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Motion of charged particles in curved planar channels: Effects of dislocations
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A simple model to discuss the motion of charged particles in curved channels, such as those around a
dislocation, is presented. The curvature in the channel produced by a dislocation is approximated by an arc of
constant radius R, which is determined by using the displacement equations for the case of screw dislocation.
The equations of motion for the planar channeling case have been written by approximating the effects of
curvature on the particle motion by an a'verage constant centrifugal force 2E/R, E being the average energy
in the curved part of the channel. These equations are solved in the limit of small curvatures (i.e., for
channels not very near to the dislocation) and an analytical expression for the change in energy loss of an

initially well-channeled particle is obtained.

I. INTRODUCTION

More than a decade ago, the computer simula-
tions of charged-particle trajectories in single
crystals and the range-measurement experiments'
with heavy ions in aluminum and copper single
crystals revealed for the first time' that the
charged particles entering a crystal parallel or
nearly parallel to an atomic row or plane succeed
in getting their trajectories maintained along the
same family of rows or planes, and thereby suc-
ceed in penetrating to much larger depths than are
observed in amorphous solids or along random
directions in single crystals. This directional
effect, now commonly known as "channeling, "
and its opposite, the "blocking effect" in which
the particles originating at a lattice site are
blocked from traveling closely along atomic rows
or planes, have since been extensively studied,
both theoretically and experimentally, and have
been the subject of various review articles~ and
international conferences. ' It has been realized
from the very beginning that a detailed knowledge
of various aspects of these directional effects
would be of great help to those concerned with
technologically important subjects, such as ion
implantation. ' It has been from such technological-
ly applied points of view, in addition to the funda-
mental research viewpoints, that the study of de-
fects and lattice disorder, utilizing channeling and
blocking techniques, has been motivated. Ac-
cordingly, a fair amount of work has been done
in this direction, particularly with regards to the
lattice location of (dopant} foreign atoms by chan-
neling and blocking techniques on one hand (for a
list of references on this subject see for example
the article by Gemmell~) and the dechanneling
effects produced by these points and extended de-
fects' on the other.

As for the theoretical description of these di-

rectional effects, Lindhard's theory' based on the
simple idea of classical steering of the ion by the
continuum axial or planar potential of the channel
has been found to explain with reasonably good ac-
curacy all the existing data on heavy-ion chan-
neling. Using this model, the effects of point de-
fects (like substitutional or interstitial foreign
atoms) have been interpreted simply by taking
into account the extent of the "obstruction" effects
that the passing channeled ion sees, due to the
presence of these impurities. For example, if
the channeled ion hits the impurity directly (i.e.,
if the impurity is sitting in the middle of the chan-
nel}, it will get dechanneled, and if, on the other
hand, the impurity is sitting on a substitutional
site in the atomic row or plane, it will not have
any significant effect on the motion of the chan-
neled ion. Stacking fault is an example of the ob-
struction being produced by a whole atomic row
or plane (as against that due to a single impurity),
because here whole families of atomic rows or
planes in one part of the crystal are displaced
with respect to corresponding atomic rows or
planes in the other adjoining part of the crystal.

By contrast to these simple obstruction effects,
the extended defects like dislocations produce dis-
tortion in the channels themselves. Consequently,
the ion moving in an axial or planar channel is
subject to additional forces due to these distor-
tions. Depending upon the magnitude of the distor-
tion produced, the amplitude of the oscillating par-
ticle can be changed, or may get dechanneled al-
together. Querd" has calculated the distance from
a dislocation axis up to which an initially channeled
particle will get dechanneled, and his results
agree reasonably well with the computer simula-
tions of the particle trajectories in crystals with
dislocations performed by Morgan and Van Vliet."

In this paper we consider the problem of motion
of charged particles through a curved channel
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around a dislocation. Since we are only in the
initial stages of developing a theory on the effects
of dislocations on the motion of charged particles
through crystals in general, and on the energy
loss of those charged particles moving along
major crystallographic directions and planes
(namely the channeled pa, rticles) m particular,
we confine ourselves to the simplest case of screw
dislocations, and consider the case of planar chan-
neling. However, the model proposed here is
more generally applicable to the cases of edge
dislocations, as well as to axial channeling. In-
vestigations dealing with these and more general
cases, where some wise simplifications and ap-
proximations (with reasonable accuracy) to the
complex mathematics might be needed to get
some analytical results are in progress with the
ultimate aim of presenting a unified theory of
these effects. The general concepts used to deal
with the problem are the same as those used in the
Lindhard theory' of channeling, namely, the treat-
ment of the problem in the continuum approxima-
tion and the use of the corresponding continuum
planar potentials. The simple model used for dis-
location-affected channels in the crystal, and the
relevant formalism have been discussed in Sec. II.
This formalism has been used in Sec. III to discuss
the changes in the energy loss of well-channe'. ed
particles due to dislocations. Finally, some con-
cluding remarks with regard to the theory pre-
sented, and possible experiments to test it and
to guide future theoretical work have been given
in Sec. IV.

get by even the approximate models. In an at-
tempt to construct such an approximate model for
this complicated situation, we first assume that
the channel ha.s a constant average radius, and
that the length of this curved part is finite. Thus,
as shown in Fig. 1, we replace an actual channel
wall by an approximate channel wall QOQ' such
that the parts QO and OQ' have constant radius
of curvature R (with curvatures in opposite direc-
tions) which can be determined from the simple
geometry using the appropriate displacement equa-
tions for atomic displacements around a disloca-
tion axis.

For a screw dislocation, the displacement equa-
tions are fairly simple, provided one makes use
of the isotropic-elastic-continuum theory. Of
course it is well known that this isotropic-elastic-
continuum approximation in dislocation theory
breaks down near the core of the dislocation, but
as we shall see later on, we are not concerned
with this region around the core of the dislocation.
Because the channels are completely blocked in
the core region and there is no question of any
channeling taking place, and as one slowly moves
away from the core region, the isotropic-elastic-
continuum theory starts becoming valid, and in
fact has been used" to derive an average distance
from the dislocation axis (the so-called radius of
the "dechanneling cylinder" ) within which most of
the particles will get dechanneled, and these theo-
retical results have been found to compare well
with experimental results for the planar case.'
The region of the crystal of interest in this article

IL THE MODEL AND THE FORMALISM

A. Channel

We know from the theory of dislocations" that
the crystal structure is greatly distorted around
a dislocation. Although in practice this distortion
decreases quickly as one moves away from the
dislocation axis, in principle, the effect is an
asymptotic one, and the representative equations
for atomic displacements predict nonzero dis-
placement for any atom at a finite (however large)
distance from the dislocation. Moreover, the
curvature produced by these atomic displacements
in the channels around a dislocation is, in princi-
ple, nonuniform. The movement of a charged par-
ticle in these channels is, therefore, rather com-
plicated. One obvious way would be, of course,
to simulate the trajectories on the machine. But
in addition to being costly (because one has to
deal with an enormously large number of atoms
in the crystal that are effected by the dislocations),
these machine calculations give less insight into
the physics of the processes going on than one can

FIG. i. Geometry used to determine the constant
radius of curvature of the model channel. The actual
curved plane is the one normal to the plane of the paper,
and containing QOQ'. The angle n is the angle between
the tangentFOF', on the curved parts QO andOQ', at the
point 0, and the z axis.
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is outside this decharmeling cylinder, so that the
isotropic-elastic-continuum theory can be safely
used, and in fact its use is consistent with the
approximations made later on, regarding the
curvature of the channels. Thus we write the
displacement equations for a screw dislocation
as"

Q~ =Q~ =0

b 1 ~ cosp
u (=-u) = —cosytan '

3 2' rp

where r, is the distance measured from the dis-
location axis, b is the Burger's vector, and y is
the angle between the channel and a plane per-
pendicular to the dislocation axis. For the planar
case, the particular direction in the plane with
respect to which this angle y is measured is usual-
ly taken to be the direction of motion of the par-
ticle. Correspondingly, one has to express y as
a function of two angles, ' 8 and y as shown in Fig.
2. Here D represents the dislocation axis and 5
is the direction of motion of the particle in the
plane + under consideration. The direction 5

makes an angle 8 with the projection of the dis-
location axis on the plane, and ~ w —y is the angle
between this projection and the dislocation axis
itself. From simple geometry it can be shown
that7

cosy = (1 —sin'ycos'e)' ~' . (2)

= p &cospu= —cos(It~ tan '
2m rp

with

p=bcosy .

(3)

The radius of curvature R of the model channel
of Fig. 1 can now be easily obtained. We note
that R = OO', O' being the point where the normal
to the tangent (FOE') to the arcs QO and OQ' at
point O intersects the bisector of the angle QFO.
Thus,

EO EO sine AO
tan-,'e 1-cose 1-cose '

Using Eq. {3),

AO =u(at z = ~) = Q cosy,

(4)

In order to use the displacement Eq. (1) for the
planar case of Fig. 2, the Burger's vector 5 (along
the dislocation axis D itself for the screw disloca-
tion case) should be replaced by its component
normal to the plane ~ so that

cd p cos ptann = —(at z =0) =
dg 2'.

so that Eq. (4) gives

(5)
p (1+p'cos4y/4v'r ')' I'
4 (1+p'cos y/4v x')'~2 —1

'

If we neglect p' cos4 y/4 v 2r O2 compared to unity
in the binomial expansion of numerator and its
second and higher powers in the binomial expan-
sion in denominator, we get a simple expression
for R as

R = 27T To/p cos y (6a)

and in the same approximation, the arc length
QO is found to be identical to

z= vr, /cosy . (5b)

FIG. 2. Geometry showing different angles for a
planar channel ~ near a screw dislocation of Burger's
vector b lying along the dislocation axis D. Here 5 is the
actual direction of motion of the particle in the plane cu.

In order to illustrate other angles clearly in this figure,
it has not been possible to show the curvature of the
plane, but actually this plane is curved and a projection
of the curvature along the direction 5 is that shown in
Fig. i.

The approximation used above can be seen to
introduce a negligibly small error. For example,
if we calculate the maximum value of pmcos4y/
4var02 (i.e., corresponding to cosy=1 and for the
minimum possible value of ro, i.e., for ro =p),
we get 1/4vz which is about 0.0253. Therefore,
the approximation introduces a maximum possible
error of 2.53% in the extreme case. Since we
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shall be concerned only with the channels outside
the dechanneling cylinder, ' ro will usually be
several times p. Moreover, because cosy enters
with a fourth power, the expressions (6) for R and
z tend to be fairly accurate.

B. Equation of motion and the planar potential

Thus, having replaced the actual channel af-
fected by dislocation by a model ch:panel of con-
stant radius R, the next step is to consider the
effects that this curvature will have on the motion
of an initially channeled particle. In order to keep
the treatment simple and to get analytical results,
we shall deal only with those particles which enter
this curved channel with zero transverse energy,
i.e., the mell-channeled particles. The model
used to discuss these effects is shown in Fig. 3,
where both parts of the curved channel shown in
Fig. 3(a) (i.e., to the left and to the right of the
line AB, hereafter called the first and second
part, respectively), are replaced by straight
channels and the effect of curvature is included
by applying a force 2E/R (the centrifugal force)
to the channeled ion of energy E, normal to the
channel axis, and in the opposite directions in the
two parts as shown in Fig. 3(b). The coordinates
used in the an'lysis are also shown in this figure,
the distance x is measured from the h~&fway point
between two planes (i.e., channel axis), 2l is the

mz+S(x, E) =0, (8}

respectively, where V is the planar potential (due
to both planes) and S(x,E) is the stopping power
function. " Following Robinson, "we have ne-
glected the inelastic term in Eq. (7) for the trans-
verse motion, because the direction of motion of
the channeled ion always remains within -0.5'
of the channel plane, and correspondingly the
longitudinal component of S(x, E) is replaced by
S(x, E) itself in Eq. (8). Here it should be re-
membered that in principle the centrifugal force
term in Eq. (7) is not constant throughout the
length of the channel because as the particle
moves, its total energy decreases, as does the
centrifugal force. But if the length of the curved
part is less than one wavelength of the particle
oscillation (which is the case for energetic par-
ticles and a typical channel not too far away from
the dechanneling cylinder}, one can assume this
force to be constant and, if needed, replace E by
an average energy, as discussed in Sec. III. Now
writing Eq. (7) as

distance between two planes surrounding the chan-
nel, and x„ is the amplitude of oscillation of the
particle.

The equations of motion for transverse and
longitudinal motion in the first part are

dV 2E
mx+ ———= 0

dx R

1 Xo
d 2E

—,mx'+ V(x) ——x =0
dx

R

so that

& mx'+ V(x) —(2E/R)x = const = V(x ) —(2E/R)x„,

and we get:

x= (2/m)' '[V(x ) —V(x)+(2E/R)(x-x )]' ' .

(b)

2E
R

X2

X
foal

(9)

For an initially well-channeled particle, the
initial conditions are x(t=O}=0, x(t=O}=0, so
that Eq. (9) gives

V(x ) —(2E/R)x = V(0) (10)
FIG. 3. (a) Typical channel at some finite distance

from a dislocation. (b) Straight model channel replacing
the channel of part (a) and showing the coordinates used
in the text. Here, l is the half-width of the channel, x
is the amplitude in the first part of the channel, xo is the
equilibrium position about which the particle will oscil-
late, and x& and x2 are the positions at which the particle
arrives after having traversed the first and second parts
of the channel, respectively.

x= (2/m)' ~[ V(0) —V(x}+(2E/R)xj' (11)

Equation (10) can be used to find the amplitude
with which the initially well-channeled particle
starts oscillating in the curved channels. The
equilibrium position xo about which the particle
will oscillate is determined from the condition



4692 ANAND P. PATHAK

2E dV =0.
A dx„ (12)

The corresponding equations for the second part
are easily obtained by changing the sign of 2E/R,
and the initial conditions for the second part are
obtained by solving the above equations for the
first parts of position and transverse velocity
of the particle after it has traversed the first
part.

To solve the above equations of motion, we
need a suitable planar potential. We shall apply
a simple mathematical approximation"'" to the
Lindhard's planar potential,

the dependence of this potential (14) on the inter-
atomic distance is very close to what one would
derive'7 from the planar channeling experiments
(since r '~' dependence suggested by Robinson"
is subject to 10%%uo uncertainties). Thus we see
that although originally purely a mathematical
approximation to the Lindhard's planar potential,
the planar potential (13) corresponds to a physical-
ly reasonable interatomic potential, and gives
most of the physical quantities in reasonable agree-
ment with those obtained from other standard po-
tentials.

Now using (13) in Eqs. (10) and (11), we get

1 1 4VoI a 2BL 2B
Jm

(15)

with

~o = gZxZ2e N&Ca,
4E i/2 2BL 2B x /2

(16)

L=l+a,
where Zy and Z2 are the atomic numbers of the
incident ion and target atom, respectively, e is
the electronic charge, N4 (=2lÃ) is the atomic
density in the plane under consideration (X being
the atomic concentration per unit volume in the
crystal), a is the Thomas-Fermi screening ra-
dius given by

a=0.8853a (Z2~3+Z2~3) ~~2

with ao the Bohr radius and C is the constant ap-
pearing in the Lindhards standard interatomic
potential' (C =M3). This potential (13) originally
used by Mory'4 and Quere" has been shown to
differ from Lindhard's planar potential by not
more than 2%%uo. More recently, "it has been shown
that this potential gives a stopping function S(r.,E)
whose magnitude as well as variation with x is
very close to that obtained with Moliere and Lind-
hard's potentials. The interatomic potential to
which this planar potential (13) corresponds has
been shown to be"

Z,Z,e' Ca'
(r+ a}2 (14)

whose variation with r agrees quite well with
Moliere and Lindhard's standard potential down
to the interatomic distance r = a, and in fact can
be made to agree even for r &a by taking the con-
stant C smaller than 0 3 for r & a (and C = 1 for
r=0) as suggested previously. ""However, since
in most of the problems related to channeling, one
is not concerned with these smallest interatomic
distances and can keep C = v 3, and use the simple
forms (13) and (14). It is worth pointing out that

and Eq. (12) yields a fourth-degree equation for
the equilibrium position x,:

x', —2x',L' —4xBL+ L4= 0 . (17)

In Eqs. (15)-(17), the abbreviation B=RVo a/E
has been introduced, and will hereafter be used.

x = Lo/2B,
1 /2 2B 1/2

(18)

g = (B4/I 4 4. g' f.4)«4 B/I, (20)

Thus, having known xo and x, we can now cal-
culate different quantities of interest. From Eq.
(19), we get the period of oscillation as

C. Approximate solutions

Equations (15)-(17), along with Eq. (8}, describe
the motion of the particle completely, but in their
present form they give little information unless
solved numerically. In order to get some analyti-
cal results giving some insight into the problem,
we make another approximation, namely, neglect
fourth and higher powers of x/I-. This amounts to
being restricted to small amplitudes of oscillation,
which in turn means that we are dealing with those
channels which do not have large curvatures, i.e.,
which are not very close to the dislocation axis.
To get some feeling about the accuracy of this ap-
proximation, we note for example, that for ampli-
tude x„=2L, the approximation introduces a maxi-
mum percentage error of about 6%%uo. In this ap-
proximation the Eqs. (15)-(17) ean be shown to
give
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mR»2 dx
4E [» (2B/Ls)» 2]»2

2mRL' "-'
& . , x, -L' 4B

and using Eq. (20}, one can show that

2mRL ' 4B L +4B L +2B
BE L3 2BL 2L2

L4+2B2 -~~2

L2

(21)

(22)

represents an average energy corresponding to
the particular channel in question. We need not
write the corresponding equation for the position
x,' of the equilibrium axis in the second part, be-
cause from symmetry it is clear that xo= -xo.

We solve these equations using again the planar
potential (13) in similar approximation as used
previously. Equation (27) gives

f 2Vgz' = ——~ —1+Scos' ~
4s ' 4~ ) i. r. ) I

If the time taken by the particle to cross the first
part of the channel is t„we can find the corre-
sponding position x, of the particle by integrating
Eq. (19):

ty mR 1/2 dx
4& [x (2B/L3)» 2] ~ &2dt=

or

(28}

x, + L~/4B
(*,L')B ~ L'/16B')'~' )'

which gives, after some algebra,

and Eq. (26) gives after integration:

mRL3 ' ~2 x+ L~/4B
8BE (x L3/B y Le/16B2)~ ~2

which gives

LE, t, 2Voa
(23) x~+ —cos (29)

I E . 2' 2Voa
1) R(2V )&/2 L mL

(24)

For the second part of the curved channel, the

initial conditions are x= x, and «=v(x, ). Using
these initial conditions in the equation of motion,

dV 2E
mx+ —+ —=0

dx R
(25}

The corresponding transverse velocity at point x,
is easily obtained either by differentiating Eq. (23)
or by substituting this value of x, into Eq. (19) to
get

where t' (= t —f, ) is the time measured within the
second part. Expression (29), along with Eq. (23)
for x„gives the position of the particle at any
time. The complete equation for the particle
trajectory is obtained by integrating Eq. (8) for
the longitudinal motion, and combining these
solutions with Eqs. (23) and (29), similar to the
case of perfect crystals. " In order to be con-
sistent with our previous procedure of using a
constant average centrifugal force, we take the
time needed to cross the second part of the chan-
nel t, as equal to t] and again, as discussed in
Sec. III, we shall use an average value. Thus
using Eq. (29) with x=x, for t' = f, (= t, ) we get,
after some algebra,

we get

x 2 —v'(x, ) = (2/m) [V(x,) —V(x)

+ (2E/R)(x, x)], (26)

L'E 2t, 2V a

and the corresponding velocity as:

(3o)

and the equation giving the amplitude x' as:

v'(x, ) = (2/m)[ V( x') —V(x, )

+ (2E/R)(x' —x,)] . (27)

2L'~'E . 2t, 2V a
R(2V am) 12 L mL, (31)

which is twice the value of v(x, ), in this approxi-
mation.

The term 2E/R in Eq. (25) has a sign opposite to
that in Eq. (7) because as shown in Fig. 3, the
centrifugal forces act in opposite directions in the
two parts of the channel. The magnitude of this
force, as stated previously, will be an average
foce over the whole curved part so that E again

III. ELECTRONIC ENERGY LOSS

After the particle has crossed the curved parts
of the channel, it again finds itself in a perfect
straight channel and oscillates with an amplitude
given by the equation
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V(x, ) = —.
' mv'(x, )+ V(x,}, (32)

which gives, within the approximations used pre-
viously,

x', = [2mv («2)L'+4V, a«2]/4V3a, (33)

and using Eqs. (30) and (31) we get a simple ex-
pression,

x,=L,'E/2RV, a . (34a)

Expression (34a) tells us that an initially well-
channeled particle, after passing through two
curved channels of equal length with radii of
curvature 8 in opposite directions, will start
oscillating with an amplitude which is directly
proportional to the particle energy and the
cruvature (1/R) of the channels.

Before proceeding further, we must discuss
the choice of the energy E md time t, used in
Sec. II. If the initial energy of the particle is
E, and the length 2z of the curved channel is not
large compared to the oscillation wavelength of
the particle, we can use the initial stopping power
S(E3) [= (dE/dz) ( z z ] to find E~ = E3 —2 zg(E3),
aad choose the & appearing in the centrifugal-
force term as E= 2 (E,+Ez) =E, —zF(E,) Cor.
respondingly, we can determine the approximate
time t, (where 2t, is time taken to cross both
parts of curved channel} as

t = z(m/2E) = zm /[2E —2zS(E )]
The S(E3) in these expressions for E and t, is to
be taken as an average over the period of oscilla-
tion in the channel. To get some feeling about the
range of validity and accuracy of this procedure,
we note that for MeV e particles the oscillation
wavelength in planar channeling is typically of the
order of 103 A,""whereas the corresponding
radius of the dechanneling cylinder is less than
10' A [e.g., for 5-MeV n particles in (ill) planes
of Al, the diameter of this dechanneling cylinder
is 1V5 A theoretically, and 140+ 40 A experi-
mentally2). Therefore, if one is about a distance
of the order of 102 A away from the dislocation
axis (i.e., outside the dech'mneling cylinder), 2z
would be, on the average, less than or of the
order of 10 A, i.e., of the order of an oscillation
wavelength. Thus, the present procedure to esti-
mate E and t, will be a reasonable approximation
for those planes which are within a distance of
few tens of angstroms outside the dechanneling
cylinder. However, for the planes much farther
from the dislocation axis (and typically, say,
several hundreds of angstroms away from the
dechanneling cylinder), so that the length of the
curved part of the channel becomes large com-
pared to one oscillation wavelength, one can make

corresponding corrections by using 8(E}instead
of the mitial. stopping power f(E,}, and using a
self-consistent procedure to determine E and I;„
to be used in the expressions of the Sec. II.

Now using equation (6a) in equation (34a) we
get

I-'E p cos'y
x

2V a 2m'r'0 0
(34b)

In a recent preliminary report" we found an
average value of x, simply by substituting cos'p
by its average value 4/3« which would thus cor-
respond to a special case in which the direction
5 of the particle's motion is along the projection
of the dislocation axis on the plane. For a general
case, from Eqs. (34), (2), and (3), we get

x = I3Eb&f/4V3ax2r32,

where the constant q is given by

(35}

4 v/2 r /2
cosy dy (1 —sin'y cos2&)3~2de

7f 0 0

=—0.49, (35)

which is not very different from the approximate
value 4/3w taken previously. " Once the ampli-
tude of oscillation of the particle motion is known,
the energy loss can be easily found. If one pre-
fers to use some experimental information from
the planar channeling experiments with thin crys-
tals, the procedure of Robinson'3'~ can be used
to write

S(x,E)= s3+ s, [o(x) —1] (37)

where so and sy are the energy-dependent quanti-
ties and are to be determined from the experi-
ment, and the position dependent function is
given'~" as

&

&= X~ (v„o [v& )-v&0&]'")

L3/(L2 «2)3/2 (33)

In this procedure, one has to calculate an average
value of o(x) over the period of oscillation, i.e.,

where, for a straight dislocation free channel,

x = (2/m)'"[ V(x,) —V(x)]'~',

so that the period of oscillation for potential (13)
is given by:
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4f
'dd

m 1 /2 x~p 6962, [V(x,) —V(2:)]'"

2mL(L' —x', ) "~2 2:
(40)

and high-velocity'2 cases. In these expressions,
the position dependence comes from the effective
channel- electron density responsible for stopping

and this, for the planar case, was obtained by
making a planar average of the spherically aver-
aged electron density due to the individual con-
tributing target shells. Thus one gets

1
2(L2 /2 )'~2 P(2 /L)

(41)

Thus, the change in the energy loss of well chan-
neled particles due to their passage through a
single channel affected by dislocation is easily
found through the expression:

4S = S(2), E) —sn = s,((o(2:)}—1)

An alternative procedure, purely theoretical
and not utilizing any experimental informations
like the so and s, needed in the above procedure,
would be to utilize the relevant theoretical ex-
pressions for the energy loss. Such expressions
have recently been shown to give the position de-
pendence of the stopping power in the channel,
which agrees with that obtained by the above pro-
cedure of Robinson, as long as one is not too
close to the channel wall (i.e., as long as the os-
cillation amplitude is not so large as to be close
to the channel width), in both the low-velocity"

where F is the complete elliptic integral of second
kind. Using Egs. (38) and (40) in (39), and cal-
culating the numerator, we get the following sim-
ple expression

n(x) = p(l —x) + p(l + x),
with

2(
p(y) = Xl Q ~ (oje "J'

2n J

(42)

2'- 1 2II) l~ k

(2$.)2(2n. —1 —k)! '

n= [p(l -x)+ p(1+x)]Ch,
2+amp - x 8mp

which gives

where n, , ~„and $,- are the principal quantum

number, the occupation number, and the radial
orbital exponent for the jth shell, respectively,
and y = l —x is the distance from the plane.

Here, the energy loss of well-channeled par-
ticles is obtained by using n(0) =2p(l) in the rele-
vant expressions, ' " and the quantitative values
thus found are in good agreement with experi-
ments. The energy loss of a particle oscillating
with an amplitude x, is obtained by using the ef-
fective average-electron density sampled by the

particle during its motion, i.e.,

d' [ (l 2 )2nz 1-2- e-2(mp(l xnmp) (l+ 2 )2ny -)-2 ™e-2(d(14xnmp)]

x 2-
k=o m=o

x[(2~,)m. "'-2nd(2n. 1 k m)!]- (44)

where the summation over j runs over all signifi-
cantly contributing target shells. This procedure
of taking a planar average of the effective electron
density has recently been used to predict" the

changes in energy loss of well-channeled par-
ticles due to introduction of a low concentration
(n-phase) of hydrogen in palladium.

IV. CONCLUSIONS

In this article, an attempt has been made to deal

with the rather complicated problem of charged-
particle motion in single crystals having a small
concentration of dislocations. As is quite well

known, ' "as far as channeling is concerned,
there exists a so-called "dechanneling cylinder"

around a dislocation axis such that the majority
of the initially channeled particles passing
through this region will get dechanneled. The
region immediately outside this dechanneliag
cylinder affects the motion of most of the chan-
neled particles to a lesser extent. The channeled
particles entering this outer region generally will
not get dechanneled, but because of the finite
curvature of the channels, their state of motion
is modified and their oscillation amplitude changes
appreciably. In this preliminary theoretical study,
we have tried to develop a simple model which can
then be used to calculate the relevant physical quan-
tities, such as energy loss. It was felt from the
very beginning that a knowledge of the nature of
the experimental information which can possibly
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be obtained through current channeling experi-
ments would be a useful guide to direct theoretical
work.

In the absence of any experimental information
about channel stopping power in the presence of
dislocations, we have concentrated on the
simplest problem, namely to calculate the effect
of channel distortion due to a screw dislocation
on the energy-loss rate of the well-channeled par-
ticles. This has been done in the framework of a
simple model for curved channels in which the
curvature is assumed to be constant, and a con-
stant average centrifugal force 2E/R is included
to represent the effects of this curvature on the
particle motion. It is also assumed that the over-
all length of the curved part is not more than a
wavelength of the particle oscillation. Under these
simplifying assumptions we calculate the ampli-
tude with which an initially well-channeled par-
ticle will start oscillating after passing through
such a channel, so that the change in energy-loss
rate for such a particle can be calculated for in-
dividual curved channels. If an experiment along
these lines can be performed to find the difference
in the minimum energy-loss rates (i.e., corre
sponding to the edge of the energy-loss spectra),
without and with a very low concentration of screw
dislocations introduced as a very thin layer of
known thickness in the target crystal, then this
minimum energy loss should, on the average,
correspond to those particles which have passed
through the channels situated farthest from a dis-
location axis. This farthest ro is, on the aver-
age, given by r, = (3/4vn)'~', where n is the
concentration of dislocations. Using this r, '"
and the known thickness of the dislocation-af-
fected region, we can calculate the change in
minimum energy-loss rate by using Eqs. (34)-
(43), and compare the calculated and experimental

values. It must be emphasized, however, that the
accuracy of such an experiment must be high in
order to detect the difference in the edge of the
energy-loss spectra, because the number of well-
channeled particles is small and out of these one
has to look for those which pass through the chan-
nels of smallest curvatures.

From the theoretical point of view, it is quite
obvious from the discussion given in Secs. D and
III that much more detailed calculations are
needed. For example, a more generalized theory
for the motion of any particle (and not just the
well-channeled ones) is needed so that suitable
statistical averages corresponding to fluxes of
particles for a given initial amplitude can be made
to calculate a spectrum of the outgoing particles.
Similarly, a detailed study of particle motion in
long curved channels such that the change in
centrifugal force due to energy loss in the curved
channel itself is properly taken into account, would
be useful.

In conclusion, it can be said that detailed ex-
perimental work in this field is needed to guide
the theoretical work in a useful direction. It is
also being felt that for preliminary order-of-
magnitude estimates of the experimentally useful
quantities, like energy-loss rates, even a simpler
model, like solving the harmonic-oscillator prob-
lem could be a useful guide for detailed theoreti-
cal as well as experimental work.
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