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Some quadrupolar effects on T&(H) for nuclear spins*
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We calculate effects on T,(H) for nuclear spins due to several distinct interactions that depend on the
quadrupole moment of the nuclear spins. We find„ for example, that in metals the ratio T,(H ~ ce )/T, (0) can
be greater than 2 because of quadrupolar spin-spin interactions even in the absence of electric field gradients.
We also show that T,(H) can depend on the spin I of a nucleus if T, is dominated by certain dynamic
quadrupolar mechanisms.

I. INTRODUCTION

One of the predictions of single-spin-tempera-
ture theory is that T» the relaxation time of the
spin temperature, has a characteristic dependence
on the magnetic field H.' In metals where the nu-
clear spin Hamiltonian includes only a Zeeman
term and a local-field term consisting of nuclear
dipole plus exchange interactions, T, (FI) should
take the form

T~(H) =T~(H -~) (H~+ h2)l(FI~+2h~),

where h is the local-field strength. This equa.
tion' ' is appropriate if the spin-lattice relaxation
is due solely to the contact hyperfine interaction
and there is no correlation between the relaxation
of neighboring nuclear spins by the conduction
electrons. According to Eq. (1), the ratio

cedure is to break the total spin Hamiltonian into
a part X, which depends only on the spin coordi-
nates ana X' which includes the spin-lattice inter-
action. In the rest of this section we will discuss
the terms included in X,. In Sec. II we will discuss
X', derive the results, and discuss them.

For the spin Hamiltonian (in the absence of spin-
lattice interactions) we shall include terms linear
in spin operators representing the interaction of a
spin with spatially uniform and time-independent
external fields. We also include terms bilinear in
the spin operators at different sites representing
the interaction between spins at different sites. In
many ways the linear and bilinear terms are anal-
ogous to single-particle terms and interaction
terms, respectively, in particle problems. The
most general Hamiltonian that one can write under
these conditions is

R =T,(H ~)/Ti(H=0) (2) x, =Pxg,
ought to be 2. However, this ratio has been mea-
sured in many metals both in the laboratory and
rotating frames and the experimentally measured
value of R always turns out to be greater than 2.' '
Effects due to static electric field gradients' or
paramagnetic impurities can increase R, but in
most of the above experiments these effects are
believed to be negligibly small. The discrepancy
is usually explained in terms of correlated relax-
ation via the conduction electrons, 4 although calcu-
lations of this effect are too small to explain it.'

Motivated by this persistent disagreement be-
tween theory and experiment, we have performed
some simple calculations for T,(H) including a
variety of interactions. Among other things, our
calculations suggest a possible explanation for the
discrepancy by showing that R can be greater than
2 because of quadrupolar spin-spin interactions
alone without invoking electric field gradients or
correlated decay. While we do not claim that this is
the resolution of the discrepancy in all cases, we
do believe that it is a likely candidate. Our pro-

X, =-QK(o, A, „(i)

+—QKQ"'~(i- j)A, (i)A,~(j), (4)

where A, (i) is the irreducible spin multipole op-
erator' (l, m) at the site i, the first summation is
over all sites i and all allowed m, and the second
summation is over all lattice sites i and j with j W i
and over all allowed m and m'. The summation in
Eq. (3) is over all integral values of l for 1~I ~ 2I,
where I refers to the nuclear spins in question. In
writing the Hamiltonian in the form of Eqs. (3) and
(4) we have broken with the traditional notation of
magnetic resonance. This is necessary because
traditional magnetic resonance notation cannot
easily be generalized beyond the vector model. '
Some advantages of the notation will become evident
later in the paper. At present we wish to point out
that a bilinear Hamiltonian cannot mix operators of
different l.

13 4678



13 SOME QUADRUPOLAR EFFECTS ON TE(H) FOR NUCLEAR SPINS 4679

%e know of no case where terms other than the
dipole (/ =1) and quadrupole (/ =2) terms in Eq. (3)
are measurable and thus we shall concentrate on
these terms. The first term on the right-hand side
of Eq. (4) for / = 1 is the Zeeman term and if the
external magnetic field R is in the z direction, then
&OE 0= [31(1+—1)]' 'yH and EEEE E

=
EOE, , =0, where y is

the spins' gyromagnetic moment. The second term
on the right-hand side of Eq. (4) for / =1 includes
all Spin-spin interactions via the dipole or vector
spin operators such as the dipolar and exchange
terms. For l =2 the first term on the right-hand
side of Eq. (4) is the "quadrupolar" term that de-
scribes the interaction of a spin with static elec-
tric field gradients. The second term on the right-
hand side of Eq. (4) includes spin-spin interactions
via the quadrupole spin operators. In fact the in-
clusion of this term is the only way in which our
treatment differs from standard treatments up to
this point.

Hamiltonians of the form in Eqs. (3) and (4) de-
scribe nuclear spin systems either in the lab
frame or the rotating frame in the presence of an
rf magnetic field strong enough for saturation.

(sa}

(Sb}

Thus Tr X', is a sum of single-particle terms
I EEEE I'

and interaction terms I//E I' for each /.
The first spin-lattice mechanism which we con-

sider is one in which the nuclear spins interact
with some independently fluctuating dipole field
which is spherically symmetric. The prime ex-
ample of this, of course, is the interaction of the
nuclear spins with the conduction electrons in a
metal. '" The Hamiltonian for this interaction can
be written as

3E' = g-(f.(/) P.( )/+[f. (/) // (E)+f (/) P.(/)]/~),
(~)

where (P )t=P„describes the vector or dipole
(/ =1) independently fluctuating field. Although cor-
relations can be included, here we shall make the
simplifying assumption that the fluctuations at dif-
ferent sites are uncorrelated and thus

II. CALCULATION TrP (i)P' (j)=A'5, 5, , (10)

1/T, (H) =- C Tr [K„X']'/Tr K,', (5)

where X, is the spin Hamiltonian in the absence of
spin-lattice interactions, X' is the spin-lattice
Hamiltonian, and C is a constant. The quantity
Tr X,', which must be calculated for either spin-
lattice mechanism, is easily obtained using the
properties of the multipole operators

(AE )t=(- 1) AE

Tr A
E (A, )E = (2I+ 1) 5„,5

(6a)

(6b)

The calculation is a trivial extension of earlier
calculations' and yields

Tr x, =N(2f+1)"~2 g (I ~E I'+
I

//E I'),

where N is the number of nuclear spins and we
have introduced the short-hand notation

In this section we will calculate the magnetic
field dependence of TE(H) due to two different spin-
lattice relaxation mechanisms. The mechanisms
considered are the interaction of the nuclear spins
with an independent fluctuating dipole (/ = 1) field,
such as the contact hyperfine interaction between
the nuclear spins and conduction electrons, and an
independent fluctuating quadrupole (/ = 2) field, such
as the interaction of the nuclear spins with mobile
hydrogen in metals or the usual spin-phonon inter-
action in certain regimes.

The field-dependent part of TE(H) can be calcu-
lated by the formula'"

In this case, using the commutation relations

[f„AE ] =mA,

[I„AE ]=[/(/+1) —m(m+1)]E~2AE ~,
along with Eqs. (6), one easily obtains

Tr [X, X']'=-N(2f+1}"A'//'

(11a)

(lib)

xg /(/+ 1) (I EEEE I'+21//E I') (»)

Thus, TE(H) can be written as

TE(H) 2ZE(I(HEI'+ I//EEI'}

T, QE/( /1+}(l EIO'E+2IQEI')
'

If only l =1 and l =2 terms are included, this re-
duces to

&E(H} I EOE I'+ I//E I'+ I E0, I'+ I//, I'
Ti J cow ) + 2 I Q~ [ + 3 ) co2 ) + 6 ) 02 t

where P~2 =(- 1) P, describes the fluctuating

Further discussion of this equation will be defer-
red to later in this section.

The other spin-lattice relaxation mechanism that
we wish to consider is the interaction of the nucle-
ar spins with some independently fluctuating qua-
drupole (/ = 2) field which can be described by the
Hamiltonian

X'=-PA, (/) P," „(i),
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quadrupole field. Spin-lattice relmration via this
mechanism has recently been considered in some
detail, ' and it can refer to a variety of situations.
For example, this mechanism describes first-or-
der Raman and m&armonic Raman spin-lattice re-
location processes. ' Another example is the re-
laxation of nuclear spins by mobile charged impur-
ities such as hydrogen' or conduction electrons. "

The calculation of Tr [X„K']'for this mechan-
ism is perfectly straightforward but somewhat
tedious. Since the calculation is almost identical
to parts of the calculation in Ref. 9, it will not be
repeated here. The results are almost unmanage-
able unless one makes the assumption that the qua-
drupole fluctuations are spherically symmetric and
independent at different sites, i.e.,

TrP (f) P', (j)=A'6„

With these assumptions, one obtains

Tr[X, K']'= —N(2N+1} Pf'A'[30/I(1+1)]

(16)

xnan(»(l~cl'+2lf I'}

We have calculated a(l) only for f =1,2 and obtain

n(1) =1,

a(2) = 3(4I~+ 4I- 7)/(4I2+ 4I- 3). (16}

Thus, including only l =1 and l =2 terms, we ob-
tain

~,(H) I &, I'+ I Q, I'+ I co, I'+ IQ, I'
I coc I +2 IQ, I'+ a(2) (I co, I'+2 IQ, I')

(19)

The quantity a(2) increases monotonically as I in-
creases with n(2) =0.6 for I=1 and a(2) =3 as I ap-
proaches infinity. Thus for nuclei with large spin,
Eqs. (14) and (19) are identical. The case of I=1
is unique in that it is the only case in which a(2) is
less than 1. Thus in the case where

l &o,
l

domi-
nates lQ, l

and lQ, l, the ratio R=T,(~)/T, (0) is
just a(2) which could be less than 1 assuming that
a single-spin temperature obtains under these
conditions.

Probably the most striking part of these results
is effect of the inclusion of quadrupole (l =2) spin-
spin interactions on T,(H) for metals. In the

absence of paramagnetic impurities and electric
field gradients, one obtains a ratio R of

R =(2]Q, l*+6lQ, l')glQ, l'+ lQ, l'). (20)
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Thus R can be greater than two without invoking
correlations among the conduction electrons or
static electric fieM gradients. Unfortunately, es-
timates of the magnitude of

l Q, l' are not easy to
obtain. Certainly indirect tp~a~rupole spin-spin
interactions do exist in metals by mechanisms
similar to those that lead to indirect dipolar or
exchange nuclear interactions via the conduction
electrons. However, even the magnitude of these
pseudodipolar (f = 1) interactions are difficult to
calculate and the pseudoquadrupolar (l =2) strengths
are certainly no easier. Mitchell" has made crude
estimates of the quadrupolar spin-conduction-elec-
tron interaction and found that it can be compar-
able with the dipolar spin-conduction-electron in-
teraction for nuclei with large quadrupole mo-
ments. Estimates of the ratio of the pseudoqua-
drupolar interaction to the pseudodipolar or ex-
change interactions give comparable ratios. Try-
ing to deduce the magnitude of

l Q, l' from line-
shape or moment measurements is also very hard.
The isotropic part of the pseudoquadrupolar spin-
spin interaction mould be very difficult to separate
from the pseudoexchange spin- spin interaction.
Neither contributes to the second line-shape mo-
ment and both contribute isotropically to the fourth
line-shape moment.

On the other hand, one does not need a very big
factor of

l Q, /Q, l' in order to explain an appreci-
able observed shift of R from 2. For example, the
value of R =2.15 appropriate"' for pure Na can be
explained by a factor of lQ, /Q, l'=0.039. Even for
the relatively large value of R =2.58 for pure Al, '
one needs only a factor of

l Q, /Q, l
=0.1V. Perhaps

one of the best candidates for observing the effect
would be Ta which has a very large quadrupole
moment and thus should have a relatively large
quadrupole spin- spin coupling.
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