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Heat-current operator and transport entropy of vortices in type-II superconductors~
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The definition of a heat-current operator and the microscopic treatment of a temperature gradient in a
magnetic conductor are revised in order to resolve a conflict with the third law of thermodynamics and

Onsager's principle. Some new theoretical results on the transport entropy of vortices in type-II
superconductors with magnetic and nonmagnetic impurities are reported to substantiate our new linear-

transport analysis.

It has been noted in the recent literature' ' that
the existing definition of a heat-current operator
j"and the microscopic treatment of a temperature
gradient V'T in a magnetic conductor are unsatis-
factory. As a result the microscopic calculation
of the entropy SD, transported by a unit segment
of a moving vortex line in a type-II superconduc-
tor, violates either the third law of thermodynam-
ics or the Onsager's reciprocity principle. The
purpose of this paper is to present a resolution of
this enigma and to report some new theoretical re-
sults on SD in order to substantiate our present
analysis.

For a type-II superconductor in the mixed state
with a magnetic field in the z direction, the trans-
verse thermal and electric linear transport prop-
erties are strongly coupled. If we ignore the small
terms related to the Hall effect, then

q„"=Sr,( V T)„~o8„
q, =P(VT)„io,S„

with 8—=E Vp, /e, where E is the applied electric
field, p, is the local chemical potential, and e is
the electronic charge. For dirty type-II super-
conductors in the high field limit (i.e. , B =H~),
various authors have made microscopic calcula-
tions of the four linear transport coefficients: the
thermal conductivity E, by Caroli and Cyrot4; the
flux-flow conductivity 0, and the Ettinhausen co-
efficient n by Caroli and Maki (CM), ' with o, later
modified by Thompson'; and the Nernst coefficient
P by Takayama and Ebisawa. ' Physically a 40
here because moving vortices transport entropy.
Putting j "=n,TSDv with vortex-line density n„
=B/P„(Q, =bc/2e being the flux quantum) and the
flux-flow velocity v obeying 8 = -v ~ B, one arrives
at the relation Sa = aQ, /T. The third law of ther-
modynamics requires that SD- 0 as T-0, but the
CM result for Q. gives S~~ T ' at low tempera-
tures. To clarify this difficulty, Maki' noted that
the heat-current operator used by CM and others,

j,"—= j s
(p, /8)j, where j s is defined in terms of the

Hamiltonian density It via the continuity equation
sh/st+ V j s= 0, is incomplete for magnetic con-
ductors. Basing on the thermodynamic relation
6Q—= T5S=&E- p MI)r'+&,«&I, where ~ is the av-
erage magnetization, he proposed the new heat-
current operator j"=j,"+H, &j „. Assuming the con-
tinuity equation, &M/&t+V j a=0, and a uniform
steady flux flow, SM/at= —v VM, the magnetiza-
tion current j „was equated to vM. This argument
leads to the prescription

n = o.'+M, Sa= Soa+p /If/T, (2)

where e' and SD denote the CM results. Near II„
the so-predicted S~ indeed vanishes linearly as
T-0, which is also supported by experimental
measurements. ' However, I find that Maki's ar-
gument can not be completely correct, since it is
based on a thermodynamic relation with a wrong
sign in the last term, ' and there is no other com-
pensating sign mistake. Another indication that
Maki's argument is not satisfactory was found by
Takayama and Ebisawa, ' who pointed out that his
argument does not give a corresponding correction
term to P: Since a V'T in the absence of 8 does not
drive a flux flow, it can not possibly cause a mag-
netization current. The Onsager relation a = PT,
which is satisfied before +M is added to e, must
now be violated. Below I propose to resolve this
dilemma with a new linear transport analysis. A
new heat-current expression is derived which re-
duces to the prescription in Eq. (2) only for B
=H„. The Onsager relation is also retrieved near
H„where P has been calculated, by discovering a
new contribution to P.

Since I do not know of any heat-current expres-
sion which is not based on the assumption of local
equilibrium, I begin by seeking a local thermody-
namic relation between local density variables of
a magnetic conductor: For a system of interacting
charged particles at equilibrium (with spin para-
magnetism ignored for simplicity), one may deduce
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from statistical mechanics that

T 58 = 5E p5—N+ ) j.5Ad'x,

where E is defined as the ensemble average of the
total Hamiltonian without the electromagnetic field
energy, and b= V' && A is the local magnetic induc-
tion. Since V' j = 0 at equilibrium, one may define
a local magnetization density m via V'x m= j and
the boundary condition m = 0 at infinity. This con-
verts fj ~ 5A to fm'5b. For a simply-connected
sample, m may be chosen to vanish outside the
sample. ' It is then consistent to introduce the fol-
lowing local relation for the equilibrium entropy-
density s:

T s5= c5(p/e)5p+m 5b,

where e =(h), and p is the charge density. In or-
der to assume the validity of Eq. (3) in a transport
situation, however, we must still modify slightly
the definition for E and m: First, the total Hamil-
tonian density h~ now contains terms involving a
scalar potential Q and a time-dependent vector po-
tential in order to represent an electric field in a
general gauge. We must put e ((hr =——pQ)), so that
e and j E can remain gauge invariant. Secondly,
we can no longer define & && m as the total current
j flowing in the sample, since the latter now in-
cludes a transport current j, which does not close
itself inside the sample. Had we known a unique
way to separate j, from j, we could define V x m
= j —j,. But at the present stage there is no cri-
terion for us to decide what is the unique correct
way to define j,. We shall therefore proceed with
our argument assuming that Eq. (3) is true for
some generalization of the equilibrium m, and
postpone the task of defining m in a nonequilibrium
situation until a later stage. We shall see that to
calculate the linear transport coefficients we need
only the definition of m at equilibrium. Then the
linear transport equation for j automatically sug-
gests to us how we should define m to first order
in the thermodynamic affinities. It is likely that
one could obtain the definition of m to higher order
in the affinities by the same procedure, but this is
beyond the scope of the present paper. The es-
sential point is that a correct definition of m is
actually dictated by our assumjtion of the local
equilibrium condition Eq. (3). Of course this situ-
ation arises only because we did not derive Eq. (3)
for a nonequilibrium situation from more funda-
mental physical principles in a microscopic level,
but have merely assumed its validity.

To proceed with our argument we note that the
continuity equations Se/St+V'j = j'E and Sp/St
+ V'' j = 0 follow simply from Heisenberg's equa-

tion of motion. ' The Maxwell equation V && E = Sb/
St may be viewed as three continuity equations Sb,/
8t+V. j~ =0 with j~ =Ex e,.+a pure curl, where
e, is the ith unit vector. The pure curl has no
physical meaning but may be conveniently chosen
as V x (- p, e&/e). Then

g (4)

Dividing Eq. (3) by 5t and using the continuity equa,
tions, we obtain Ss/&t+V (j "/T) =w/T, uhere the
heat current density and the dissiPation function
are found to be:

j =]0+ m]j p

I+
ao = j 'X~+ j 'Xz+ j, X

(5)

where

Xr —= TV (1/T),

Xs =—E —TV (p/eT) = b —(p/e)Xr,

X = TV(m, /T) = V +m,.Xr.
Now consider first the simpler case of a sPatial

ly uniform system Then E. q. (5) suggests that the
phenomenological linear-transport equations of a
magnetic conductor should in general be (cf.
Callen, ' Chap. 16):

] = L,~'X~+ L,2'X@+ L~3 mf
(6a)

~ eagy

j =L„X,+L» X&++ L.', X„, (6b)

] ~ L3j X~ + L32 Xg + L33 Xfft ~j (6c)

Some of the coefficients in these equations can im-
mediately be deduced. Comparing Eq. (6c) with
Eq. (4) we find L~~3= L3, —(p/e)L» = 0 and I.»"~ +1, ——

etc. Also L'„—(p/e) L,', = 0, since the second law
of thermodynamics would be violated if a V'm,

could drive a heat current in any direction; and
L23

' = —1, etc. , since one expects V' ~ m = j when
VT= 8=0. If we now use the first part of Eq. (5)
to eliminate j E in favor of j ", and further assume
m and b to be constant vectors in the z direction,
then Eqs. (6a) and (6b) reduce to Eq. (1) with K,
=X'„a= o.'+m, P=P'+m/T, and a, =o'„where
the superscript 0 are now used to mark all quan-
tities that can be calculated with the existing meth-
od involving the operators j," and j. We thus find
a =Pl' if only n'=P'T. The new contribution found
for P is seen to result from the fact that a VT does
not merely act through the two thermodynamic af-
finities X~ and Xz, but also through the new affin-
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ities X which occur in magnetic systems.
For type-II superconductors where m varies in

space, the demonstration of a = PT is more diffi-
cult in general. But near H&2 when the order pa-
rameter is small, and X~, 8, and j ~. are space
independent to the order of interest, one may first
average Eq. (5) over a unit cell of the vortex lat-
tice and then argue as above to retrieve Eq. (2)
and ~ = PT. I emphasize that since. Maki's argu-
ment is logically inconsistent, the present argu-
ment is the only existing justification of Eq. (2).
In order to further establish the validity of this
equation for & =H~, I apply it below to calculate

S~ for a gapless superconductor with arbitrary
amount of magnetic and nonmagnetic impurities.
For the same system we have previously calcu-
lated the Qux-Qow resistivity for both the high-
and the low-field limits. " We therefore follow
closely the notations introduced there. The meth-
od for calculating S~ near H„ follows closely the
work of Houghton and Maki" and therefore requires
no detailed description I.only remark that (i) only
the fluctuation diagrams contribute in the vector
gauge, (ii) contributions from the anomalous fre-
quency regime' are found to be important except
in the dirty limit. The result is

4«'c (I t) I ') ~ T
4v'(x (I & I ')

T e2 (4v T)2 & ' &) e2 (4&&T)2

f s(T) = ', (l(2+P, ) 4(2+—PL)]+ ' (I"'(2+P,),
L

—P() Px- Pg

L (&)=((~ ' ' ('"'(-' ~ P)- ' ' '((- ) X''+' (' '(- P)*'
( L- P.)'

' '
PL P. -

(I &I ) b&(T,/T)+(I)(—'+p, T/T, ) —g(2+ p, ) 2K 8
(4vT)' (j)&»(—,'+ p,)+-,'p, (j&»(-,'+ p, ) 1.16(2«'- 1)+1 H,

and p, = (2vr, T) ', p, = (4vr, T) ' with r, and r, being
the total- and exchange-scattering lifetimes, re-
spectively. In the dirty limit when p, &&p, and 1,
this result agrees with that of Baba and Maki, "
but the result is more interesting when the ratio
r, /r, is left arbitrary: Taking the limit p„p,- ~,
corresponding to high concentrations of magnetic
impurities, so that absolute zero temperature
falls into the gapless region, Eq. (9) becomes
f,= (1/6p,')(1+2r,/r, +2r', /r2) ~ T', so that again
SDo- T, but this time a rather nontrivial cancella-
tion of T ' divergences between Son and /PS/T hap-
pens for arbitrary values of r, /r, . This is clearly
a strong support for Eq. (2) as a correct prescrip-
tion near H~. Less directly it is also a confidence
vote to our new linear transport analysis for mag-
netic conductors.

Next we note that if Eq. (4) is substituted into the
first part of Eq. (5), we obtain

~h ~h+g Xm (11)

Since both 8 and m become space dependent for
fields well below H„, we expect g x m) & (~ ) x 1)(f,

and therefore Eq. (11) is no longer equivalent to
Eq. (2). This is indeed verified by an extension of
the above calculation to the low-field limit B=0":
First an expression for j 0 in terms off, Q, Qy

and Q is derived using the same method previously
used" to derive a complete set of dynamic equa-
tions for the same system. The part of (],") which

Then w may also be written as

w=jhx +j, 8, (12)

makes S~ divergent at low T is then identified and

shown exactly cancelled by the (8 && m) term,
where m —= (4«) '(b —H„). Since even at equilibrium
there is no exact solution for an isolated vortex
line, the cancellation is achieved by repeatedly
transforming one expression using the dynamic
equations derived previously, "until it becomes
exactly the negative of the other expression. As
a result of this cancellation we find again S~ cf- T
at low temperatures for all values of r, /r, . This
finding leaves essentially no further ground for
doubting that Eq. (11) is the correct heat-current
expression for magnetic conductors. The details
of this calculation will be reported elsewhere.

Let us now return to the definition of m for a
transport situation. First we note that Eqs. (2) and

(11) require only the equilibrium m for the purpose
of calculating linear heat-current responses. But
if one wishes to eliminate m from our dissipation
function I) of Eq. (5), then one needs an expression
for m that is valid to first order in the affinities.
The clue is already contained in Eq. (6b), which
says that indeed & x m = j —j „ if only one identi-
fies j, as
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which should be compared with the usual expres-
sion for nonmagnetic conductors, which is just
Eq. (12) with j, replaced by j. Equation (12) has
the appealing feature that only transport current
dissipates, although in so far as the total dissipa-
tion is concerned, the two expressions differ in a
steady state only by a surface integral favm
x 8 d'S, which usually vanishes. It would be very
interesting if an actual case could be found where
the two expressions could predict different total
dissipations, but this possibility has not yet been
fully explored at the present time.

In conclusion, the following remarks are in or-
der: (i) So far, m is defined only up to an arbi-
trary gradient term if only it vanishes outside the
sample, but this ambiguity can likely be settled by
the reasonable requirement that V &&

~
"=0, since

circular flow of heat apparently violates the sec-

ond law of thermodynamics. (ii) While Maki's der-
ivation of j „relies heavily on a un~form flux flow,
our Eq. (4) for j, is valid even for a static m.
Thus the heat-current expression and the nezo con-
tributions to e and P predicted here should also
apply to normal magnetic metals and plasmas in
a magnetic field. (iii) The explicit demonstration
of a = PT for B«H„remains to be done. But from
the above discussion it should be clear that to cal-
culate P correctly in this limit, one must include
the effect of the affinities X,= m, X~ and realize
that (m,Xr) ~M, gr). Thus it is necessary to find
the local temperature distribution around an iso-
lated vortex line.
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