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Proton neutralization at the surface of a solid
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Making use of the Bates-type quantum-mechanical recombination theory, the probability of the proton
neutralization at the surface of a solid is discussed. The neutral fraction for the transition to the ground state
of the hydrogen atom is calculated, and the dependences of the neutral fraction on the exit energy and angle
of proton emerging from a metal are discussed. Numerical calculations are performed for Au, and the results

are compared with experiments.

I. INTRODUCTION

During the past ten years, many workers have
performed experiments to investigate charge
states in ion beams passing through solids.}»> Re-
cently, with increasing effort, experiments with
light-ion beams, especially protons or deuterons,
have been performed for various target materials
by use of transmitting,** backscattering® and sur-
face scattering® techniques, and several experi-
mental results have been reported.

(i) The observed neutral fractions (or charged
fractions) of proton and deuteron beams are weakly
dependent on target materials.?5:7

(ii) In the backscattering experiments for proton
beams, the neutral fractions measured for a fixed
energy and angle of emergence, are almost inde-
pendent of the energy and angle of incidence within
experimental errors.’

(iii) In the transmitting experiment with helium-
ion beams, the observed result for incidence
parallel to the channeling direction is almost iden-
tical to the result for incidence in random direc-
tion.*

(iv) In experiments on polarized-electron cap-
ture by a deuteron, a high polarization of the deu-
terium atoms has been observed under the chan-
neling condition,® and has also been obtained under
the surface scattering condition.®

Generally speaking, from these experimental
results, it is pointed out the weak dependence of
charge states in light-ion beams on experimental
methods, or conditions. This suggests that elec-
tron capture by light ions, especially protons or
deuterons, mainly takes place near the solid’s sur-
face,”® and is of considerable interest in the study
of electronic states in the surface region. How-
ever, the above suggestion has not been complete-
ly explained theoretically.

Theoretical studies in this field have been de-
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voted to discuss the existence of a stable bound-
electronic state in the ion inside metals, rather
than the probability of electron capture or loss.
Rogers et al.!® and Ebel” have discussed stable
bound-electronic states in the ion, taking into ac-
count the screened field created by many-body ef-
fects inside the metal. They concluded that, for
the case of the hydrogen atom, there can not exist
stable bound states inside the metal in both the
static and dynamical cases. This is a negative
conclusion concerning the possibility of electron
capture inside metals.

As far as the theoretical treatment of the prob-
ability of electron capture or loss by protons pass-
ing through the solid is concerned, there is a
major difficulty arising from the fact that the
charge-transfer process is a three-body problem.
Due to this difficulty, theoretical studies of this
type are still statistical and phenomenological.® !

In this paper, on the basis of Bates-type quantum-
mechanical recombination theory,'?!3 we discuss
the probability of the proton neutralization at the
solid’s surface.

II. DERIVATION OF THE RECOMBINATION PROBABILITY

We consider a collision in which the electron is
initially in a metal, and finally is bound in the nth
excited state of energy E, to a hydrogen atom.
Taking into account the experimental suggestion
and the theoretical studies performed by Rogers
et al. and Ebel mentioned in Sec. I, we assume
that the transition takes place at the surface where
the screening effect diminishes enough for bound
states to be stable.® In describing the electron in
the metal, we use a planar uniform-background
model,'* and take the depth of the square-well po-
tential at the surface as U,. Then, taking into ac-
count the motion of the proton, we start from the
time-dependent Schrédinger equation. Following
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the method formulated by Bates'?!3 and using the
two-state approximation, we write down

L)
lh—=H®,
¢ ot (1)
H=- (B*/2m)Aa+V(F,t)+ (- U,)6(- z) ,

®(T,1)=C, ()9, (T, 1) + C,(t) ,(F, 1) , (2)

where V(F,t)=—-e?/IF-V,t|, and 6 the Heaviside
step function. We take the direction normal to the
surface as z (z <0, inside the metal; z>0, outside
the metal). At the time =0, the proton reaches
the metal surface. In the above, m and T are the
mass and the coordinate of the electron, respective-
ly, and ¥, the velocity of the proton which is taken
to be constant as far as the determination of the
recombination probability is concerned. The C’s
are coefficients dependent on the time ¢ and ¢,(¥,?)
and ¢,(T,?) the wave functions of the electron in
the metal and in the hydrogen atom, respectively,
which are given by,

6,(F, 1) = po(Fle= 1/ -Vosn ¥ /2m)t 3)
Ae**ef +Be ™ thef)e! ®r k) | 2 <0

bo(T) = { )
(1} Ace-ozei(k,nkyy) , 2>0

and
&, (T, 8)= o, = V’t et/ ) (m¥pe F=Ept-mvt /2) , (5)
with

5=(k§—ki)”2, kf,:zmh"zUo, A%2=2/Q
. (6)
_tket? Cc= 2ik,
ik,— 6’ ik~ 0’

© being the volume of our macroblock, ¢, the nth
excited-state wave function of the hydrogen atom.

Substituting Eq. (2) into the Schrédinger equation,
we obtain the coupled differential equation for C;
and Cj,

inCI() = €, (HCL) exp( f [e,(t) - l(t)]dt)
7
and
. i t
inCY(t) = €5, (1)CI(2) exp(——h, f [e, (t)—eg(t)]dt),
(8)

where

hu - 512 hg]_ dt)

c,=cit) exp( a ©)

T- ISP
C,()=Cit) exp( 3 h2—2'—slzs;f';—=dt> (10)

€)= 1—:%5 (Byg = Syp hap) = €1y ()™ 4/ M B2 -EDE
(11)
€, ()= -1_—1@?(};21 = S, hyy) =€, (e~ /M BByt
(12)
and
()~ € @)= -llesTs(hzz =Ry = Sy hyp+Siphy)
(13)
with

S= <¢11¢2> =83, ‘S|2=512521,
12=<¢1|(‘Uo)0(‘z)|¢2>, h2x=<¢zlvl¢1>»
hy, ={¢, I Vl )5 hyp=(d; I (= Up)b(-2) I b2

E,=-U,+(R*k?*/2m), E,=E,+3mv?,

where the dot means the derivative for ¢, and
{(***) the integration over T.

If S;,, S5, hy,, and h,, are neglected, and C{(¢)
are approximated to unity (the first-order Born
approximation), Eq. (7) disappears, and Eq. (8)
reduces to the result calculated by Trubnikov and
Yablinskii.'> Furthermore, if V is taken to be a
static Coulomb potential (the fixed-ion model),
Eq. (8) reduces to the result calculated by Mas-
sey*® and others'"*® using the time-independent
theory.

From the coupled equations (7) and (8), we obtain

sz(t) ’
€} (t))c

+(le0+E, - 60,

€1z(t)€21(t) =0
ne :
In the following, we refer to the approximate
method within the framework of the Bates-type
method used here. As far as the post and prior
interactions are concerned, we note that

€52(t)€5, (2) = |(h12 = Sy hyp) gy = gy hyy) ‘ » (16)

provided that the equivalence of the post and prior
interactions!? is realized. The realization of the
equivalence of the post and prior interactions is
equivalent to the case of AE =0 when ¢,¢,, is ex-
panded by AE (AE =E,+h,, —E, - hy;,). The above
term AE =0 represents a major contribution to the
transition. In this paper, we avoid discussing the
detailed problem relating tothe post-prior discrep-
ancy'#!® because it is considerably complex and

it is the challenging problem in the field in treating
a collision in which electron exchange, or the
charge-transfer processes are involved, and we
neglect the contribution of the higher terms in AE
to €,€,, as a first-order approximation, because

(15)
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they are higher-order contributions to the transi-
tion which are considered to be small in compari-
son with the contribution from the major term

AE =0.

In deriving the probability of the proton neutrali-
zation at the solid’s surface, we made the follow-
ing assumptions:

(i) The transition region is so small that during
the transition €, — €, is regarded as a linear func-
tion of time, and €/,, €}, (or €,,,€,,) as independent
of time. Therefore, according to the experimental
suggestion that the transition takes place at the
solid’s surface, we can expand €,(¢) — €,(#) =A, +A,t
around ¢ =0, and replace €,,(f)€,,(¢) by €,,(0)€,,(0),
and €, by 0, where A, =¢,(0) - €,(0), and A,(d/
dt)[e,(t) - €(t)],; [We note that A, is proportional
to v,, in general, where v,, is the z component of
the velocity of the proton (see also Sec. III)].

(ii) The overlap integrals S,, and S,, are
neglected as a first-order approximation, because
[S]2 is much smaller than unity. %, represents
the energy-level shift of the electron in the metal
affected by the field created by the proton (z,, that
of the electron in the hydrogen atom affected by
the metal field). As far as &, is concerned, we
take into account the experimental suggestion, and
the theoretical works performed by Rogers et al.
and Ebel mentioned in Sec. I, and in the problem
discussed here neglect the contribution to #;, from
the electrons inside the metal because it is con-
sidered to be small due to the screening effect in-
side the metal.

Then, according to the above assumptions and
Eq. (16), and substituting ¢’ = (E, —E,+A,)/A, +¢,
we obtain from Eq. (15)

Ci+G/MA'CL+(B/R?)CL=0, 17

where 8= |hy,hy, | at t=0.

The boundary conditions appropriate to the pro-
ton neutralization at the solid’s surface being in-
vestigated here are

|Ci(==)|=1, Cj(=)=0. (18)

According to the Landau-Zener formula,?® from
Egs. (17) and (18), we obtain the recombination
probability

¢o= [Ch(=)[P=1=e"¥, 19)

where w=2np/%|A,|.

In the above, if B is independent on V,, w is pro-
portional to v;:. This condition is realized at the
region where the velocity of the proton is slow
enough.

III. TRANSITION TO THE GROUND STATE OF A
HYDROGEN ATOM

In this section, we consider the transition of an
electron in the metal to the first energy level of a
proton moving with velocity w'7p. The eigenfunction
of the ground state of the hydrogen atom is written
in the form

& (|F= T2 |) = [1/(na3)! /2Je~1F7pt1 20 (20)

where g, is the Bohr radius. We take the exit
angle between the beam direction and the direction
normal to the surface as 6. Then, ¥,=(0,v,,,2,,),
v,,=v,8iné, v,,=v,cosb and v, = (v5, +v3,)' /%

Using Eqgs. (3)-(5), (14), and (20), we obtain

_ 2Vr 1
hm(o)—__\/——a_gAUo?
1 N 1
% [a+i(q,,— r\a’ arilg,, - k,))
1 1 1
B* a+i(qpx+kz)<a+ a+i(qu+kz)>] ’
(21)
_2V7 1
hy, (0)=— v Aeza
1 B C
><(oz—i(q‘,,— k,)Jr oz-i(q,,,+k,)+ a+ 6+iqn>’
(22)
and
A, = [(Uy/2a,) +A%2|C [*(1/0)]v,,, (23)

where a=(a;%+4)'/?, nq,=m¥,, and g,
= (kx’ ky - q#y) .

Then, from Egs. (21)-(23), we can obtain w. At
first, we consider the normal-emergence case
(6=0). The v,, dependence of w is simplified for
two types of limiting cases. For the high-energy
case (v,,, >vp; Up the Fermi velocity), we can find

Bec v;f . (24)
It follows
w ocE;,2 , (25)

where E, is the kinetic energy of the proton.
Furthermore, if w <1, one obtains

bo~w=E}?. (26)

On the other hand, for the low-energy case
(v, <<vg), as was indicated in Sec. II, g is inde-
pendent of »,,, from which follows

wxE 2, (27

Next, we consider the § emergence case. As is
obtained from Egs. (3)-(5), (14), and (20), %,,(0)
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and h,,(0) are written in the form of an integral
representation over ¥,, that is

ha(0) = [ dF, () (28)

and

%wkfdiwﬁw%ﬂ, (29)

The phase factor e %1 appearing in Eqs. (28) and
(29) means that the electron experiences a momen-
tum transfer of 4§, at the transition. When @, is
large, it vibrates violently, and makes the inte-
grate over ¥, small. Physically, it corresponds
to the fact that a large momentum transfer is hard
to obtain. Then, it is understood that in the high-
er-energy region (g,,> k), the transition of the
electron is restricted. On the other hand, in the
low-energy region (g,,<<%.), the effect of this
phase factor diminishes. Chateau-Thierry and
Gladieux® pointed out experimentally that the
neutral fraction varies with the angle 6, and de-
creases with increasing 6 at 1.4-MeV exit energy
of the proton emerging from Au and Al.

In the high-energy region (v,,> v,), we find

B 1/vy;. (30)

This leads to

w < 1/v,0503=1/v]sin0 cosb . (31)

Following Eq. (31), we obtain the result that ¢,,
or the neutral fraction, decreases with increasing
6 up to 60°. Furthermore, if w <1, we have

P~ w < 1/v]sin°0 cosb . (32)

On the other hand, in the low-energy region
(v, <vy), one obtains as for Eq. (27),

wocl/v"=1/vpcoso. (33)

Inthis case, we obtain the resultthat ¢, or the neu-
tral fraction, increases with increasing 6. As far
as the v,, dependence is concerned, this result co-
incides with the result obtained by Cobas and
Lamb,'” and Hagstrum.!®

In order to determine the neutral fraction in the
two-state approximation, we average ¢, over the
Fermi distribution and find

<¢o>=(foeFde¢E)-lfoeFde¢E¢o, (34)

where € =7%k?*/2m and €, if the Fermi energy.
For the high-energy case, if w <1, we obtain
from Egs. (26) and (32),
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E;? (normal-emergence case)

(G0 .

(35)
v} sin®6 cosf

(6-emergence case for v,sinfd>vy).

Numerical calculations are performed for Au.
In Fig. 1, the dashed curve and the short- and
long-dashed curve show the results for the high-
energy approximation [Eq. (25)] and the low-ener-
gy approximation [Eq. (26)], respectively. The
solid curve shows the result for the exact numeri-
cal calculations. Experimental data obtained from
transmitting experiments® are also shown in Fig. 1.
Comparison between our results and experiments
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FIG. 1. Neutral fraction {¢,) for Au as a function of
E, in the case of normal emergence, where E, is the
exit energy of the protons. The dashed and dot-and-
dashed curves are results of the high-energy approxi-
mation and the low-energy approximation, respectively.
The solid curve is the result of exact numerical calcula-
tions. Experimental data obtained from transmitting ex-
periments are also shown (Ref. 3).
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FIG. 2. Neutral fraction (¢,) for Au as a function of
E, in the case of normal emergence, where E, is the
exit energy of the protons. The dashed, dot-and-dashed,
and solid curves represent same meanings as in Fig. 1.
Experimental results for Be, V, Mo, Cu, and Au, which
are obtained from backscattering experiments, are also
shown (Refs. 5 and 21).

shows that our results give values of the right or-
der of magnitude in a wide range of proton energy
(10 keV-1.6 MeV). The energy dependence of our
results is in good agreement with the experimental
trend, especially in the high-energy region.

Figure 2 shows the results for proton energy up
to about 150 keV. Experimental results for Be,
V, Mo, Cu,® and Au?* which are obtained from
backscattering experiments, are also shown. In
the region where the proton energy is less than 10
keV, the low-energy approximation is good. In
Figs. 1 and 2, our results give somewhat lower
values than experiments.

Figures 1 and 2 show the normal emergence
case. 6-emergence cases are also calculated.
Figure 3 shows the dependence of (¢,) on 6 for
1.4 MeV exit energy of the protons. Our results
show that the neutral fraction decreases with in-
creasing 6 up to 60°. Qualitatively, this depen-
dence is agreement with the experimental result.?
The decrease we obtain is more rapid than the ex-
perimental one.

IV. CONCLUDING REMARKS

Making use of the Bates-type quantum-me-
chanical recombination theory, the proton neutral-
ization at the solid’s surface was studied, and the
neutral fraction for the transition to the ground
state of the hydrogen atom was calculated in de-
tail. In deriving the transition probability, we in-
troduced the Landau-Zener formula from a mathe-
matical point of view.

Numerical calculations were performed for Au,
and were compared with experiments. Calculated
results gave values of right order of magnitude in

0 10 20 30 40 50 60 70

<> 0.8
<p(0)>

0.6

0.4 —

FIG. 3. Ratio (¢y(6))/{¢,(0)) as a function of the exit
angle 0 for Au at 1.4 MeV exit energy of the protons,
represented by the solid curve. Experimental data are
also shown (Ref. 3).

a wide range of proton energies (10 keV-1.6 MeV),
and their energy dependence was in good agree-
ment with the experimental trend, especially in the
high-energy region. We obtain the result that in the
high-energy region, the neutral fraction is propor-
tional to E;z.

The 6-emergence cases were also calculated in
the high-energy region by taking into account that
a large momentum transfer experienced by the
electron is hard to obtain when v,,>v.. The cal-
culated 6 dependence of the neutral fraction is in
agreement with the experiment performed by Cha-
teau-Thierry and Gladieux up to 60°, qualitatively.
In comparison with the experiment for 1.4 MeV
exit energy of the proton emerging from Au, the
0 dependence of our result was strong. The 6 de-
pendence in the high-energy region is contrary to
that of Cobas and Lamb, and Hagstrum. The ten-
dency of the neutral fraction to increase with in-
creasing 6 was realized in the low-energy region
where our result coincides with that of Cobas and
Lamb, and Hagstrum.

Finally, our results gave a somewhat lower val-
ue than experiments, which is naturally explained
by the fact that there exist other processes relat-
ing to the proton neutralization at the solid’s sur-
face, i.e., transitions to the excited states of the
hydrogen atom, Auger recombination, radiative
recombination, etc. As far as the transitions to
the excited states of the hydrogen atom are con-
cerned, it is considered that they are smaller than
the transition to the ground state as »~%,'> where
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n is the principal quantum number of the hydrogen
atom. This n~ 3 dependence is well known in the
case of radiative recombination®? in a gas. Al-
though the transitions to the excited states must
be taken into account, they are considered to be
higher-order corrections to the results calculated
here. On the other hand, in order to explain the
experiment completely, the contributions to the
problem studied here from Auger recombination

and radiative recombination must be taken into
account.
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