~
=2, 3, 3.414, and 3.618 are clearly visible. The
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clustering of point, s around defect cluster frequen-
cies is also clearly seen. By the arguments given
in the discussion of Fig. 7 we can explain the
various series of points with L(&u ) constant in the

impurity band.
Figure 9 plots I. vs + for a 1000-atom chain

p. =2, e=0. 5, and P„,„=0.1. It may be compared
with the density of states in Fig. 8 of Ref. 2.
Comparing with the plot of (A) in Fig. 4(a) we note
that some values of L, may be chain-length limited
for ~ & 0. 5. Since some of the modes in the ves-
tigial optic band, 2& ~3~3, are 100 sites long the
calculations for a 100-atom chain in Fig. 7(a}
cannot completely describe the localization in this
band.

We now compare the plots of I. in Fig. 8 and
Fig. 9 with the appropriate plots of (A) in Fig.
10. Several significant facts are apparent as fol-
lows. In part of the host band, 0 & ~ & 1.54, a
line drawn through the center of gravity of the
points L, (&u ) agrees with (A(&u )) both in shape and
in absolute values, a result which we had no rea-
son to expect. In particular, in the region 0. 5
«ca & 1, both (A) and I, have positive curvature
for random chains [Figs. 8 and 10(a}J, and both

(A) and I. have negative curvature for chains with
anticlustering short-range order [Figs. 9 and

10(b)]. Comparing all four plots on Figs. 4 and 5
we can surmise that the negative curvature of (A)
appears for both clustering and anticlustering
chains when P, , differs by = +0.3 from its ran-
dom value of 0. 5. Towards the top of the host
band L, (&u ) is rather flatter than (A(&u )) but the
two measures of localization still agree qualita-
tively. In the impurity band (A) continues to de-
crease with increasing ~, whereas the center of
gravity of L seems to be approximately constant.
Most interesting, the two measures of localiza-
tion behave in opposite ways at the local mode fre-
quency (&u =2. 667} and at the characteristic fre-
quencies of other small clusters. (See Table I of
Ref. 2. ) Whereas the local mode has a smaller
spatial extent (I,} than do modes at nearby fre-
quencies, the local mode decays less mPidly than
do nearby modes. In Fig. 8 for I. we believe that
we can identify (dd) modes at &u~ =3.24, (ddd) and
(dhd) modes at &u =2. 41, (dhd} and (dddd) modes
at (u =2. 84, and a (ddd) mode at 3. 52. At these
points L(&u ) shows downward spikes. Figure 10(a)
for (A(&u )) shows a similar structure with upward
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spikes.

IV. THEORY AND DISCUSSION

In Secs. II and III we presented the results of
computer experiments for two measures of local-
ization of the eigenstates of a disordered chain with
nearest-neighbor interactions. We calculated the
average decay parameter (A) and the spatial ex-
tent I. There are several kinds of difficulties as-
sociated with the comparison of these two mea-
sures of localization. We have insisted that (A)
be calculated for a semi-infinite chain so that any
value of + is arbitrarily close to an eigenvalue
except for special discxete points. Therefore,
the sequences of displacements generated from
the equation of motion axe arbitrarily close to the
beginning of eigenvectors of the semi-infinite
chain. The assumption that the exponential rise
of the sequence of displacements is equal to the
decay length of eigenstates in a long but finite
chain in the same region of frequency has been
called the IF assumption ~ Visscher" has found
evidence in support of this assumption in his trans-
port studies. Our test of the IF assumption is to
compare Fig. 10(a) for the decay length of modes
of an infinite chain with Fig. 11 for a finite chain.
To create Fig. 11 we began with accurate eigen-

values and a complete set of eigenveetors for a
specific 1000-atomic random chain. We found the
actual decay lengths by a least-squares fit of an
exponential to '711 eigenstates increasing over 5

powers of e.
The comparison indicates that for a determina-

tion of over-all features of the decay length,
though perhaps not for exact results, our proce-
dures are adequate. Not only does the IF assump-
tion appear to hold satisfactorily but the finite ac-
curacy of the iteration procedure of part II seems
to lead to the correct exponential increase. The
finite chain results of Fig. 11 confirm both the
general behavior of (A) and the peaks in (A) at the
mode frequencies of small clusters.

Recently the elements of a theory for A or (A)
of such a chain have been established by Herbert
and Jones and further discussed by Thouless.
Also Papatriantafillou ' has proposed an expres-
sion for the decay length in terms of the renor-
malized locator expansion of Eeonomou and Cohen.
Very recently Sen has shown that these two ap-
proaches lead to identical expressions for the de-
cay length. The theories for the decay length re-
late it to a single-particle one-electron Green's
function. In this section we increment theoretical
progress on decay lengths by applying the Green's-
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FIG. 11. A~ is the decay length for the eigenstates of a specific 1000-atom random chain. (that of Fig. 8}. Compari-
son with Fig. 10(a} tends to confirm the IF assumption and our numerical methods.

funcbon ideas to lattice dynamics and the calcula-
tion of A.

By contrast there is no proper theory for I.,
which appears to require a two-particle Green's
function for its description. There are theories
for bvo-particle Green's functions in disordered
systems within the context of the coherent-poten-
tial approximation. ' ' However, a comparison
of {Z,(&u )) from a configuration-averaged theory
with the results of our computer experiments on
specific chains is likely to be disappointing be-
cause the experimental results exhibit consider-
able deviations from the mean.

On the other hand we shall find that A(cu ) is
simply related to the density of states. ln the Ap-
pendix of Ref. 2 we showed that the density of
states is sharply distributed about its configuration
average and, thus, A(&u ) is sharply distributed.
%e have tested the sharpness of the distribution of
A by calculating A(ru ) for a given finite chain of
1000 atoms with ~ equal to the eigenvalues of that
particular chain. For ~ & 1 the scatter in A is
as great as that in I., but for ~ & 2 the scatter in
A is no greater than that in (A) shown in Fig. 10.

%e introduce the usual Green's operator

G =(M&u —P) ',
and a mass-reduced Green's operator

.F.
'= M'"QM'". (20)

In a local representation I I I)) the operator M'~

is diagonal with ~m, at site l. The Qreen's opera-
tor E is diagonalized by the eigenstates (ln)) of
the system,

{o I+IN&=~.,s(~'-~'. ) '. (21)

Therefore,

We therefore present a theory for A and the result
for (A) follows immediately. 8

The theory requires that the equation of motion
for u

&
be equivalent to a tridiagonal matrix. There-

fore, we are restricted to a chain with nearest-
neighbor interactions only. However, it is easy to
incorporate force-constant changes and we shall
add this generality by replacing the translationally
invariant force-constant matrix of Eq. (2) with
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&f IG If' &=(m, m, .) ~ ~ ~ . (22)«. ~ &fIu&&~If'&

From the equation of motion, Eq. (1), we find
the local representation of eigenstate Ip&

(f Ip&=m', "u,(p), (23)

where u, (P) is the displacement of the atom at
site E in the mode P. Therefore,

~ (p) '(p}=&fl~'"lp&&p IM'"ll'&, (24)

(A~=~) in the Borland sense. We may use these
facts to study the decay length of forced vibrations
of a perfect chain outside the bands of normal
modes.

An ordered chain with a basis of n atoms will
have n bands with bottom frequencies bt and top
frequencies t&. Then in any gap, or above all.
bands,

tt

A '((u) = Q Jt HeFoo„((u") d(u'~
a=1 t~

which can be expressed as a residue of G.
In particular, for a chain with 1~ l~N,

~,(P) ~~(P) = iim (~'- ~', ) &1 I
G

I
X&. (25)

(f, «u&b, ,x). (82)

The sum over basis atoms a in the unit cell of the
perfect chain replaces the configuration average
of the disordered chain.

For a monatomic chain
The calculation of the (1, N) element of the in-

verse from Eq. (19) is easy for a chain with near-
est-neighbor interactions because the cofactor is
the determinant of a lower tri, angular matrix.
Therefore we find

I ~i(p) ~~(p) I

A '((u) =21n[(u/(u +[((ua/(u' ) —1]'~~)

((u~ (uma )p

shown as the solid line (a) on Fig. 12. This re-
sult can also be found by a direct calculation of

y& Det (28)
A '((u) = (1/N) in[Go„((u )/Goo((u')], (34)

%e now make the exponential decay hypothesis

Iu, (p) u()((p) I
-exp[ —(N 1)/A ].()-

Neglecting the difference between N and N-1 and

unimportant boundary effects, and replacing the
sum ovex eigenstates n with an integral over the
density of states D((u }, we find

A'(w,')=f))( '))
(

~ ', — '(~da' —(1 (yim))

D y) ln yt}
—y dy, (28)

a geometxic mean over the configurations of a
local frequency. From Eq. (28) a theoretical de-
cay length can be calculated. Another perspicuous
form is obtained by differentiating

dAj 1
des~ N

BeEg g.

For a configuration averaged decay length,

d(A((u~)& '
( ( p)&

The real part of the diagonal Green's function is
zero within any band of any ordered chain, and the
eigenstates of an ordered chain are delocalized

where y=—(u /(u u. The normalizing frequency (uc

is calculated from the configuration average above:

which proves that outside the bands of a perfect
chain the decay is exponential.

For an alternating diatomic chain with nearest-
neighbor interactions we use the Green's functions
of Ben and Hartmann 7 to find

A '((u)

(I & —&xr I) I + [I & —X01(&—Xg]~~
(X,X„)"'

(88)

where x= (u, X„and Xo are acoustic and optic zone
boundary frequencies squared, and the top of the
optic band is X~ = X„+Xo. The plus signs are used
above the bands ((u & Xr) and the minus signs are
used in the gap (X„'& (u &Xo). This result is
plotted on Fig. 12 for A as a solid line (b). We
notice that for both monatomic and diatomic per-
fect chains the decay length outside the bands tends
to be shorter than that for modes of the same fre-
quency in the disordered system. This result
makes some sense because the perfect chains in-
clude no impurities to help propagate the forced
vibration. However, there are logical difficulties
in trying to establish a perfect chain A as a lower
bound to A for a disordered system, because there
is no way to identify a. particular ordered chain as
the px'oper ordered limit of a disordered chain.
The correspondences implied by the figures of this
paper are suggestive but have no rigorous basis.

In Fig. 12 we plot the theoretical decay lengths
calculated from Eq. (28}using 200 point densities
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FIG. 12. Theoretical exponential decay length calculated from 200 point densities of states of disordered chains with
c=0.5 and @=2. The dashed curve is for a random chain. The dotted curve is for p~=0. 1. The solid curves show the
theoretical decay lengths for perfect chains. Curve (a) is for a monatomic chain, m&=2. Curve (b) is for the alternating
binary chain.

of states for random and anticlustering chains of
100000 atoms. The agreement with the experi-
mental A in Fig. 10 is almost exact except for

& 0. 7. At these low frequencies A ~ is small
due to cancellation within the integral, and our nu-
merical integration is not sufficiently accurate for

a proper calculation of A.
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