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Anisotropic superconducting energy gap in Pb
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We have calculated directional electron-phonon effective distribution functions e„*.(u)Fk(u) at many points on
the Pb Fermi surface. From these distributions the zero-temperature energy gaps in superconducting Pb single

crystals follow from one iteration of the directional Eliashberg equations. Anisotropic mass renormalization

parameters are also determined. In the calculations, the Pb Fermi surface is obtained from a four-phne-wave

model pseudopotential chosen to fit the de Haas —van Alphen data. The four-plane-wave electron states are

used in evaluating the electron-phonon interaction which in addition depends on the lattice dynamics. This is

taken from experiments on the dispersion curves for the phonons.

I. INTRODUCTION

Measurements of gap anisotropy in pure single-
crystal Pb have been reported by Blackford, who
uses the technique of superconducting tunneling into
a pure oriented single crystal. Experiments also
exist in which the anisotropy in thick Pb films~ 4

is investigated. More often, however, "dirty" thin
films have been investigated in which the anisot-
ropy is ignored. ' Such dirty films of Pb are the
classic example of a strong-coupling superconduc-
tor, and the Eliashberg gap equations have been ap-
plied to describe them with remarkable success.
In their usual dirty-limit form, the anisotropy has
been assumed to be washed out and the basic equa-
tions refer only to a frequency-dependent gap pa-
rameter which does not vary with position on the
Fermi surface. In this case it has been possible
to invert the Eliashberg equations to obtain detailed
information on the interactions involved in super-
conductivity. Tunneling data on the current (I)-
voltage (V) characteristics of a tunnel diode can be
used as input from which we can derive a function
n (ru)E(~) referring to the electron-phonon interac-
tion and a parameter Uc related to the basic Cou-
lomb repulsions between electrons. It is in fact
these two quantities that make up the kernels of the
Eliashberg equations. They contain within them
all the information on the electronic structure and
the lattice dynamics as well as the electron-phonon
interaction that is required to calculate the super-
conductivity properties of a given material.

For an anisotropic, single-crystal superconduc-
tor, more complex equations which refer to new
frequency- and momentum-dependent gap param-
eters are needed. It is out of the question, at the
moment, to iterate these four-dimensional equa-
tions. Because of this, Bennett has suggested that
we make a single iteration of these equations based
on the dirty-limit solutions of the one-dimensional
Eliashberg equations. While this involves an ap-
proximation, it does give tractable expressions.

The kernels entering the directional Eliashberg
equations are U~, as before, and directional elec-
tron-phonon functions ol(ar)F%(ru). One such func-
tion is needed for each electron state Ik) on the
Fermi surface. The Fermi-surface average of
ni(&u)F%(ar) is simply the isotropic function o (+)
x F(&o) which is measured in thin-film tunneling
experiments. More specifically,

a (td)F(~) = —
I

cP)(rd)E%((d)2 ds% dS%. %IIV k I . IIV

where the integral dS~ is over the Fermi surface
V(k) is the Fermi velocity associated with the state
lk), and I is Planck's constant over 2v.

To summarize, it is the directional four-dimen-
sional Eliashberg equations that are needed to de-
scribe gap anisotropy in superconducting Pb. The
kernels in these equations which refer to the nor-
mal-state parameters of the system are U~ and

n%(ur)F;(&o). In a rough way this function can be
thought of as a directional phonon frequency dis-
tribution in which only those phonons that can scat-
ter the electron Ik) are included and in which each
phonon mode is weighted by the appropriate strength
of the electron-phonon interaction. It is these
functions that are basic to a microscopic calcula-
tion of gap anisotropy in Pb.

The paper is structured as follows: In Sec. II
the formula for o%(&o)E„(m) is specified. It is shown
to depend on an integral over the Fermi surface of
the square of the electron-phonon vertex times a
phonon 5 function. For the Fermi surface we use
a four-plane-wave pseudopotential model adjusted
to give a reasonable fit to the de Haas-van Alphen
data. The electron-phonon matrix element is
needed only for initial and final states, both on the
Fermi surface, and is evaluated between four-
plane-wave functions with pseudopotential form
factors taken from the work of Appapillai and Wil-
liams. 7 The electron-phonon matrix element also
depends on the lattice dynamics. This is derived
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from a Born-von Karman force-constant model
fitted by Cowley to all the measured phonon modes
in the high-symmetry directions as well as at some
off-symmetry points. For this information the
a-„(z)E-„(&())are calculated at many points on the pb
Fermi surface.

In Sec. III we give results for the average func-
tion o( ((d}E((d), which we calculate and compare
with tunneling results on this function. A discus-
sion of the present state of agreement is included.
We also compare our results for o( (&u) with tunnel-
ing-derived experimental values' on its frequency

dependence. Section IV contains a discussion of the
isotropic Eliashberg equation as well as the direc-
tional one-iteration theory of Bennett. Finally, in
Sec. V we give results for the variation of the gap
edge Q(k) as a function of Ik) on the Fermi sur-
face. The mean square anisotropy in 40(k) is also
evaluated and a short discussion is included.

II. ELECTRON-PHONON FUNCTIONS 0(g (m)Fg(~)

The isotropic electron-phonon function c( ((d)E((d)
which plays the central role in the strong-coupling
theory of a dirty superconductor can be written

4( ) («) = - '-
(

- '-',
(

I
««I'5(«« — ()« - I«)) ( ««l' f )«()«jq}I hlVk' I

All the integrals in Eq. (1) are surface integrals
on the Pb Fermi surface, and dS-„ is a surface ele-
ment. At the point Ik), the Fermi velocity is de-
noted by V(k), and gp;, denotes the electron-pho-
non vertex owing to the interaction with a phonon
of frequency («)„(k' —k) with )). a branch index for
electron scattering from I k) to Ik'), both states
being on the Fermi surface (FS). The 5 function
on phonon frequencies places the various modes in
bins according to the absolute value of (d, (k' —k).

To calculate the anisotropic energy gap at zero
temperature in a pure single crystal of Pb, we will
require the functions a-(&o)E-((d} which are obtained
from Eq. (1) by dropping the FS average over Ik).
That is,

g'f'R)t & & —)I, — ~ (2)

These are central to the work here. We now spec-
ify in detail the integrand. We denote the elec-
tron wave function at Ik) by Q-„(x) and expand it in
terms of plane waves. It can be written

«);(«)+«"'Q «(«)«""", («)

where 0 is the crystal volume and the g„stand for
the reciprocal-lattice vectors. The expansion co-
efficients az (k) are needed only for states on the
FS; for a four-plane-wave theory only four such
quantities are required.

If we denote the phonon polarization vector asso-
ciated with (d„(k) by F„(k) we can write the electron-
phonon vertex g-„.» in the form

1/2

2MN 'k' k "k ~, k' a k k'+g„. -k-g„k'+g„. 5' k2MN~„&k — ~i k„kq (4)

with M the ion mass and N the total number of
atoms in the crystal. In Eq. (4) (p' I Wlp} denotes
the electron-ion pseudopotential form factor for
scattering from the plane-wave momentum p'. If
we assume a local approximation is adequate, it
becomes a function of p' —p only and is denoted by
W(p' —p). The expressions (1) and (2) are now
completely specified.

The evaluation of Eqs. (1) and (2) proceeds as
follows: The four-plane-wave pseudopotential
model without spin-orbit coupling is used to gen-
erate the real Pb Fermi surface. We find that

Vying
= 0, 096 Ry V2pp = 0 039 Ry and E)y = 0 7&8 Ry

produces the best fit and is consistent with the
Appapillai and Williams7 pseudopotential. In Fig.

1 we show a cross section of this surface which is
the [110]section through the point I'. We note that
while the distortions from a sphere are not enor-
mous, they are nevertheless significant. The cal-
culation of this constant-energy surface yields at
the same time the surface elements dS-„at various
points on the FS and the Fermi velocities V(R).
The mixing coefficients ai„(k) are also obtained
and retained because they are needed in Eq. (4).
This completely specifies the electronic structure.

Besides the electron structure, the lattice dy-
namics for Pb is also needed. We can calculate
F„(k}and («))((k) at any point by diagonalizing the
dynamical matrix at that point. The dynamical
matrix can be constructed from a knowledge of a
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FIG. 1. 1110]cross sections through I' of the Fermi
surface of Pb calculated in this work.

Born-von Kar man force- constant system. The
choice of Born-von Karman models requires some
care in Pb. The problem is as follows and is
worth emphasizing. The phonon dispersion curves
for the high-symmetry directions were measured
in Pb by Brockhouse et al. using inelastic neutron
scattering. They also analyze their results in
terms of a Born-von Karman force-constant model.
It has been found, "however, that this model is
not reliable for predicting off-symmetry phonons.
The reason is that the dispersion curves in Pb are
so highly constructed that it is difficult to repro-
duce off-symmetry phonons from only high-sym-
metry information. Recently Cowley has derived
a new Born-von Karman system of force constants
by a least-squares fit to the more extensive data
of Stedman et al. ,

' who sampled phonons through-
out the first Brillouin zone (FBZ). It is this new
system that we have used in this work. There is
some evidence that it is quite reliable. We will
want to return to this point shortly.

The final quantity to be specified is the electron-
ion pseudopotential form factor W(p' —p). We take
it from the recent work of Appapillai and Williams.
This completely specifies cP(+)E(~), which can be
evaluated on a computer with no approximations.
We note that the calculation involves no adjustable
parameters. It does rely, however, on the best
available data on the Pb Fermi surface as wel. l as
on phonon dispersion curves. Also, the pseudo-
potential of Appapillai and Williams~ is a model
potential based on the previous work of Shaw'3 who

employs atomic term factor data.

III. RESULTS FOR 0.'2(u)F(w)

We start with a discussion of our results for the
isotropic function cP(~)E(u&). In Fig. 2 we com-
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FIG. 2. Comparison of calculated (solid curve) and
tunneling-derived (Ref. 5) (dotted curve) isotropic elec-
tron-phonon function e2(co)P(~) for Pb. Calculations in-
clude the real Pb Fermi surface and four-plane waves
for the electronic wave functions. For the phonons, the
Born-von Klrman model of Cowley was used.

pare the results of our calculations (solid curve)
with the tunneling results obtained by McMillan
and Rowell' (dotted curve). We see that the over-
all agreement is really very good although there is
some discrepancy in details. The transverse peak
around 4-5 meV is slightly smaller in our calcula-
tions than it is in the experiment. It also exhibits
somewhat sharper structures. The peak around 9
meV is larger in our work than it is in the tunnel-
ing results. It is also sharper and displaced
slightly towards higher energies. It also cuts off
sharply, while tunneling shows a high-energy tail.
These discrepancies, while not large, require
some further comments. Before doing this, how-
ever, we should stress again that in our calcula-
tions the real Pb Fermi surface has been used and
the electrons have been treated in a four-plane-
wave model. The low-frequency behavior of our
curve should therefore be quite reliable, in con-
trast to the previous one-plane-wave calculations
of Carbotte and Dynes" which break down in this
region.
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In Eq. (7) the integration over dSI extends over the
Fermi surface and E((d} is normalized so that
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FIG. 3. Square of the isotropic coupling strength
a (~) calculated in this work. We note the sharp increase
in n2(~) around 1.6 MeV, which is observed experimen-
tally in Ref. 16.

Recent experiments in the far infrared by Farn-
worth and Timusk" have shown that tunneling does
not seem to pick up all the structure that exists in
the phonon density of states. These experiments
would favor some of the features exhibited in our
calculations, although others are still not quite in
agreement with experiment. This may indicate
some remaining inaccuracy in the force-constant
model suggested by Cowley. Also, if we calculate
the mass enhancement parameter X from our re-
sults on cP((d)E((d) which is given by

2
"" o'((d)E((d)

d y

~0 (d

we obtain a value of X=1.32. Tunneling experi-
ments, in contrast, give a. higher value of X=1.5.
This indicates that we have perhaps underestimated
somewhat the strength of the electron-phonon inter-
action in our work. This could be due to inaccu-
racies in the Appapillai and Williams pseudopoten-
tial or in the calculations of the Fermi surface and
in particular the density of states at the FS. More
importantly, we have normaLized to 1 the pseudo-
wave-functions rather than the real lines. Thus
the calculated curve should be multiplied by a con-
stant amount slightly larger than 1, thereby in-
creasing the agreement with tunneling. This will
not be done here as we take the attitude that the
degree of overall agreement displayed in Fig. 2 is
quite satisfactory.

It is of interest before leaving this section, to
define a coupling strength o( ((d} according to the
prescription

o"((c) = c('((d) E((c)/E((d),

where E((c) is the phonon density of states given by

( )

"
dSI " dSI

~F8 SV~ ~FS SVP

We begin with the one-dimensional form of the
Eliashberg equations appropriate to the isotropic
dirty-limit case. They are a set of two coupled
integral equations for a frequency-dependent gap
function h((d) and a renormalization function Z((d},
both functions being complex. They are

"c, 6 ((()')e( )d( )= d 'Re, „„„)„e)
0

x [K,((d), (()') —Uc],
(9)"c I

() —d( ))le= de'Re, „„„),e}—~ ~~g

x Q ((d)e (d ) e

with

K,((v, (c') = dv cP(v}E(v)

1 1
m'+ (d+ v+ z0' u' —u+ v —z0' (10)

In Eqs. (9) (dc is a phonon cutoff taken to be equal
to 10x up with (dp the maximum phonon frequency
in Pb and Uc, a Coulomb effective potential which
accounts for the Coulomb repulsions between elec-
trons. In what follows we take Uc = 0. 1.

A plot of o. ((d) in arbitrary units is given in Fig.
3. We note first of all that it is perfectly well be-
haved at low frequencies. As previously noted, a
one-plane-wave result would g'ive an unphysical
diverging result as co tends towards zero. As &
increases, cP((c) is found to increase roughly lin-
early. This is in agreement with the data on o( ((d)
obtained by Rowell, McMillan, and Feldmann. '6

Superimposed on this roughly linear increase in
cP((d) with increasing (d are fluctuations, some of
which must be due to noise in our computer pro-
gram. There does, however, appear to be an
abrupt increase near 1.6 meV as observed by
Rowell et al. ' but there is no evidence of a further
abrupt change around 3.1 meV. The abrupt change
at 1.6 meV reflects the electronic structure and it
is a truly remarkable accomplishment of the tun-
neling technique that it can be picked up. If we de-
fine E((d) in a different manner by summing all the
phonons in the FBZ, the result for cP((d) is basic-
ally the same, including the abrupt increase at
1.6 meV.

IV. ANISOTROPIC ENERGY GAP
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well with previous results derived from tunneling
results on cP(&u)F(w). These results will form the
basis of our calculations of gap anisotropy which
require the four-dimensional form of the Eliash-
berg equations.

Since it is out of the question to iterate to con-
vergence the Eliashberg equations in their four-
dimensional form, we will follow here the sugges-
tion of Bennett, who performs a single iteration
based on the dirty-limit results for the gap and re-
normalization function. Bennett's equations are

c g((g')s$, )Z(P, )= d 'Re, „~,p/2)0

x [K,((o, &o', p) —U~] (11)

and

I

20
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40 60

FIG. 4. Real A~(cu) (solid curve) and imaginary b2(co)
(dotted curve) part of the gap function h(~) for the dirty-
limit isotropic case. 20

[oo}j

We have solved the Eliashberg Eqs. (9) with the
kernel o (v)F(&o) obtained from our four-plane-
wave model for the electronic structure and Cow-
ley's model for the phonons. Results for the real
and imaginary parts of 4 =- 4, +i &~ are shown in

Fig. 4 as a function of frequency; they compare

I.O-

-lO-

TABLE I. Gap edge +(e, P) and renormalization pa-
rameter A (e, fII)) for the various points on the Pb Fermi
surface where we have made explicit calculations. In-
termediate points can be obtained by interpolating be-
tween the values given.

E 3.0-

203

Ct

I.O

ao(e, y)
(meV) ~(e, y) (e, y)

a, (e, y)
(meV) &(e, y)

1,1
5, 1

35, 1
45, 1
39, 5
37, 9
45, 9
15, 13
35, 13
33, 19
3 23

15,23
23 23
33j 23
45, 23
19,29

1,18
l. 12
1,48
1.43
1.46
1.48
1.46
1.48
1.48
1.46
1.15
1.46
1.34
l.43
1.13
1.39

1.09
1, 03
1, 55
1.46
1.52
l. 57
1, 59
l. 59
1.57
1.54
1.06
1.57
1.30
1~ 53
I.04
1.40

27, 29
45, 31
33 33
13,35
23, 35
41, 35
27, 39
45, 39
19,41
5, 45

13,45
27. 45
33,45
39,45
53, 45

1.35
1.18
1.45
1.47
1, 35
l. 12
1.35
1.20
l.39
1.15
1.47
I.36
l.44
1.14
1.24

1.31
1.09
1.52
1.62
1.31
1.03
1.31
1.11
1.41
1.07
1, 62
1.32
l. 52
1.07
1.15

-IO
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FIG. 5. Real E~(p, fd) (solid curve) and imaginary
Q(p, (d) (dotted curve) part of the anisotropic gap b(p, (d)

for two directions, namely, [001]and [110]. These were
obtained by a single iteration of the anisotropic Eliash-
berg gap equations based on the dirty-limit solutions pre-
sented in Fig. 4.
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pear. These functions fully contain the anisotropy
due to the Fermi surface, the phonon spectrum,
and the electron-phonon interaction.

Results for 4(p, ~) with p on the Fermi surface
and pointing in the [001] and the [110]directions
are compared in Fig. 5. We see significant vari-
ations in these curves and in particular in the gap
edge Q(p) defined by

no(p) = R«(p, ~ = &0(p)).

We have obtained further results for a total of 31
directions.

V. RESULTS AND DISCUSSION

l.4—
0)

l.2

I.O
qh =45'

l.2—

1.0 I I I I

IO 20 30 40 50 60
e (degree)

FIG. 6. Gap edge bo(p) for three constant Q arcs, 1',
23, and 45, as a function of 8. Regions where the Fer-
mi surface of Pb does not exist are indicated by vertical
lines. Amount of anisotropy in these curves is consider-
able. It includes the anisotropy due to the phonon spec-
trum, the electron-phonon umklapp processes, as well as
the electronic structure, i. e. , Fermi-surface distortions
and multiple-plane-wave effects.

"c
CO

[1 —z(p, )] = d 'Bs, „„,r,)0

xff (~, (g', p),
where now

K, (a), (o', p) =
~ dv as(v)Ey(v)

Jp

x, , , , (12)(
1 1

~ + (d+ v+ s0 co —(d + v —$0

While on the right-hand side of Eqs. (11) we have
inserted the dirty-limit values for the gap &(~), it
is now the directional functions ale(v)FI(v) that ap-

( gs,
KIV(p) I - RIV(p) I

' (15)

The mean-square anisotropy a is then by definition

a' = &~(p)&

= (& '(P)& —[&4(P)&]'b'[& o(P)&]' .

It comes out to be equal to 0.00933, or roughly
0.01, so that a=a'(a )=0.1, which implies roughly
ten percent fluctuations.

It is not possible to compare our results with the
experiments of Blackford' at the moment because
the selection rules he used to assign gaps to vari-
ous parts of the Fermi surface now appear to be in-
valid. It is hoped, however, that our calculations
will stimulate further experiments. Blackford's
results do suggest that the gap is peaked about two
values, in agreement with our calculations.

In Fig. 6 we present results for the gap edge in
pure single-crystal Pb &o(p) for three constant Q

arcs on the Fermi surface. The angles 8 and 4& are
polar angles defined as follows: The polar axis is
along [001] and 8 is measured from this line. In
the plane perpendicular to the polar axis we mea-
sure P from the [100]axis. We see in the figure
that Q(p) exhibits a significant amount of anisot-
ropy. We also see that in some directions large
regions are missing, which correspond to (8, P)
regions where there is no Fermi surface. In
Table I we record the gaps at those points where it
was actually calculated. Also of interest are the
anisotropic mass renormalization parameters ob-
tained by inserting the directional n FI(&u) into the
right-hand side of Eq. (5). These were calculated
and included in Table I.

A good measure of the over-all amount of an-
isotropy is the mean square anisotropy. We define
an anisotropy parameter a(p) by the equation

a(p) = [do(p) —«o(p)&]/&W(p)&, (14)

where &f(p)& is by definition its Fermi-surface
average, i.e. ,
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In summary, we have made the first realistic
first-principle calculations of gap anisotropy in Pb
which include the real phonon spectrum and the
distortions of the Fermi surface from sphericity
and which also use a four-plane-wave model in the

calculations of the electron-phonon matrix element.
At the same time, our calculations yield a value of
the isotropic electron-phonon strength function
o2(m}F(ar} which is in good agreement with tunneling
results on this quantity.
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