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The diffusion equation is solved for a semi-infinite region in the case of irradiation-enhanced diffusion
produced by a diffusion coefficient falling off exponentially in the medium. Near the surface the concentration
profile due to enhanced diffusion has a larger concentration than the profile due to thermal diffusion;
conversely far from the surface the enhanced-diffusion profile has a lower concentration than that due to
thermal diffusion. Thus, this type of enhanced diffusion results in a more abruptly changing profile than does

thermal diffusion.

Several mechanisms by which irradiation-en-
hanced diffusion can occur have been discussed in
the literature, '™* These include: (i) defect-en-
hanced diffusion in which diffusion can be enhanced
by the presence of defects such as might be created
by high-energy bombarding particles; (ii) recoil-
enhanced diffusion in which the recoil momentum
imparted by a collision between a high-energy
particle and a diffusing atom can enhance diffusion;
and (iii) ionization-enhanced diffusion. In this
latter case there are several mechansims by which
ionization can enhance diffusion: (i) the “normal”
ionization-enhanced diffusion* in which a change in
charge-state results in a state of lower migration
energy; (ii) the Bourgoin mechanism®=" in which
the diffusion saddle-point and equilibrium configura-
tions are interchanged between charge states; and
(iii) the energy-release mechanism! in which the
release of strain energy or thermal energy in the
vicinity of the defect enhances its diffusion,

The usual experimental configuration for the
study of irradiation-enhanced diffusion involves
an external beam of particles impinging on the
sample., The external beam usually experiences
an attenuation in the sample which in turn results
in an inhomogeneity in the diffusion enhancement,
St. Peters et al.® considered the concentration
profile which resulted from a constant enhanced-
diffusion coefficient over a finite sample depth,
Here we consider the case of an enhanced diffusiv-
ity which decreases exponentially with depth into
the sample; such a dependence arises naturally in
ionization-enhanced diffusion (either due to the at-
tenuation of an external beam or carriers injected
from a junction), but may be approximately correct
in defect-enhanced and recoil-enhanced diffusion.
We further assume that the temperature is suffi-
ciently low that thermal diffusion is negligible,
Then if the assumption of Fickian diffusion is valid
for the irradiated sample, the impurity concentra-
tion must satisfy

8,u=2,(D,e?*3,u), (1)
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where u(x, f) is the concentration of impurity atoms,
D, is the value of the irradiation-enhanced-diffu-
sion coefficient at the surface, and 1/8 is the dis-
tance from the surface where the intensity of
radiation falls off by ¢!, The sample is assumed
to occupy the region 0<x<w (i.e., we assume

the sample length L>1/8), and u(x, £) must be
bounded as x -«, We take the initial and boundary
conditions to be

ulx,t=0)=0, x>0, @

ulx=0,8 =uy t=0,

corresponding to a thick layer of impurity atoms
deposited on the surface of the impurity-free sample
prior to the irradiation. The Laplace transform

of Eq. (1) is taken with respect to time, and the
solution in transform space is found to be

i (x, p) = ugzK, (q2) [ pK @ T, @)

where z=¢*/2, g=(4p/@D,)'/?, and K, is the mod-
ified Bessel function of the second kind of order
one,

The inversion of Eq. (3) is obtained through the
use of a contour integral in p space and noticing
that # (x, p) has a branch point at the origin,® The
result of the inversion is

ulx, ) =g (1 -% foa Iz, T, k)dk), (4)

where

_e™* 1 Ny (k2)d, () = I, (R2)Ny (R) \
Iz, 7, k) = (1 J%(k)+N%(k) } >’(5)

J;, and N; are Bessel and Neumann functions, re-
spectively, of order one, % is a dummy variable
of integration, and 7 is the dimensionless time
variable, 7=%fD,t. The integral can not be eval-
uated analytically, except in the special case =0,
where, of course, the required initial condition (2)
is recovered,

A short time approximation can be evaluated by
using the asymptotic expansion for K; in Eq. (3)
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as p—o, since p and ¢ are inversely related, %10

The result of inverting the expansion for Eq. (3) is

found to be %10

ulx, ) ~uez'’? {erfe[(z - 1) /271/3]
- 37Y/2(z = 1)ierfc[(z - 1) /27'/%) /42
+7(332% - 182 — 15)#

xerfc[(z - 1)/27'/%]/322%} , (8)

which is valid for 7<< 1. The repeated integrals
of the complementary error function

ierfc(y)zf erfc(q) dg,
y

#erfe(y) =f ierfc(q)dg,
y

are tabulated.®!® Equation (6) has similarities to
the solution of the diffusion equation for a constant
thermal-diffusion coefficient D, with the same

initial and boundary conditions, namely,
up(x, t) = ugerfe[x/2(Dt)*/2]. 7

With D=D,, for small x Eqs. (6) and (7) predict
ulx, D) >ug(x, ), while for large x, u(x, t) falls to
zero much more rapidly than u,(x, ).

Equation (4) can be evaluated numerically using
a simple trapezoidal rule to calculate the infinite
integral, due to the rapid decay of the integrand.
We have made this calculation for various values
of 7, as shown by the solid lines in Fig, 1. Also
plotted (dashed line) is the thermal solution for
D =D, and the value of time, #=4(8D,)"!. 1t is
seen again that u(x, f) is greater than u,(x, f) for
the region x<1/8, but for x> 1/B, u(x, ) <ugz(x, £).
It is clear that for any choice of parameters to
characterize a thermal-diffusion profile, in com-
parison to the enhanced-diffusion profile, thermal
diffusion results in a more slowly changing pro-

ulx,t)/ug

1 | | T B |
2 4 [3] 8 1.0 1.2 14 16 1.8
£ =Bx/2

FIG. 1. Normalized concentration u(x,t)/u, vs nor-
malized depth £ into the sample, The solid lines give
the results for the enhanced diffusion coefficient, D(x)
=Dr€'B", from Egs. (4 and 5) for various effective times
7. The dashed line gives the results for a normal,
thermally activated diffusion coefficient, D(x)=D,, for
T=1.

file, The sharper profile displayed for irradiation-
enhanced diffusion is characteristic of the fall-off
of the diffusion coefficient (and increase in the
average jump time) with distance inside the sample
which causes the impurity atoms to tend to pene-
trate primarily near the surface,
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A great number of the early experimental references
are contained in recent reviews (Refs, 2—4) and will
not be repeated here.
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