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We present a systematic scheme for calculating the free energy of superfluid Fermi liquids by an asymptotic

expansion in the small pmameter T,/TF. We use this scheme to evaluate the strong~upling corrections to
the free energy of superfluid 'He. We show that the leading corrections can be expressed in terms of the

normal-state quasiparticle scattering amplitude, and discuss the strong-coupling results using the s-p
approximation for the scattering amplitude.

I. INTRODUCTION AND SUMMARY

In this paper we present a microscopic theory of
the free energy of a neutral Fermi system with

pairing and apply the theory to the superfluid
phases of 'He, assuming, as now seems almost
certain, that these phases are characterized by
spin triplet pairing with l =1."We consider only
spatially uniform systems in the absence of ex-
ternal fields, but initially specify no particular
type of pairing. Hence, although we are primarily
concerned with superfluid 'He, the general theory
developed in Sec. II of this paper should be rele-
vant to other systems with pairing, such as atomic
nuclei (allowing for finite-size effects as in Ref. 3)
and perhaps the interiors of neutron stars. The
basis of our theory is an asymptotic expansion of
the free-energy difference AQ between the paired
and normal states in powers of T,/T~, the ratio of
the transition temperature to the Fermi tempera-
ture T~ =P~/2m~he. The leading term in this ex-
pansion is the free energy of the BCS pairing theo-
ry', as is by now well known, this theory can ac-
count neither for the quantitative thermodynamic
properties of superfluid 'He, nor even for the
stability of a phase with the particular magnetic
properties of 'He-A. This failure of the BCS theo-
ry is at first sight quite surprising: T,/Tr -10 '
for 'He, and one is inclined to neglect all effects
of higher order in T,/T'r, as is successfully done
in the theory of superconductors. ' The inability
of simple BCS theory to describe the pairing in
'He has two causes. The first is the strength of
the residual interactions between 'He quasiparti-
cles. These interactions, as, for example, mea-
sured by the normal-state Landau parameters,
are an order of magnitude stronger in 'He than in
typical superconducting metals. The second rea-

son, first emphasized by Mermin and Stare, ' is
that for l &0 pairing even small corrections to the
BCS free energy can have significant physical con-
sequences, because the free-energy differences in
BCS theory between different states of the same l

can be much smaller than the characteristic pair-
ing energy itself.

In the early 1960s several authors pointed out
that the BCS free energy represents the leading
term in an expansion in powers of T,/T~, but seem
to have mistakenly concluded that the first correc-
tions are smaller by two powers of T,/T~ '~; the
nature of the leading corrections was pointed out
by Anderson and Brinkman, ' who realized that these
corrections could explain the stability of 'He-A.
We find that the most important corrections to the
BCS approximation are smaller by one power of
T,/Tr and can be calculated from the two-particie
scattering amplitude for quasiparticles on the
Fermi surface in the normal state. Our result uni-
fies the microscopic theory of the superfluid free
energy and the microscopic theories of the static
and transport properties of both the normal Fermi
liquid' "and the superfluid phases' ".The re-
sults of all these theories can be expressed in
terms of the same quasiparticle scattering ampli-
tude.

In Sec. III we use our theory to calculate the
free energy of 'He in the neighborhood of the tran-
sition temperature in terms of the scattering am-
plitude, and in Sec. IV we evaluate the resulting
expressions in the s- and P-wave scattering ap-
proximation to the scattering amplitude (s-p ap-
proximation). The phenomenoiogicai Ginzburg-
Landau functional provides a convenient bridge
between these results and the experimental ther-
modynamic properties of 'He near T,. The L =1
functional, in the notation of Mermin and Stare, '
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is

AQ[A] = —,'n(T)TrAA~ +P, ~TrAAr~'+Ps (TrAA~)'

+ Ps Tr (AA r) (AA )*+ P4 Tr (AA t )

+P, Tr(AA )(AA )*,
where the order parameter A, ~ is an arbitrary
3&3 complex matrix related to the energy-gap
matrix b, „s(k) by

n„s(k) =n(k) (too, )„s, (1.2)

S,.(k) =+A,.~(k)q,
y=I

and the coefficient n(T) has the form (T/T, —1)n'.
In the BCS theory the Ginzburg-Landau param-
eters are

nBcs(T) =N(0)(T/T, —1),
pBCS —pBCS '—pBCS —PBCS — 2 tiBCS

g ' = -N(0)(1/skBT, )'[+B[—,
' g(3)]]',

(1.4)

in terms of which the specific-heat discontinuities
at T, are

with N(0) =k'/2vsv»p», the single-spin quasipar-
ticle density of states at the Fermi surface. Fol-
lowing Mermin and Stare we call any theory in
which the ratios of the P, are as in (1.4) "weak
coupling, " and all other theories "strong coupling. "
In all weak-coupling theories AQ is minimized
by the "isotropic" state first studied by Balian
and Werthamer. '4 By studying the stationary points
of the free-energy functional for general values
of the P„Mermin and Stare" and Barton and
Moore" have shown that (assuming l =1) the B
phase of 'He must be the isotropic state, the A.

phase must be the axial state, and the AI phase in

a magnetic field must be the state obtained from
the axial state by setting either h~~ or b, ~~ equal to
zero. Hence, a successful microscopic theory
must give strong-coupling corrections to the BCS
theory such that, at pressures above the poly-
critical pressure, the P,. lie in a region of param-
eter space where the axial state is known to be
stable. A microscopic theory must also fit the
observed specific-heat discontinuities at T„which
yield more detailed information on the P, . To dis-
cuss the corrections to the BCS theory it is con-
venient to introduce reduced Ginzburg-Landau
parameters P, and 4P, defined by

N(0)
'-t4

Pi I
~

pBCS~

4c&
1 19

2

C» PS+ P4+gS

Ac 4
= 0.594—

N ~2 J4

C» 3 ( Q + PS) + PS + t)4 + PS

B

The specific-heat discontinuities have been ac-
curately measured only at the melting curve, where
Halperin et al."found b, P, +b P, =-0.70+0.13 and
b, P, =-0.1 + 0.13. The most striking feature of
these experimental results is the small size of
h ps relative to Ap, +n't)„all available theories
fail on this point t The s-P approximation of Sec.
IV gives b, P, +b P4 =-0.74, in accidental agreement
with experiment, but has h p, = -0.90. In spin-
fluctuation theories' the over-all scale of the

P, is an adjustable parameter, but these theories
fare even worse than the s- p approximation on the
ratio hps/(hp, +k, p, ): Brinkman, Serene, and

Anderson (BSA)" find 2.0 for this ratio, while
Tewordt, Fay, D5rre, and Einzel" obtain 2.13,
compared to the experimental value of 0.14.

In our opinion, the disagreement between these
theories and experiment is not surprising. Our
general results in Sec. III demonstrate that the
strong-coupling corrections depend sensitively
on the detailed structure in the scattering ampli-
tude for quasiparticles; only a reasonably good
approximation to the scattering amplitude can give
reliable strong-coupling corrections. A crude
check for the quality of an approximation is pro-
vided by normal-state properties such as the Lan-
dau parameters and the low-temperature transport
coefficients, which can all be expressed in terms
of the quasiparticle scattering amplitude. 2' The
spin-fluctuation model is based on a scattering
amplitude which yields normal-state properties in
significant disagreement with experiment and,
therefore, cannot be expected to give quantitatively
correct results for superfluid 'He. The properties
of the normal state at low pressures are repre-
sented adequately by the scattering amplitude in
the s-P approximation, "but at high pressures the
s-p approximation does not yield quantitative
agreement with measured transport properties of
normal 'He,"and we cannot expect reliable quanti-
tative results for the superfluid properties at high
pressures. In the high-pressure region an ade-
quate approximation to the scattering amplitude is
lacking. We present the results in s-p approxi-
mation for the following reasons: The normal-
state data indicate that the s-p scattering ampli-
tude is probably a good approximation at low pres-
sures, and we want to stimulate thermodynamic
measurements in superfluid 'He at low pressures
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to check this presumption. Secondly, we want to
demonstrate that at higher pressures the s-P re-
sults, although (as expected) not quantitatively
correct, are in reasonable qualitative agreement
with experiments in superfluid 'He.

In Fig. 1 we show the pressure dependence in the
s-p approximation of the specific-heat discontinui-
ties for the isotropic and axial states; this is
equivalent to giving the free energies, since the
two are related by

b, Q = --,' v'(d, c/c„) N(0)k~e(T —T,)'. (1.7)

At high pressures the calculated corrections sta-
bilize the axial state relative to the isotropic
state. At the melting curve the combination AP,
+bg, +d, P„which determines the specific-heat
jump at the A transition, is a factor of 2 too large.
The magnitude of this error lies in the expected
range; the normal-state viscosity indicates rough-
ly the same inaccuracy of the s-P scattering am-
plitude. " The calculated free energies cross at
9 bar, while the measured polycritical pressure is
21.5 bar, so the s-P approximation overestimates
the strong-coupling corrections to the axial-iso-
tropic free-energy difference even at relatively
low pressures.

In Table I we give theoretical results for the
4P, and the specific-heat discontinuities at zero
pressure, where the s-P approximation should be
most accurate. The s-P approximation parame-
trizes the scattering amplitude in terms of the
Landau parameters, and we have followed the
usual procedure" of setting E;"=0 for l~2. To
obtain the results in Table I we took E', =10.0V,

E;= -0.6V, and E,' =6.04, the experimentally de-
termined values given by Wheatley. ' To indicate
the sensitivity of the results to the remaining pa-
rameter E,', we give results for two different
choices of E,'. In the first rom of Table I we used
E,'=-0.68, the value obtained from the forward
scattering sum rule on the scattering amplitude;
in the second row we used E,' =0, a choice consis-
tent with the experimental value -0.15 ~0.3 ob-
tained by Corruccini, Osheroff, Lee, and Richard-
son." [For other values of the Landau param-
eters, the hj3, are easily obtained from Eq. (4.5).]
The calculated strong-coupling corrections are
small at zero pressure, of order 10%, but specif-
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ic-heat measurements comparable in precision to
those of Halperin et al."could check the expected
accuracy of the s-p approximation. Concerning
the uncertainties at high pressures, our optimistic
view is that a systematic study of the strong-cou-
pling corrections, together with the transport
coefficients in both the normal and superfluid
phases, should allow us to learn much more about
the normal-state quasiparticle scattering ampli-
tude and to uncover its presently unknown struc-
ture.

II. T,jTF EXPANSION OF hQ: GENERAL RESULTS

In this and the following sections we calculate
formally the free-energy difference b,Q between
the superfluid and normal states of a Fermi sys-
tem by an asymptotic expansion in the small pa-
rameter T,/T~. The dominant term in this expan-
sion is the weak-coupling free energy; it is of
order (T,/T~)'. The leading corrections to the
weak-coupling result are of order (T,/T~)'. The
aim of this paper is a calculation of these leading
corrections. Our main result is that the most

I I I I I

10 15 20 25 30 35

P [bar]
FIG. 1. Pressure dependence of the specific-heat

discontinuities in the s-p approximation. The results
are obtained from the Landau parameters I"p, E f I

p

of Ref. 2; I &
is calculated from the forward scattering

sum rule.

TABLE I. Ginzburg-Landau coefficients and specific-heat discontinuities for He at zero
pressure in the s-p approximation.

B N + A N + A N1

I I
= -0.68 -0.02 -0.0i -0.02 -0.06 -O.i2 i.52 0.60

=0 0I.
-0.04 -0.02 -0.03 -0.08 -0.i 0 i.55 i.32 0.6i
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important (T,/Tz)~ terms can be calculated from
the two-particle scattering amplitude for quasi-
pa~ticles on the Fermi surface in the normal state.
The same scattering amplitude determines the
transport coefficients in the Landau theory of
Fermi liquids, so in this sense the free energy
through order (T,/T~)3 can be calculated from
Fermi-liquid theor y.

We present the derivation of these results in two
parts. In the first part, comprising the remainder
of this section, we rely only on general assump-
tions about the properties of the Green's functions
and scattering amplitudes, such as the charac-
teristic order of magnitude of these quantities and
their characteristic energy and momentum scales.
These considerations are sufficient to derive the
T,/T~ expansion for n.Q and to show that the
(T,/Tz)3 terms have the form just described.

The arguments in this part hold for both singlet
and triplet pairing, for any angular momenta, and
for all temperatures below T,. In Sec. III, on the
other hand, we concentrate on the contributions to
bQ of fourth order in the order parameter and for
triplet pairing. The principal results of Sec. III
are Eqs. (3.15) and (3.30) which give explicitly the
(T,/Tz)~ contributions to n, Q for arbitrary odd I and

I

to the / =1 Ginzburg-Landau parameters P, , in
terms of angular integrals of the scattering ampli-
tude on the Fermi surface.

A. Formal preliminaries

In this section we give a brief introduction to
the formalism used in our calculations. We begin
from an expression for the grand canonical ther-
modynamic potential density Q (hereafter simply
called the free energy) as a stationary functional
of the exact self-energy. This functional was first
discussed for normal Fermi systems by Luttinger
and Ward, '4 whose work was extended to the elec-
tron-phonon system by Eliashberg" and to general
single-component superfluids by DeDominicis and
Martin. " We use this functional both because its
stationarity properties simplify our expansion and
also because it can serve to systematically gen-
erate the strong-coupling corrections to response
functions and to properties of spatially inhomoge-
neous systems. "

By using a 4X4 matrix representation for the
Green's functions and self-energies, one can write
the stationary free-energy functional 0 for transla-
tionally invariant systems in the compact form

d'4'
Q[Z] = 2ksTQ -— 2, Tr~{Z(k, &u„)G$, &u„)+in[-G(k, m„) ']j+@[G]. (2.1)

Here the self-energy ~ and Green's function G are
4x4 matrices constructed from the more familiar
2&&2 spin-matrix self-energies and Green's func-
tions,

(' G, (k, (u„)
G, (k, (u„) =

o

!

-Go(-k, -m„) f

~ ky(dn 6 y(dn

R(k, (o„)=!
y
—(dn — -k

y
—Cdn

G y (dn E
y (dn

G(k, id„) =

-(d -G~ -k -(d

(2 2)

To avoid confusion we will denote the trace in the
4 x 4 space by Tr4, and in the 2 & 2 space by Tr, .
4[G] is a functional defined diagrammatically by
the requirement that 2[54/5Grg, u&„)] reproduces
the formal skeleton-diagram expansion for &(k, ~„)
as a functional of G. Finally to make 0 a functional
of Z alone one fixes G in terms of ~ by the Dyson
equation

G '(k, &u„) = G, ' $, (u„) —E (k, (u„), (2.3)

where

and Go(k, ru„) is the Green's function for noninter-
acting fermions. The functional Q[Z] has the fol-
lowing stationarity property:

5Q[R]/5E(|k, ~„)=o (2.4)

for any Z satisfying the self-consistency equation

5@[6]/&G(k, (u„) =-,' & r (k, (u„) . (2.5)

In this equation one treats all the elements of G
and Z as independent; our functional derivatives
are defined by

Jh

Equation (2.5) is an implicit equation for &, since
G on the left-hand side is defined by Eq. (2.3).

At one such stationary point Q[Z] is equal to the
true thermodynamic potential Q(T, p), and the
Green's functions have their physical values
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G»()», „)=—I d»' "'(T»» ()»»i» (0)),
0

B

Gr„(((-k, (d-„}=— d7 e '""'(T,a -„(,(v)a ), „(0}),
0

»' »()( )= —f a'"»"'&a»„(-)a,»:„(»))0,
0

8
Ft z(k, (d„)= — dr e ' "'(T,a g (r)ay & (0)) .

0

(2.V)

In particular, at the physical stationary point,
h(k, &u„) and ht(k, (d„) are matrix adjoints, and

Zr(I(, &u„) is the transpose of Z$, (d„):

+as@» (()n) =+()n» ~n)» Zns(k» ~n) =Zsn'$» &6).

(2.3)

In the normal state, above T„ the pairing self-
energy 4(k, &o„) and Green's function F$, &o„} van-
ish. We now assume that for temperatures near
T, the normal state is correctly described by the
microscopic version of Landau's Fermi-liquid
theory, and we denote the corresponding self-
consistent solution of (2.3) and (2.5) by Z„, G„. Be-
low T, this normal solution should exist and rep-
resents a straightforward extrapolation of the
Fermi-liquid theory. We take the properties of the
normal state to be known and calculate only the
difference bQ between the true free energy and
the normal-state free energy Q„=Q[Z„].

The natural variables for calculating the free-
energy difference b,Q are the "superfluid parts"
of the self-energies and Green's functions, ob-
tained by subtracting off the corresponding quanti-
ties for the normal state,

t Z(k, (o„)—Z„(k, &u„}

Z(k, (u„) —R„(k, (u„) = l

n. t (k, -s)„)

(G(k, u)„}- G„(k, (u„)

G(k, (u„) —G„(k, (d„) =
I'~ k, -cd„

n, (k, (u„)

-Zr(-k, -(d„) + Z~r(-k, -(o„)f
F(k, (o„)

-Gr(-k, -(d„)+Gr(-k, -u)„)f

(2.9)

When one takes R„and G„as known functions, n, Q

becomes a functional of the superfluid self-energy
alone,

tion

&4[G„]/&G(k, ~„)=-,'Z„'(k, ~„),

~Q[Z —Z„]=Q[&]—Q[Z„]. (2.10)

Our scheme for calculating bQ will be to study the
formal diagrammatic expansion of 4[G] —4[G„] in

powers of G-G„.
Because Q[Z] is stationary at Z„, n, Q cannot con-

tain a term linear in G —G„, and by using the rela-

one sees easily from (2.1) that the linear term in

4[G] —4[G„] is exactly cancelled by the linear
term from the rest of the full functional Q[Z]. To
simplify our discussion of the expansion of 4[G],
we use this cancellation explicitly and omit the
linear terms both in 4[G]—C'[G„] and in the other
parts of the full free-energy functional. By this
subtraction we obtain a new functional 64',

&@():-t:)=»t())-@(): )--*»,»Z f », T,(» (», .)(G(&, .) —6 ((, .))).
~n

(2.11)

in terms of which the stationarity condition for
AQ becomes

s~Q[z —z„]
5(Z(k, (u„) —Z„(k, &u„}}

whenever

(2.12)

~»»[»»]»[ZT( ) ZT( )]
t)(G(k, (d„)—G„(k, (u„})

(2.13)

Equation (2.13) serves to determine Z —R„and

G —G„self-consistently at the stationary points of
bQ. Hence any approximation to 44' generates an

approximation to the free energy 4Q. We now can
turn to constructing an expansion of L4 in powers
of T,/T~.

B. T,/TF expansion of A4

The basic assumption we use to expand 44 is
that k~T, is small compared to all relevant ener-
gies in the normal state. Our formal expansion
parameter is therefore T,/T„, where keT„ is the
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smallest characteristic normal-state energy. An

equivalent formulation of this assumption is that
the superfluid coherence length $, =5vF/2)tksT,
is large compared to g„, the biggest relevant
length in the normal state. The smallness of T,/T„,
or equivalently of $„/f, serves both to justify re-
taining only certain classes of diagrams in the
diagrammatic expansion of b, e', and to show that
the incoherent parts of the Green's functions can
be ignored in the diagrams retained. We expect
that T„ is of the order of the Fermi temperature
1~, approximately 1 K in 'He. A likely candidate
for T„ is the spin-fluctuation temperature
(1 —F;)T„=Tr/4, in which case T,/T„ is still an
excellent small parameter of order 10 '. Since
T„cannot differ drastically from T~, for notational
simplicity we will express the asymptotic expan-
sion in terms of the ratio T,/T~ [equivalently
(k~$, ) ']. In this notation powers of T~/TN are ab-
sorbed into the coefficients of the asymptotic ex-
pansion.

The starting point for our considerations is the
diagrammatic expansion of hc'[G —G„]. Each dia-
gram contains two or more Green's-function lines
representing elements of the matrix G —G~; all
the G —G~ lines terminate in normal-state vertex
functions represented by open circles. Some 44
diagrams of low order in G —G~ are shown in Fig.
2, along with our diagrammatic conventions for
the components of G- G„. In our diagrams we do
not distinguish between G and G~, even though we
took them as independent in the stationarity condi-
tions (2.5) and (2.13). This is permissible if we
modify the counting factors for the diagrams ap-
propriately, since at the physical stationary points
G~ is the transpose of G.

In order to convert the diagrammatic expansion
of A@ into an asymptotic expansion in T,/T~, we

need assumptions about the elements of a dia-
gram, the normal-state vertices and the super-
fluid parts of the Green's functions. An m-point
normal vertex function I' ' has m/2 incoming
lines and m/2 outgoing lines because particle num-

ber is conserved in the normal state, and it de-
pends on m —1 independent momenta k,. and fre-
quencies ~„, = (2n, +1)wkeT. Our assumption is that
the characteristic scales for this momentum and

frequency dependence are set by k~ and k~T~, re-
spectively. Consequently, the order of magnitude
of a vertex l"' ' can be estimated by dimensional
analysis which leads to

P(m) (k )-s(mk-1)k T (2.14)

This estimate requires, in particular, that I' '

contain no factor T~/T, . We are not aware of any

relevant mechanism leading to such a strong tem-
perature dependence of the normal-state vertices.

We point out, however, that our assumptions ex-
clude all critical phenomena from our considera-
tions. Our theory is therefore limited to the tem-
perature region where critical fluctuations are
negligible; for 'He this does not seriously restrict
its range of applicability. Our assumptions about
the nurmal-state Green's functions are taken from
Fermi-liquid theory. G„consists of quasiparticle
and incoherent parts,

G~(k, &o„) = G„(k, (u„)qp+ G~(k, (u„)m, ,

where the quasiparticle Green's function is

(2.15)

(a) (b)

) (
li

1)

j:G-GN]
FIG. 2. Some diagrams for 4@[&- „],along with

our diagrammatic conventions for the Green's-function
lines. The open circles represent normal-state vertex
functions.

GN~(" ~ )qP
=

k k )
5as (2 1~)

1 1

Z z~„—IIzgp k —kg

and the incoherent part G„(k, m„), is assumed tobe
of order (keT~) ' and to vary with k and ~„on the
scales k~ and k~T~, respectively.

In contrast to the normal-state vertices and
Green's function, which are inPut Parameters in
our theory, the superfluid Green's functions I', I'~,
and G —G„must be calculated from Eqs. (2.3) and

(2.13). This we will do by a self-consistent pro-
A A

cedure. Starting from an ansatz for ~ —~„, the
superfluid part of the self-energy, we will identify
all the contributions to t) 4' through order (T,/T~)'.
Knowing t) 4) one can calculate Z —R„ from (2.13)
to show that our ansatz is self-consistent. For-
tunately, the ansatz only needs to be satisfied to
leading order in T,/Tz Higher-. order corrections
first contribute to AQ in order (T,/Tr)', as a con-
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sequence of the stationarity property of Q[Z]. Our
ansatz is that Z (R, &u„}= Z„(%,ur„), and 6 (K, ru„) is
of order k~T, and varies with k and co„on the scale
of k~ and k~T~, respectively. These assumptions
suffice to determine the order in T,/T» of any dia-
gram for b,4. The order-of-magnitude arguments
which we give in the remainder of this section are
independent of any specific type of paired state,
so for simplicity we will use the l =0 Green's func-
tions and suppress all spin indices.

Combining our assumptions about G„, our ansatz
for & —&„, and the Dyson equation (2.3), we find

E(k, (u„) = F, (»k, (u„) +F,(k, (u„),

G(k, (u„) —G»(k, &u„) = [G(k, (u„) —G»(k, &u„)]@i (2.17)

+[G(k, (u„) —G„(k, (u„)],„, ,

where the quasiparticle parts, familiar from
superconductivity theory, are given by

(2.18)

a = (I/Z)s(k, wT), (2.19)

which we will use as the order parameter, and
)„=Kv»(k- k»). For both ~u&„[ and

~ (J in the range
skaT„Fq» and (G —G„)~» are of the same order,

Fq»(k& &a)„)
- [G(k, (u„)—G»(k, (u„)]q»- (1/kaT»)(T»/T, ) .

(2.20a)

In this "low-energy range" of frequencies and
momenta, the incoherent parts of the Green's func-
tions are smaller than the quasiparticle parts by
one power of T,/T»:

Fh„(k, (u„) [G(k, (o„)—G»(R, (a&„)];„,
- (1/kaT») x 1 .

(2.20b)

As the frequency increases or the momentum
moves away from the Fermi surface, the distinc-
tion between quasiparticle and incoherent Green's
functions diminishes until, for [ ru„[-kaT» or ( (, ~

-k~T~, both parts are of the same order. In this
"high-energy range" the order of magnitude of
the Green's functions is given by

Fq»(k (u„) E~ (ki (a& ) (1/kaT»)(T /T»)

[G(k, &u„) —GN(k, (o„)]~-[G(R, (a)„) —G„(k, (u„)]. ,
- (1 /kaT»)(T, /T» P . (2.21)

Equations (2.14), (2.20), and (2.21) represent the
basic order-of-magnitude estimates for classifying

[G( i ~n} GN(ki ~n~qP
( ( )( 2 (2 (/~2)

'

~ is the renormalized "energy gap,
"

r 4 diagrams with respect to their order in T,/T».
Factors of T,/T» in A4 diagrams arise explicitly
from the superfluid Green's functions, as dis-
cussed above, and from frequency sums and mo-
mentum integrals involving these Green's func-
tions. The "most dangerous" negative powers of
T,/T» come from the quasiparticle Green's func-
tions in the low-energy range. In this case, how-
ever, one must consider in detail the integration
and summation restrictions necessary to keep the
$ and ~„arguments of the Green's functions in the
range &k~T, . For an order-of-magnitude estimate
of these restrictions we use

kaT Q - kaT»(T, /T»),
l ~.1~k~&,

(2.22)
d3k-k~3 T, T~

Ik kgl6 ~p

Hence, the restrictions lead to additional positive
powers of T,/T». Our T,/T» classifications are
relative to the characteristic normal-state energy
density (kaT»)k»' which we obtain as a common fac-
tor for any diagram, collecting the prefactors
T»', T», k» in the estimates (2.20), (2.21), (2.22),
using (2.14) for the order of magnitude of the nor-
mal parts of a diagram, and estimating high-ener-
gy sums or integrals by T+ T» and f-d'k-k~».

Whereas the negative powers only depend on the
number of quasiparticle lines in a diagram, the
compensating positive powers depend in addition
on the topology of a diagram, and so require the
more detailed discussion which follows. For con-
venience, we group the diagrams by number of
superfluid lines and discuss each group separately,
starting with the easiest one to analyze.

1. Diagrams with four superfluid lines

We first discuss the contributions to 64 from
the quasiparticle Green's functions in the low-
energy range. According to the estimate (2,20},
four quasiparticle lines in this energy range carry
a factor (T,/T») 4. If the four arguments in these
Green's functions are independent, not related by
energy and momentum conservation, one obtains
in addition a phase-space factor (T,/T»)' from re-
stricting the four momentum integrations to the
region within gp of the Fermi surface, and a
further factor (T,/T»)' from restricting the four
frequency summations to the range &k~T, . Such
a diagram therefore contributes to 4@ in order
(T,/T»)4 and will be neglected here

Thus the only diagrams with four superfluid
lines which are of interest here are those which
separate by cutting the four superfluid lines, since
in this case one of the four frequencies is fixed by
energy conservation. This implies that only three
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of the frequencies have to be restricted to the
range &4'~T„ the fourth one is then automatically
in this range. Such diagrams therefore contribute
to h&k in order (T,/T»P. All diagrams of this type
are shown in Figs. 3(f), 3(g), and 3(h). Note that
momentum conservation, in contrast to energy
conservation, does sot reduce the order in T,/T»,.
if we restrict three momenta to the region near
4'~, the fourth one given by momentum conserva-
tion does not automatically lie in this region. One
therefore needs a further constraint on the three
independent momenta which gives an additional
factor T,/T», "and a total momentum phase-space
factor (T,/T»)', just as in the case of four indepen-
dent momenta.

We will now show that the incoherent and the
high-energy parts of the superfluid Green's func-
tions do not contribute up to order (T,/T»)'. This
statement is obvious for the incoherent part in
the low-energy range, since these Green's func-
tions are at least one power in T,/T» smaller than
the quasiparticle Green's functions. The discus-
sion of the high-energy parts is slightly more
complicated. Suppose that m &4 Green's functions
are in the low-energy range and 4 —m Green's
functions have arguments at high energies. Ac-
cording to (2.20) and (2.21), these Green's func-
tions carry at least a factor (T,/T»)' ' . The sum-
mation and integration restrictions necessary to
keep m Green's functions in the low-energy range

+—1
2

(a) (b) (c)

(e) (f)

FIG. 3. Diagrams which contribute to b4 through
order (T /Tz) .

give a factor (T,/T»)', so that the total contribu-
tion to h4 is of order (T,/T»)' and will be ne-
glected.

For the diagrams with four superfluid lines we
have now achieved the important result that the
quasiparticle parts of the Green's functions are
sufficient to calculate the free energy up to order
(T,/T»)'. To demonstrate the further simplifica-
tions which are possible we will next work out in
detail the diagram with four off-diagonal Green's
functions, Fig. 3(f). The contribution of this dia-
gram to 44 is given by

——,'(—')(k T}'g Q Q )'
( ) (

)' ~I' '(k„(o„,k, (u„;K„(ar„,k, +k, -k„(o„+(u„—(u„)~
"s

x F~(k„(c)„)F~~(k2&&u„)Fw(k~& (o„)Fw(k~ +kl —k~& &u„+(u„—4&» ) .
(2.23}

In contrast to the product of quasiparticle Green's
functions in (2.23), which is strongly peaked for
values of all four frequency arguments less than

&~T, and all four. momentum arguments within (~'
of the Fermi surface, the normal vertex I'"'
varies with frequency on the scale of k'~T~ and
with momentum on the scale of k~. Thus to leading
order in T,/T», I'"' can be replaced in (2.23}by
its zero-frequency limit, with R„k„and R, on the
Fermi surface:

(&)I' (k& &o„,kn m„k& u„,, z+ &
—k»&u„, +&@„—„,)

mi'"'(k k„O, k ~k, 0;k~5~, Ok (k, +k -k ), 0).
(2.24}

The resulting function of the angular variables is
independent of temperature to leading order in
T,/T», and, when all four moments are on the

Fermi surface, is proportional to the conventional
dimensionless quasiparticle scattering amplitude
T(k„k„k„k,},"
T (k„k„k~,k4)

k~~

(2.25)

(This choice of variables for T is highly redundant,
but will be temporarily convenient; because all
four quasiparticles are on the Fermi surface, T
depends on only two independent variables. )

The smallness of T,/T» allows one further sim-
plification: To lowest order, the four energy
variables $ in (2.23) are independent, so (2.23)
is unchanged to order (T,/T»)' if the guasiparticle
Green's functions are replaced by the following
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distributions of equivalent weight concentrated
at the Fermi surface:

Similarly in the diagrams with (G —G„)~ lines we
can make the substitution

This enables us to perform the three 0 integrals
in (2.23), leaving

——,'(v»p»)kg —,')vm ' ' ) '
J)

' 5(Ik, +k2 —k, I-1)[T(k~, k2; k„k, +km- k~)]2

b, b,

(~ +I&I'Pn [(& +& ~ P+IzI~]~, (2 28)

which is explicitly of order (T,/T»)' and has the
form we wanted: an angular integral of a quadratic
function of the two-particle scattering amplitude
for quasiparticles on the Fermi surface.

It is easy to check that the important steps lead-
ing to (2.28}, in particular replacing I'4' by T and
replacing the quasiparticle Green's functions by
distributions on the Fermi surface, depend on
properties shared by I, I', and G —G„and can be
done for any L. Hence a completely parallel treat-
ment works for all the diagrams of order (T,/T»)'
with four superfluid Green's-function lines. For
l w 0 the nontrivial spin and angular dependences of
h„z(k) only complicate the remaining spin sums
and angular integrals.

2. Diagrams ~ith more than four superfluid lines

We will show that all these diagrams contribute
to the free energy in higher order than (T,/T„)'.
Obviously the most dangerous contributions come
from quasiparticle lines. Arguments identical to
those given before show that diagrams with m
superfluid lines contribute in order (T,/T») if they
involve m independent 4 integrations and ~„sum-
mations. In the worst case (m =5), energy con-
servation can reduce this order by one power of
T,/T» to order (T,/T»)' Ring diagr. ams of the type
shown in Fig. 2(c) are also of order (T,/T»)', no
matter how many superfluid lines are involved.

For circulating momentum q and circulating fre-
quency (d of order $, ' and k'~T„respectively,
each bubble in such a diagram contributes in order
1. The restriction on the circulating momentum
gives a factor (T,/T»)' and the restriction on the
circulating frequency gives a factor T,/T». These
diagrams therefore contribute to b 4' in order
(T,/T»)' and can be consistently neglected.

3. Diagrams ~ith three superfluid lines

The two diagrams of this type are shown in Figs.
2(a) and 2(b). Each of these diagrams consists of
three superfluid Green's-function lines connected
by a normal six-point vertex I' '. Counting powers
of T,/T» originating from the superfluid lines, k

integrations and w„summations, one finds that the
"superfluid part" in these diagrams gives a factor
(T,/T»)~. We will show that the vertex I'+ intro-
duces further powers in T,/T» unless it has the
form of two four-point vertices connected by a
single normal Green's function. Therefore, to
order (T,/T»)', we will again be able to express the
free energy in terms of quasiparticle scattering
amplitudes.

We first note that to order (T,/T»)' we need to
keep only the quasiparticle part of G —G„. Fur-
thermore, since I'"'(%, &u„; ) varies with mo-
mentum on the scale of k~, we can again replace
(G —G„)~ by the distribution (2.2V},

d'k'
ksTQ , k 3 [G(fi, (o„)—G„(k, (u„}]~i'"(k, &u„; ~ ~ )

i k~T ~ dA

Z 2sv»p» ~ 4w ((o'+InI'} (2.28)
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It is now important to observe that the frequency
sum in (2.29) vanishes if one neglects the ar„de-
pendence of I' "'. We therefore can replace
I'"'(k &o ~ ) in (2.29) by the difference

I' '(k (o ~ ~ ~ ) —I"' '(k u) ~ ~ ~ )

where co, denotes here and in the following some
fixed frequency of order kJ, Tc. Crudely speak-
ing, this means that only the "frequency deriv-
ative" of I'"' contributes to the free-energy dif-
ference. The constant part of I'"', which is un-
known, fortunately drops out of our calculation.

To proceed further we consider the diagram. -
matic expansion for the difference

I"{')(k,(o; ~ ~ ) -I'("(k, (u„~ ~ ),nt

which is obtained from the expansion for
I'"'(k, &o„; ~ ~ ) in the following way. First,
in each diagram for I""', one replaces in all pos-
sible ways one of the Green's functions which
carry the external frequency +„by the difference
G„(.. ., &u„+&a ) -G„(.. ., e, +&o ), and sets &o„equal
to co, everywhere else in the diagram. Next, one
replaces in all possible ways two Green's functions
carrying e„by the difference and sets e„=+0 else-
where, and so on. We now concentrate on the dif-
ferences of Green's functions occurring in these
diagrams. The high-energy part and the incoher-
ent part of G„(.. . , ru„+&a ) -G„(.. . , &u, + v ) are
of order (u&„—ur, )/(ksT„}». Since ~„and ~, are
both ~ k~T„ these parts lead to an additional fac-
tor T,/Tz and hence can be neglected. From the
remaining quasiparticle part we find, after per-
forming the $ integration, a factor

~-—&(5»)
1 1 i~
Zi&o„—g» Z (2.30)

As an example we give the contribution from dia-
gram 3(d):

- iv [sgn (&u„+ &o ) - sgn (&o, + &u„)]. This factor van-
ishes unless ur is of order k~T„and thus leads
to an additional factor of T,/Tr in any diagram forI'" which contains an internal frequency sum over

The only diagrams for I""'which do not pro-
duce an extra factor of T,/T~ are those shown in
Fig. 4; they consist of two four-point vertices
connected by a single quasiparticle Green's-func-
tion line whose frequency is fixed by energy con-
servation and thus not summed over. Only when
inserted in such a line does the difference of
Green's functions not produce an additional factor
T,/Tz. A.t most one such line can occur in any
diagram, since the skeleton diagrams for 44 con-
tain no self -energy insertions. Summing all these
diagrams is equivalent to replacing the open cir-
cles in Fig. 4 by the full four-point vertices. To
leading order in T,/Tz these vertices can again be
taken at zero frequency and with all external mo-
menta on the Fermi surface.

The resulting diagrams for 44 which contribute
in order (T,/T~)' are shown in Figs. 3(d} and 3(e).
Only the quasiparticle parts of the superfluid
Green's functions and of the explicit normal
Green's function have to be included in this order,
and, as before, the quasiparticle Green's functions
can all be replaced by distributions concentrated
on the Fermi surface. For the normal Green's
functions the appropriate substitution is

3

v,p~ 4~ 4m

x T(k» -k»k» —k, -k, +k, )

T 2+ ~g[»12 )+

~ri
X

(&g»+ ]/[»}«» [((g) y(g) (/ ) + [kg[]'12
"3

(2.31)

4)z -4)& +(d&
+n3

Fgo. 4. A diagram for 1" with an internal line
whose frequency is fixed by energy conservation.

Notice that the product of quasiparticle scattering
amplitudes in the integrand of (2.31) cannot be re-
duced to the simple product T' as in (2.28), be-
cause one incoming quasiparticle and one outgo-
ing quasiparticle are interchanged between the two
amplitudes. The same more complicated product
of scattering amplitudes occurs in Fig. 3(e) also.
In any case, we have now shown that the (T,/T~)'
terms from diagrams with three superfluid lines
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can be expressed in terms of quasiparticle quan-
tities.

4. Diagrams with two superflgid lines

The two diagrams with two superfluid lines are
shown in Figs. 5(a} and 5(b). Diagram 5(b} con-
tributes to the free energy in order (T,/T~)' and
can be analyzed with the same methods as used
before. Diagram 5(a), however, demands special
considerations; it is the only diagram which con-
tributes in order (T,/Tr)'. We will call this the
"weak-coupling diagram", because to leading or-
der in T,/Tr it generates the well-known BCS ex-
pression for the free-energy functional, and to all
orders in T,/Tr it generates a weak-coupling Ginz-
burg -Landau functional. The weak-coupling dia-
gram furthermore determines the transition tem-
perature, since it is the only diagram which con-
tributes in second order in the order parameter.
The vertex function in this diagram is irreducible
in the particle-particle channel because 54 /5 G
contains only skeleton Z diagrams; we indicate
this by a line through the vertex, separating the
incoming and outgoing lines. This particle-parti-
cle irreducible vertex plays the role of the pair-
ing interaction in simple BCS theory, and will be
denoted here by V(k„&u„;k„&u„)to emphasize
this correspondence.

Using the rules (2.20) and (2.21) one finds easily
that the leading contributions from this diagram
are of order (T,/Tr)2 Contributi. ons of this order
come from both the low-energy and the high-ener-
gy parts of the I' functions, which reflects the
well-known fact that the weak-coupling theory de-
pends on a high-energy cutoff. Our point of view
is that neither the particle-particle irreducible in-

~iH

FIG. 5. Two diagrams with two superfluid Green's-
function lines; (a) is the weak-coupling diagram, of or-
der (Tc /TI), while (b) first contributes in order
(T /TJ, )3.

teraction nor the high-energy parts of the Green's
functions are known to any reliable accuracy. We
therefore regard the transition temperature T, as
a parameter to be taken from experiment. The
(T,/Tr)2 terms in the free energy are then given by
the BCS free-energy functional, expressed in
terms of the measured T, and the measured densi-
ty of states N(0).

The weak-coupling diagram also leads to addi-
tional contributions of order (T,/Tr)', which come,
for example, from the incoherent parts of the E
functions at low energies. These corrections,
which are usually neglected in strong-coupling
theories for 'He, cannot be analyzed with the meth-
ods of this section, but will be discussed in Sec.
IG.

The final diagram which we must discuss is
shown in Fig. 5(b). It contains two (G -G„) lines
connected by the particle-hole irreducible inter-
action l(k„u&„;k„&u„). Using (2.27) to evaluate
the leading contribution from the quasiparticle
parts of (G —G„), we find

3 1 k~Tc dQ1 d02 T
2 ( vspr)kr + 2 4

' —g p I( kr k» &u„; kr. k» u&„2)
Vy Pp r 7r c n n1

n1 'On
1

~n
2 2

(~ + [n2 ))~~2 [(g ( ((gP + [d]~)~&2 [(g [t11 n1 n2 n2

(2.32)

Although (2.32) appears to be of order (T,/Tr)',
it is actually of higher order in T,/Tr, because
the frequency sums in (2.32) vanish if we ignore
the dependence of the particle-hole irreducible in-
teraction on &o„or &u„. To evaluate (2.32) well1 n2.
follow closely our previous treatment of the fre-
quency dependence of I "'. We first replace
I(k„&o„;k„&u„)in (2.32) by the difference

+I(k„(o,;k„sr,), (2.33)

and then calculate (2.33) from the diagrammatic
expansion for the irreducible interaction I by the
following procedure: In each diagram for I we re-
place in all possible ways one (and two, and three,
. . .) Green's functions carrying &o„, and also one
(and two, and three, . . .) Green's functions carry-
ing u&„by the differences Gs( ~, ur„+ ~ )lt2 1—G~(. . . , (so+ ~ ~ ~ ) and G„(. . ., ~d„, + ~ ~ )
-G„(. . . , ~,+ ~ ~ ~ ), respectively; everywhere
else we set the external frequencies (d„and +„1 n2

equal to &o,. Hence, any diagram for (2.33) con-
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tains at least two insertions of Green's-function
differences, one carrying co„and one carrying ur„.
As before, the quasiparticle part of aninsertion
produces a factor [sgn(ru„+ ru ) —sgn(&so+ ru )],
which vanishes unless the internal frequency ur is
of order k~T, . Each summation over an internal
frequency carried by an insertion therefore intro-
duces a factor T,/Tr. The leading term of (2.33),
of order T,/Tr, comes from diagrams in which the
insertions carry a single internal frequency. Such
diagrams must contain exactly two insertions and
must be reducible by cutting the two insertion .

lines. Two distinct classes of I diagrams generate
diagrams for (2.33) with these properties: the dia-
grams reducible in the particle-particle channel
and those reducible in the crossing particle-hole
channel. The two corresponding diagrams for 44
of order (T,/Tr)' are shown in Figs. 3(b) and 3(c).
To leading order in T,/Tr the full four-point ver-
tices in these diagrams can be taken at fixed (zero)
external frequencies and with all momenta on the
Fermi surface, and therefore can again be re-
placed by quasiparticle scattering amplitudes.

It is easy to verify that the high-energy and in-
coherent parts of the normal Green's functions
can be neglected in the insertions. These parts
are of order (~„,—&u, )/(ksTr) or (~„—&u, )/(ksTr)'
and would introduce further powers in T,/Tr since
co„, ~„, and co, are of order k~T, . Finally we

Aj )f2

note that to leading order in T,/Tr the difference
of normal Green's functions in diagrams 3(b} and
3(c) can be replaced by the distribution

—(iv/&)5(&~)[sgn(a„+ u& ) —sgn(&u, + &u )].

(2.34)

The final results for ~C are independent of the ar-
bitrarily chosen (in the sense that any frequency
~ ksT, would work as well} subtraction point &u, .
The subtraction in (2.34) only guarantees absolute
convergence of the frequency sums in 4C and can
be neglected if these sums are performed in the
appropriate order.

We have now found all the diagrams which con-
tribute to M through order (T,/T&)'. These dia-
grams are shown in Fig. 3 with their correct com-
binatorial coefficients and signs. All but the weak-
coupling diagram are of order ( T,/Tr}3 and can be
evaluated by replacing the Green's functions by
distributions on the Fermi surface and the four-
point vertex functions by quasiparticle scattering
amplitudes. The weak-coupling diagram in gener-
al requires more careful treatment, since it is of
order (T,/Tr)' and contains significant contribu-
tions from the high-energy range of frequency and
momentum.

To end this section we will verify our ansatz for

the superfluid self-energy, on which we based the
preceding analysis. We first consider the free-
energy functional AA, [Z-- Z„] obtained by keep-
ing only the weak-coupling diagram 44„, in the
free energy expression (2.1). Since 44, is a
functional only of F(k, u&„) and F~(k, ra„), Eq. (2.13)
implies that the ansatz Z = Z„ is satisfied exactly
at the minimum point (Z —Z„), of &A, . The
weak-coupling gap equation,

&& E„,(k„(u„,), (2.35)

furthermore shows that &,(k, e„) is of order
k~T, and varies with k and co„on the scales k~ and

&~T~, respectively, since the pairing interaction
V varies on these characteristic scales. Hence,
our ansatz is fulfilled in the weak-coupling approx-
imation and therefore in lowest order in T,/Tr
To find the leading corrections we have to add to
AA„, the 44 diagrams of order (T,/Tr}3. We see
from (2.13) that at the minimum of this new func
tional there will be nonvanishing contributions to
Z —Z„ from diagrams 3(b-e, g, h) and corrections
to the off-diagonal self-energy 4, from diagrams
3(d, f, g). However, these strong-coupling correc
tions to Zz and n, are of order (T,/Tr)Z+ and

(T,/Tr)d. „respectively, and hence give (T,/Tr)4
contributions in all the 44 diagrams which are al-
ready of order (T,/Tr)' To discuss .the effect of
the strong-coupling corrections to the self-ener-
gies on 4G, we use the stationarity of &0„,at
( Z —Z„)„„.this implies that strong-coupling cor-
rections to AQ„, first enter in second order in

( Z —Z, ) and therefore lead to free-energy cor-
rections of order (T,/Tr)4.

III. GINZBURG-LANDAU FREE ENERGY

In Sec. II we showed that to calculate the free en-
ergy through order (T,/Tz)', one can put Z(k, ar„)
= Z„(k,~„) in the free-energy functional, which then
reduces to a functional AA[h(k, &u„)] of the pairing
self-energy matrix n(k, &u„) alone. We now use this
functional to calculate the free energy in the Ginz-
burg-Landau region near T„or more precisely,
to calculate the free energy in order (T —T,)'. To
make contact with the phenomenological Ginzburg-
Landau free-energy functionals, such as (1.1), we
must relate the self-energy matrix n(k, co„) and the
phenomenological order-parameter matrix s (k).
For this purpose we note that in order (T- T,)' we
can restrict the domain of the functional
AA[h(R, &u„)] to the linear space of solutions of the
gap equation at T„
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,(R, &u„) =za, (k) 8(lkl, n),

where Z is given by

(3.2)

ns( li n } 8 n g ( )3I ( ii ~n i 2i~n )ns yb.

112

&& lc„(%„(u„,)l'ay, (%„s)„,).

(3 1)

For a system invariant under rotation of spin and
orbital coordinates, the solutions of (3.1) have the
form

8(ill, n) to be known and fixed and identify the open
amplitudes d, „s(k}with the phenomenological or-
der-parameter matrix. With 8(l%l, n) fixed, nQ
becomes a fmctional of the order parameter
A s(k) alone. Expanding AQ through order A' then
leads to the Ginzburg-Landau free-energy func-
tional discussed in the following:

We first consider b,A„,., the weak-coupling part
of the free energy. Inserting (3.2) into
AQ„,.[b,(%, ~„)]and using the gap equation (3.1), one
obtains in order (T- T,)'

Z= 1- lm[Z „(k„vT,)/vT, ]. (3.3)

8(lkl, n), which we normalize by 8(kz, 0) = 1,
carries the lkl and &u„dependence of the gap func-
tion. It varies with ill and n on the scales kr and

T„/T, and can, in principle, be calculated from
the linear gap equation (3.1}. Here we consider where

+&p„, ll 4'Tr, ([&(k)&t(k)] J, (3.4)

3

u=(T T,) k-TQ —
), lzc„(R, (o„) l'8'(kll, n)

n

3 "de
+k, T Q 2 ), kaT Q ~

( )'z '&i(l&, l ~., lk21, ~.,}
ni fl2

x lzc„(&„~„,}I'lzc„(&„~„,}I'e(lk,l, n, ) 8(lk, l, n,), ,
3

p„,=~ksT, Q (2 ),lzc„(k, (o„)l'8'(lkl, n). (3.5)

Evaluating (3.5) to leading order in T,/Tz one finds
the BCS results,

n =N(0)[(T —T,)/Tn][1+ O(Tn/T~)],

P.,= N(0) (I/vk, T,)'[~ g(3)][I+O(T,/T, )].

(3.6)

oi '=N(0) [(T —T,)/T, ](l+0.0175),

The terms of order T,/T~ in n and P„,, which give
contributions to the free energy in order (T,/T~)',
cannot be calculated with the methods of this paper;
these terms depend on the frequency and energy
structure of the pairing interaction and on cor-
rections to the quasiparticle Green's functions
(these are corrections to BCS theory treated in the
strong-coupling theory of superconductivity). We
believe, however, that these (T,/T~)' terms are
negligible compared to the (T,/T~)' terms which
come from the strong-coupling diagrams. To es-
timate these terms, we have evaluated them in the
spin-fluctuation model of BSA, which gives

in the notation of BSA. Comparing the weak-cou-
pling terms of order (T,/T~)' given by (3.7) with
the strong-coupling terms calculated by BSA, one
sees that the former are roughly a factor of 100
smaller and can be neglected. Since the spin-fluc-
tuation model generally gives qualitatively correct
results for 'He, we believe that in a more rigor-
ous calculation the T,/T~ terms in (3.6) would re-
main small relative to the strong-coupling cor-
rections. In any case, however, these terms are
of secondary importance since they only give a
multiplicative correction to the BCS free energy,
independent of the specific state considered. This
effect by itself can therefore never stabilize any
state other than the equilibrium state in BCS theo-
ry.

To evaluate the strong-coupling 6' corrections
from Fig. 3 we need the quasiparticle Green's-
function distributions to lowest order in 6:
Z. ,(R, ~„)~ —6(t,)(v/Z)n, (5)(I/l~„l),

(3.8)

P„,=N(0)(I/vk T ) [~g(3)](1—0.0066),

(3.7} [c,(%, (o„) —c„,(k, s)„)]

~ 6(( )(Iv/2z)[n(s) ~'(k)],~„/I ~„l'.
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diagram d

1 1 n ('dna + n2 ~n3' ' ~ ~ ~ I~., l l~„,ll~„,l' l~„,+~„,-~„,l

n, ~~ ~n,

= 10.1;
(3.9)

diagram f

= 30.1.
To perform the spin sums we decompose the

scattering amplitude into spin-symmetric and spin-
antisymmetric parts in the conventional way,

T 8
—8 6 68~+ T (&)np (o}8, (3.10)

Through order 6' only diagrams b, c, d, and f in
Fig. 3 contribute to b,4. From (3.8) we can cal-
culate the frequency sums in these diagrams; the
same frequency sums occur in spin-fluctuation
theories, and have been evaluated by BSA:

diagrams b and c

~n~ ~nn ~nn nx+ nn nn' ' ~ ~ ~ I~., l' I~.,l' I~.,ll~.,+~., -~., l~g, f22 ~n3

and write the order parameter for triplet pairing
in the form

(k) =Z(k) (ohio„) (3.11)

The scattering amplitude must be odd under ex-
change of particles in the final state,

—2[T '~(k„k„'k„kn))'. (3.14)

Using (3.9), (3.11), and (3.14) we find the con-
tributions to AC from diagrams b, c, d, andf in
Fig. 3:

(3.12)

and combining (3.10) with (3.12) we find

T '~(k„k„'k„k,)= —
—,'[P'&(k„k„k„&4}
+37 '~(k„k„k„k,)],

T~'~(k» k„.n„a,) = --,'[5 &(&t„u„&t„k,!
—T ' ~(k„k„k„k4)].

This symmetry allows us to eliminate the product
for example, (3.13) implies

8' ~ (k„k„'k„kn) 5' ~ (k„k,; k3, kn)

=-,' [T «(k„k„k„k,)]'+-,'[T '~(k„k„k„k,)]'

N(0) knT, 6.8
(keT,)' v~p~ 16

x{[&' (k„k & kn}]' [I&(k,)l ld(k. )l —In(k ) &(k.)I + l&(ki)'n*(~2)l ]

+[&' (k„k„.k„k)]'[3I&(k }I'l&(k &I'+ 6I&(&)n(k)l'- 6ln(k & n*(k )I p,

N(0) keT, 6.8
(heT, )' v~p~ 8

x "«i "«. «. (I-,"
4n . 4m 4n

x{[T' (k„p.; &n &.)]'[IZ(&,}I'I Z(kn} I' - IZ(~, ) Z(k, ) I'+
I &(~i} d *(k~}l'7

+ [T' (~,~.; ~., ~.)7'[3ln(V I'In(~n)l'+ ln(~i) n(~.)I'- ln (&,) n*(&,)I']],
N(0) k T, 10.1

(keT,)' v~P„2

x([T ' (k„&t„k„k,)p' (k„—k„k„—k,)
+&' (k„i,;e„k,) T' (k., - ~.;~„-~.)llew(~, )l'[n(~.) n'(~. )1

+ [T~' (k„k„k„k,)T ' (k„—k„k„—k4) + 8' (k„k„k„k,)T ' (k„-k, ; k„—k,))

x{[n(k,) Z*(k,)][Z*(k,) Z(k, )l —CZ(k, ) Z(k, )1[&*(&ti)'n*(kn)]]')
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N(0) k~T, 30.1
(ksT,)' v~P„8

' 6(ik, + k, —k, i
—1)

4g J 4g g 4p

x([d' (k„k,;k„k,)]'([Z*(k,) Z(i,)][i*(k,) Z(k,)]

—[7L(k,) Z(k, )][Z*(k)) Z*(k,)]+ [X*(k,) Z(k, )][X*(k,) Z(k, )]]

+ [T~' (k„k,;k„k,)] ( —5[3*(k,) Z(k, )][Z*(k,) Z(k,)]+3[5*(k,) Z(k, )][Z~(k,) Z(k, )]

+ 5[Z*(k,) Z*(i,)][X(i,) Z(k, )P), (3.15)

where S,=k, +k, —k,. For unitary states, E(ls.
(3.15) simplify appreciably because of the unitar-
ity condition

iZ(k, ) ~(k,)i'- iZ(k, ) Z*(k,)i'

= [Z(k, ) xi*(k,)] [Z(k,) xZ*(k,)]=0.
Because all four quasiparticles are on the Fermi

surface, the scattering amplitude in (3.15}de-
pends on only two independent angles, which we
take to be the angles introduced by Abrikosov and
Khalatnikov" ".

press the strong-coupling corrections in terms of
weighted integrals over products of scattering am-
plitudes. To integrate over the 5 functions in
(3.15) we take the polar axis for k, to be along
k1 + k2 and measure the azimuthal angle of k, from
the plane containing k, and k„so dQ, = d cos8, dP.
The argument of the 5 function can be expressed
in terms of these angles and the angle 8,

5(i%, + k, —k, i
—1) = 5( cos8 —2 cos-,' 8 cos8, + 1).

(3.18)
We use (3.18) to eliminate cos&„

T(k„k„k„k,) = T(8, P), ' (3.16)

with 8 the angle between k, and k, and (IF} the angle
between the plane containing k, and 5, and the plane
containing k, and k4,.

cos8 = kl' k2, (3.17)
cos(f) =(k, k, —k, k,)/(1 —k, k, ).

We will next perform the integrations over all
the angular variables in (3.15) except the two con-
tained in the T matrices. This enables us to ex-

4
~ k~+k2-k3 —~ =

2 4

(3.19)

and then express the angular integrals over k, and

k, in terms of the angle 8 between 5, and k„ the
direction k of k, + k„and the azimuthal angle g

A

around k of the plane containing k, and k,. The
angular integrals f (dQ, /4v) f(dQ, /4v) in SC)~,
&C„and &4& then take the form

] p 1 4 2f
d cos(8/2),

2
[T(8, (()))]' t ), f„(Z(k,),Z(k,—),Z(k,),Z(k )),

~ 0

with v = b, c, or f the diagram index; the integrals in 44)~ become

(3.20)

2 J
«08(&/2) 2, )'(&0)T'(()',(")j 4,

'
2, f (r()') r())) ~()) ))

~0
(3.21}

where the angles 8' and (t}' are related to 8 and

Q by

cos 8' = —5, k, = cos(t) —cos'(8/2)(cos(t)+ 1),

5, 'k, +5, 'k,
cosQ' = ' 3-i.k, n,

3 cos'( 8/2) —1 —[cos'(8/2) —1]cos Q
cos'(8/2)+ 1+[cos'(8/2) —1]cosg

(3.22)

The angles 8 and Q fix the relative positions of

I

the tetrad of vectors k (a=1-4), which for fixed
(8, (t)} can be thought of as a rigid body whose
orientation is given by 5 and g. In the body co-
ordinate system the polar coordinates (5, T() ) of
k are (V; T(),)=(8/2 0), (V', T(),)=(8/2 v), (V'„T(),)
= (8/2, (())), and (V„(t),) =(8/2, Q+v).

In order to carry out the integrations over the
orientation of the rigid tetrad (S„k„k»k,) at
fixed 8 and Q, it is convenient to expand the order
parameter in spherical harmonics. Each compo-
nent n&(k }of the spin vector Z(k ) is a linear
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4($ )= Q Bg F(l,„),
m= f

The k and P integrals in (3.20) and (3.21) then
reduce to a sum of integrals of the type

(3.23)

(5 )Y& (k&) )Y& (k„)Y&„(kp).
~ ~Q

(3.24)

combination of spherical harmonics of a single
E, and so can be written as

To separate in the integrand of (3.24) the depen-
dence on the fixed angles 8 and (I)) from the depen-
dence on k and g we use the transformation

);„(& )= f D"' (R). );„.(((,& ),
e~ l

(3.25)

where R is the rotation which maps the coordinate
system (k„,k„,k, ) into the body coordinate system,
and D„"',(R) is the corresponding rotation matrix.
This allows us to express (3.24) in terms of inte-
grals over a product of four rotation matrices,

,... ~ Y&, (&7, $ )Y, (Hq, T&)q)Y, , (8„,$„)Y&~.(~~, (f)p)( dRD&(), (R)~D") .(R)~D")~, (R)*D~'~ (R)*. (3.26)

The dependence of (3.24) on the scattering angles
8 and (f) is now contained in the product of four
spherical harmonics whose arguments are deter-
mined by 8 and P alone. To evaluate the remain-
ing integrals in (3.26) we employ two standard
identities satisfied by rotation matrices, "
D&&) (R)8D&&) (R)w

ffl pl2 ffl 3554

(fm, lm,
~

LM)D„'~). (R)*(IM'
~
fm, lm, )

~

~

=0 N, A/~

(3.2'I)

and

dR D&$1) (R)&'D&L2)(R)&'
NlNQ Ns hr4

=(L M L~ 10»«0IL MILIM4)

= (- 1)"&'"a(2L, + 1) '5~, ~ 5„«5s, ~, (3.26)

which together give for (3.26)

(- 1)~&+
( mf, l m2~ Lm, +m)2(lm, mf,

~

L—(m, +m, ))4~ (8, $),
(3.29)

4)~&')(8, $) = g (-1) 1' 2(Lml+ ml~ lm;fmg (L- m', —ml~ lmpm4) Y& (8, &T) )Y, (Kz, (f)&)) Y, , (8„,(())„)Y, ,(F, T()~).
fft j e e e 15~4

Note that the Clebsch-Gordan coefficients in (3.29)
require mx+m2+m3+m4=0 and mx+m2+mg+m;=0.

Taken together, E&ls. (3.15), (3.20)-(3.23), and
(3.29} express the order (T,/TJ, )' strong-coupling
contributions to the ~4 terms in the free-energy
functional in terms of specified angular averages
of the normal quasiparticle scattering amplitudes
T"'(8,e), T" (8, )e)

For convenience we here described the order
parameter by the coefficients B& defined in (3.23).
To relate our results to phenomenological free-
energy functionals, we need to express our prod-
ucts of four B, 's in terms of a conventional set
of fourth-order invariants. This then yields the
fourth-order coefficients as specific weighted
angular integrals over quasiparticle scattering
amplitudes. We have carried out this program in
detail for the case l= 1, using the fourth-order
invariants introduced by Mermin and Stare, and
obtained the following results:

»& = Lkp( ~+ (a@&+»&,(i = 1, . . . , 5). (3.30)

»&~', »&, and»I& are the contributions to the
fourth-order coefficients coming from diagrams
b and c, d, and f, respectively;

»&"'= ~,'6 (18&"(8,e)[T'"(8 e)]'.8

+ Y"(8 4)f&"'(8 «)]'}

+ Zr&a) (8 4, )
a
T(&)re)I)]

+ &(8 4)[T'"(8 en'"(8' 4 )

+r& &(8 4)T'&"(8~ 4~)]&

(3.31)

~(& = -
( ) (( )&), )I &')( &, & ))

+ V,(8, 4)[T"'(8,4)]q.
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g is a common factor,

P.+P. 2P,—P.(-w(P-, +P.)« (3.33)

In weak-coupling theory p, +P, -2p, —p, ~0; the
axial state is unstable. The strong-coupling cor-
rections of order (T,/T~)' can be obtained from
Eq. (3.31):

9o B c E Jf' 7~3 p f 8

(3.32)

and (...) denotes the angular average f, d(cos 8/2)
~ J,"&0/2w(. ..}. The weighting functions W', and
V, are given in Tabl.e II.

Equation (3.31) allows a qualitative discussion
of the combination P4+ P, —2P, —P, of fourth-order
coefficients. This particular combination contains
information on the stability of the axial state; a
necessary condition for its stability is

8= & w, Q = 0, in the region of large-angle scattering
of particle-hole pairs with small total momentum;
the negative weight is found around e= m, Q = 2n in
the region of large-angle scattering of par ticle-
Particle pairs with small total momentum. The
sign of the discriminant P, + P, —2P, —P„ there-
fore, depends on whether particle-hole or parti-
cle-particle scattering dominates. It is generally
accepted that in 3He the dominant scattering
occurs in the triplet channel of particle-hole pairs
with small total momentum. This implies that
Py + p5 2pf P3 is negative, and the axial state
can be stable. However, Eq. (3.34) shows that
because of the competing effects of particle-hole
and particle-particle scattering, a quantitative
calculation of P4+ P, —2P, —P, requires an accu-
rate scattering amplitude in both the particle-
hole and particle-particle channels.

IV. s-p APPROXIMATION

x [T&'&(8,y)jq. (3.34}

Notice that the weighting function in (3.34) has
vanishing total weight,

((cos~w 8+ sinew 8cosf)' - cos'6jj 0. (3.35)

Therefore, p4+ p, —2pf p3 depends sensitively on
the detailed structure of the triplet scattering
amplitude. The positive weight is located around

TABLE II. Weighting functions for the (Tc/T+) cor-
rections to the p-wave Ginzburg-Landau coefficients.

a=b+ c

Wf -4xf+ x2+x3dL' 2 2 2

Vf 20x f
—5x2 - 5x3

-2xf+ 8x2 —2x3lX 2 2 2

wg

2xf —Sx2+ 2x32 2 2

Sxf -2x2-2x32 2 2

-8x f + 2x 2+ 2x 3
2 2 2

-2x f —2x 2+ Sx 3
2 2 2

2xf+ 2x2 —8x32 2 2

2xf ~ Sx2 Sx32 2 2

-i0xf + i5x2+15x3

-Tx f
—Sx2+ T

3 2 2 3

Qx', + Sx', —v'

~xf +x2+ P
f 2 2 9

-Px,'- Sx', + ~4

2

Sxf +6x2 —32 2

-Sx, +6x, —i2 2

Txf+x2+ 7f 2 2 9

~x2f+ 1 ix22 —~
f 2 2 9Txf x2

Yxf +X2+5 2 2 21

Sxi x3 x2

2xf x3 —4x2

~Sxfx3 + x2

Sxfx3 + x2

Sxf x3 + x2

-Sxfx3+ x2

2xf x3 —4x2

xfx3+ 3x2

xf =cos8, x2=cos (8/2)+ sin (e/2) cosf,
x3=cos (8/2) —sin {8/2)cosp.

P4+P, -2Pf —P3

([(cos~& 8+ sinew 8cosp)' —cos'8]301

To obtain explicit results for the strong-cou-
pling corrections to the free energy of super-

fluid 'He, one must know the quasiparticle scat-
tering amplitude in the normal state. Unfortu-
nately this scattering amplitude cannot be calcu-
lated from first principles, since its structure
isdominatedby complicated many-body mecha-
nisms"; neither is it fully determined by the
available experimental information, since the
measurable quantities only fix a few weighted
averages of the scattering amplitude. The only
possible way to proceed is to make an educated
guess for the scattering amplitude and to check
it against all available experimental information.
Our investigation shows that the thermodynamic
properties of superfluid 'He can provide addi-
tional possibilities for such a check. In the pre-
sent chapter we discuss the strong-coupling cor-
rections to the fourth-order Ginzburg-Landau
coefficients, using the s-p approximation for the
scattering amplitude.

Any approximation for the scattering amplitude
should be guided by three rigorous results. The
first of these is the exchange antisymmetry of the
scattering amplitude, Eq. (3.13), which in terms
of the angles 8 and Q becomes

T~' (8, P) = MT ' (8, P+ w-) +3T ' (8, P+ w)],
(4.1)

T"(8,y}= —,' [T ' (8, Q + w) —T '—(8,P + w)] .
The second is the relation between the forward
scattering amplitude and the Landau parameters, "

T~ '(8, P =0) =P APP, (cos8),

(4.2)
Ai" =Fg"/[1 +F, /(21+ 1)],



4762 D. RAINER AND J. W. SERENE 13

where n =s or a. Finally, the coefficients A, sat-
isfy the forward scattering sum rule, ~

result one obtains the strong-coupling corrections
to the Ginzburg-Landau parameters as a quadratic
form in the Landau parameters A, ,

Q (A;+A f ) =0.
1=0

(4.3)
10

P; =P B&~ G, , (4.5)
Conventionally, an approximation is checked

against m easured transport coefficients such as
the viscosity, thermal conductivity, and spin-
diffusion coefficient. Since the strong-coupling
corrections are more sensitive to detailed struc-
tures in the scattering amplitude than are these
transport coefficients, any acceptable approxima-
tion for our strong-coupling calculation should at
least give values for the transport coefficients in
reasonable agreement with experiment.

To our knowledge, no scattering amplitude for
'He quasiparticles is available which satisfies
these requirements in the whole pressure range
of interest. The s-P approximation gives reason-
ably good normal-state transport coefficients at
low pressures, as shown by Dy and Pethick, "but
fails near melting pressure, according to the re-
cent work of Pethick, Smith, and Bhattacharyya. "

The s-P approximation is based on the observa-
tion that, if one can neglect the scattering in all
states in which the relative angular momentum of
the incoming quasiparticles along their total mo-
mentum is larger than one, then Eqs. (4.1) and
(4.2) uniquely determine the scattering amplitude
in terms of the Landau parameters. In our calcu-
lation we took F,"=0 for /» 2, the approximation
used by Dy and Pethick. The approximate scat-
tering amplitude is then

T'"(8, y) =-,'[(A; - 3A;) +(A,' —3A', )cos 8

+3(AO +Ao }cos&jh + 3(Af +Ay )cos8 cosf],
(4.4)

Tl''(8, y) = ~[-(Ao —3AO) —(Af —3A;)cos8

+(AD+AD)cosp+(Af +A[)cos8cosg].

Using this scattering amplitude, all the integrals
in Eq. (3.31) can be performed analytically. As a

where G& denotes the ten second-order combina-
tions of the four l &1 Landau parameters A, . The
coefficient matrix B&, is given in Table III.

The Landau parameters Ao, Ao, and A~ and the
Fermi momentum kF can be taken from experi-
ment. If in addition one uses the forward scat-
tering sum rule (4.3} to determine A;, then the
strong-coupling corrections in the s-P approxima-
tion are fully determined by T, and by measured
normal-state quantities, and can be compared
with the results from specific-heat measurements
in the superfluid state. This comparison together
with a further discussion of the s-p results can be
found in Sec. I. Unfortunately, accurate measure-
ments of the specific heat have until now only been
performed at melting pressure, where the s-P
approximation is known to be inadequate and there-
fore cannot give reliable results for the strong-
coupling effects. It is interesting, however, that
both the viscosity in the normal state" and the
specific-heat jump at the normal to A transition
indicate that the s-p approximation overestimates
the scattering strengh by roughly a factor of two.
In the low-pressure region where the transport
data are well represented by the s-p approxima-
tion, our theory cannot be checked because of the
lack of experimental information on the thermo-
dynamic properties of superfluid 'He. We have
presented the strong-coupling results in the s-P
approximation with the hope that low-pressure
specific-heat data will soon be available for a de-
cisive test of our theory and of the s-p approxima-
tion.

To check the possibility of f-wave pairing, we
have calculated in the s-P approximation the eleven
fourth-order coefficients. The calculated correc-

TABLE III. (T,/Tz)3 corrections to the p-wave Ginzburg-Landau coefficients in the s-p
approximation.

(+ ) Q') Qf ) &') &0A' &f&i' &OB&i' &()&' &O'&i'

-2 -48 33 0 -35 -28
-27 4 -19 -21 -16
-16 -16 -11 -12 -27 -19

~4 -14 -71 -7 -17 -37 -34

24 8 13 21

) x '
Ip,"'jkaTc

v Fpp'
22 22 22

15 21 17 35

QP g 11 -73 0 -59 48 59 -13 -28 -10 39&
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tions stabilize none of the states suggested as pos-
sibly compatible with NMR experiments. "

To complete this section we will briefly comment
on the spin-fluctuation model. In the framework
developed here the spin-fluctuation model amounts
to a special approximation for the scattering am-
plitude,

T(s) 8 ) 2 I-T +aT sin( 8/2)c os(p/2) '

(8 ch) = — 4 6)I -T+ a T sin'(8/2)sin'(P/2)

1 T
2 I -T+ o.Tain'(8/2)cos*(g/2}

'

This approximation is at least incorrect in the
forward scattering limit since it does not correct-
ly reproduce all the known Landau parameters.
For example, if J. and e are chosen to fit the
Landau parameters A,' and A,', then the mass-
enhancement parameter A', is a factor of two too
small. For this reason one cannot expect (and
does not find) quantitatively correct results for
the strong-coupling parameters. The ansatz (4.6}
does, however, provide a link to previous calcula-
tions in the spin-fluctuation model and allows a
critical discussion of the conventional approxima-
tions. This discussion can be found in Ref. 34.

V. DISCUSSION

Our main purpose in this paper was to present
a systematic framework, based on an asymptotic
expansion in T,/T~, for calculating the strong-
coupling corrections to the BCS pairing free en-
ergy. We identified the leading strong-coupling
corrections, of order (T,/TF)', and showed that
these corrections can be expressed in terms of
quasiparticle properties in the normal state. We
then applied this scheme to the superfluid phases
of 'He and calculated the coefficients P„.. . , P, in
the l =1 Ginzburg-Landau free-energy functional.
Our results show that these coefficients depend
sensitively on the detailed structure of the quasi-
particle scattering amplitude. Consequently, the
adequacy of our framework cannot be assessed
decisively by comparison with the available experi-
mental data, because no reliable scattering ampli-
tude is known for 'He quasiparticles in the relevant
pressure range. Since we have at present only
theoretical support for our framework, we pre-
sented our arguments in more than usual detail,
both to help the reader judge their validity, and
also to make clear what a more accurate theory
would involve. If our framework is adequate for
superfluid 'He, it can also be used to investigate
the strong-coupling corrections to the magnetic

properties, to the properties of inhomogeneous
systems, and to transport properties in the super-
fluid state.

In our opinion the most critical point in our
framework is the neglect of terms of order higher
than (T,/TF}' in the asymptotic expansion of the
free-energy functional. Due mainly to the decrease
in T,/TF, the strong-coupling corrections become
smaller with decreasing pressure, until at vapor
pressure the free-energy terms of order (T,/Tr}'
give only 10% corrections to the weak-coupling
T,/T~)' terms. One therefore expects very good
convergence of the T,/Tr expansion at low pres-
sures, and it is likely that our (T,/T~)~ terms
describe well the small corrections to the weak-
coupling theory. Near the melting pressure, how-
ever, the strong-coupling corrections are almost
—,
' as large as the weak-coupling free energy, and
this might cause some doubts about our neglect
of higher-order terms in T,/T~ It is .unfortunate-
ly impossible to accurately discuss the higher-
order corrections for the purpose of checking our
approximations. For this purpose we would need
information about the high-energy parts of the
Green's functions and about higher-order vertex
functions in the whole energy range; none of these
are known with any accuracy. The most danger-
ous diagram which we have neglected is shown in
Fig. 6. It consists of four F functions connected
by those parts of the normal eight-point vertex
which cannot be decomposed into a simple pro-
duct of two four-point vertices. This diagram
contributes to the free-energy difference in order
(T,/T~)'log'(TF/T, ). It must be compared with
diagram S(f}, of order (T,/TF)', which comes
from those parts of the eight-point vertex which
can be decomposed into a product of two four-
point vertices. If we take T,/TF = S x 10 ', then
the additional "small" factor (T,/TF) log'(T~/T, )
is approximately 3, so diagram 6 appears to be
comparable to those strictly of order (T,/TF}3.
We nevertheless expect the contribution of dia-
gram 6 to be small compared to the contribution
of diagram S(f), because the frequency sums in

FIG. 6. A diagram of orde ~&c /'1 z&4 g ~TJ/&c ~

The open circle represents that part of the normal.
eight-point vertex function which c&nnot be decomposed
into a product of two normal four-point vertex functi. ons.
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diagram 3(f) converge relatively slowly and con-
tribute a factor 30. This factor has the same
source as the factor log'(TF/T, ) in diagram 6 and
must, therefore, be included for a consistent
comparison. We then conclude that the contribu-
tion from diagram 6 is smaller than that from
diagram 3(f) by approximately an order of magni-
tude, which seems to be consistent with the re-
sults that Tewordt, Fay, INrre, and Einzel' ob-
tained calculating diagram 6 in spin-fluctuation
theory. This estimate is only valid, however,
provided that the unknown eight-point vertex in
Fig. 6 is not an order of magnitude greater than
the product of iwo four-point vertices in Fig. 3(f).

In addition to the higher-order contributions
generated by the diagrams we neglected, there
are other higher-order contributions to the free
energy which are naturally included in our frame-
work. These contributions arise from solving
(2.13) self-consistently for the energy gap and
self-energy using our strong-coupling functional,
and then evaluating the free-energy functional
using the self-consistent solutions. The calcula-
tions in Secs. III and IV implicitly include these high-
er-order corrections: We calculated the Ginzburg-
Landau parameters P, through order (T,/T~)', but
A2 and the free energy are both -I/P, . Further-
more, it is easily seen that the strong-coupling
corrections to the diagonal self-energy which are
generated by our strong-coupling functional do not

contribute to the free energy through fourth order
in b, ; and, as pointed out in the beginning of Sec.
III, all corrections to the (k

~
and ~„dependence of

the gap as determined by the linearized gap equa-
tion enter the free energy in higher order than

(T —T,)'
our personal hope is that the diagrams of order

(T,/T~)' give a reasonably accurate description of
strong-coupling effects even at the melting curve
of 'He. Otherwise we cannot expect to find a relia-
ble strong-coupling theory because of our lack of
knowledge of the nonquasiparticle properties and
of the high-order normal-state correlations which
enter in the strong-coupling terms beyond (T,/T~)~.
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