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Some exact solutions to the linear Boltzmann transport equation in a one&imensional space are presented.
These results may be applied to demonstrate the trend towards statistical equilibrium of fast channeled
particles in the transverse plane. Statistical mechanics of channeled particle motion is then discussed in terms
of the random string approximation and further considerations.

I. INTRODUCTION

This short note has been stimulated by an inter-
esting recent yaper by Lindhard and Nielsen' deal-
ing with the general linear description of statis-
tical systems in physics. In their work several
exact solutions of the linear transport equation
are yresented corresponding to various hypothet-
ical physical systems ayyroach towards equilibri-
um. By similar methods I have found some further
simple analytic solutions. The motivation for this
work was to obtain a simple theoretical descrip-
tion of the angular distribution of fast axially
channeled particles transmitted through very thin
crystals. Some preliminary experimental work in
this area has already been reported. '

Thus in Sec. II we review the formalism and
present the new solutions in terms of the abstract
probability field. In Sec. III we apply these results
to the transverse momentum distribution function
for axially channeled particles. This distribution
function can be observed in transmission experi-
ments and is also of interest in backscattering
experiments.

II. MATHEMATICAL FORMALISM

consider a probability f ield a(x, T) whose (lin-
ear) equation of motion is

sa(x, T) 1'(x, y, T)a(y, T)dy.

Here x symbolizes the coordinates of the space in
which a(x, T) is defined and T is a parameter mea-
suring the evolution of the field. If in addition, it
is required that a(x, T) be conserved in the sense
that

,~ (* 7')= fd((G(~&T')o, (&, , (')

-G(y, x, T) a(x, T)] . (2)

a(», T) = Q C, a, ( )fx,(T) .
The eigenfunctions of the field a~(x) must evidently
satisfy the eigenvalue equation

with X~ the separation constant (eigenvalue}. The
translational invariance of G implies that in one
dimension

a, (x}= e"*.
The allowed k values are determined by the bound-
ary condition to be discussed shortly. It follows
that the associated eigenvalue must be

6 must be real and greater than or equal to zero
and can be looked upon as a transition rate. The
reader is referred to Ref. 1 for a detailed discus-
sion of the general properties that equations of
this form have with particular emphasis on prob-
lems in statistical physics.

For the application to follow it is satisfactory
to consider kernels 6 having the form

a(x, y, T) = G(ix-yi)

that correspond to time-independent translationally
invariant interactions. 'Ihe detailed functional
form of 6 depends on the nature of the space and
the specif ic interactions considered.

A general solution to Eq. (2) subject to the con-
ditions of Eq. (2) may be constructed by separat-
ing the x and T dependence in Eq. (2). 1%us

x, T dr= 0 dye q 1-e~~~ (7)

it follows that Eq. (1) may be rewritten as It also follow that
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y ( T) —e k))T

The values of C, and the allowed values of k are
determined by the initial conditions and boundary
conditions imposed upon the solution. It would
thus appear that the main obstruction to obtaining
analytically useful formulas for a(x, T) is the eval-
uation of A~ from Eq. (7). If possible it would be
of great value to perform the sum in Eq. (4). This
concludes the review of the recipe for solving
Eq. (2) under these specialized conditions.

It is possible to propose some specific forms
of G that have relatively simple solutions for
a(x, T). In Sec. III it will be shown that these re-
sults give a useful insight into the channeling phe-
nomena. First we impose the periodic boundary
condition

one can perform the sum in (4) giving

1 sinh T
2w cosh T —cos x (13b)

with sinh x and cosh x being the hyperbolic func-
tions.

Case c

a = w/[w'- (w —
[ x))2]'~'. (11c)

X, may be evaluated from (7) with the substitution
1-x/w = sin y and integration by parts, giving

X, = -wkcoskw J,'(kw) . (12c)

For this case I've been unable to sum (4) and thus
leave the solution as

a(x, T) = a(x+ 2w, T) . 1
a(x, )=)2 Q

e"*e" cos)'wz) m)T). (13c)

x thus appears as an angle variable. Therefore,

k=n, n=0, +1, +2.

The initial value a(x, 0) is taken to be

These three solutions form the basis for our
discussion of channeling to follow.

e(x, o) = 5(x), (10)
III. APPLICATION TO CHANNELING

5(x) being the Dirac 5 function.
Consider now the following forms for G:

Case a

G= const =1.
%hen (7) gives easily

x, = 2w(1 —5,)

(11a)

(12a)

gives

a(x, T) = 5(x)e "r+ (1/2w)(1 —e ' ). (13a)

G = (1/w) sin '(-,'x).
Using the result that

Case b

(11b)

1 " sm'(w kg)

Equation (7) gives

Then using

(12b)

with 5~ being the Kronecker 5 function. Now using
the decomposition

5(x) =
2

Qe"*1

It has been recognized for about ten years now
that fast particles (i.e. , a few MeV protons or
alpha particles) penetrating crystalline materials
may, under certain circumstances undergo series
of strongly correlated collision sequences with
atoms of the target crystal.

A manifestation of this possibility occurs when
considering penetration along a low-index axial
direction in the crystal. If one imagines a positive
particle whose classical path lies between and
makes a small angle with the rows of atoms mak-
ing up the low-index axial direction, its trajectory
is determined by gentle collision sequences whose
net effect is to steer the particle away from small-
impact-parameter collisions with the solid's
atoms. This state of motion is called axial chan-
neling.

The problem of predicting the particle trajec-
tories and flux in the crystal during the channel-
ing condition has been approached seriously in
two ways, both based upon a classical view of the
motion. The first method involves the computer
simulation of compound binary collisions of the
penetrating particle with the atoms in the crystal.
This method has been successful in predicting the
outcome of various channeling laboratory experi-
ments. An alternative ayproach based upon the
methods of analysis is that of Lindhard. ' This
work has provided a simple picture of the chan-
neling process of which we shall attempt to take
advantage. (For an interesting comparison of the
two approaches see Ref. 4.)

By this method it is shown that a good approxi-
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mation to the channeled trajectory is obtained by
replacing the strings of atoms along the low index
direction by a continuous rod of potential

U(r) = — V[(r'+ z')'t'
J dz .

1

d (14)

8=m —25
2

1 — ——
2

. 15
0

Here b is the impact parameter with the string
and r0 is defined implicitly by

Here V is the potential-energy function associated
with the ion-atom interaction, r is the distance
from the string, and d is the atomic spacing along
the string whose extension lies in the z direction.
Thus, in this approximation, one need consider
the motion projected on a plane perpendicular to
the axial direction, the velocity along the z direc-
tion remaining constant.

Let a particle be at a distance r from the string
and be traveling at an angle g relative to it. If the
particle has an energy E = 1/2m v', it will have a
transverse energy E~ = E sin'p+ U(r). When
E~ a 2Z, Z, e'/d the approximation breaks down
and the channeling disappears Zy Z2 are the
atomic numbers of the projectile and host, respec-
tively. Typical angles g corresponding to
E~ s 2 Z, Z, e'/d are - 10 ' r ad or less.

We now ask for the scattering angle 6 in the
transverse plane that a channeled particle under-
goes when scattering off a string. Evidently in
the continuum approximation described above, the
standard solution to this problem is applicable,
l.e. y

T =N, v,g, t

with g, , the total cross section,

d6
O, =

8
d~.

(b) Consider next the potential function
2

U(r)
Z c TF

d 2r (20b)

with aTF the Thomas-Fermi screening length for
the (Z, ,Z, ) pair defined by

a T „=0.885 a,(Z2t' + Z't ') 't '

where t is the time of evolution. Observe that this
distribution function a(8) is directly observable in
experiments where the incident beam of particles
is transmitted through very thin crystals. The
transverse energy of the particles inside the crys-
tal will be essentially 8@2, where 4 is the angle
between the crystal axis and the beam direction.
The intensity of the transmitted beam as a func-
tion of azimuth is a(8, t, ) where t, corresponds
to the time of emission from the back of the sam-
ple. At t = 0 (when the beam enters the crystal),
the beam intensity as a function of azimuth is
a(8, 0) = 5(8), see Fig. 1.

Consider some models for the string:
(a) First, for the purpose of a simple illustra-

tion, consider the unphysical string interaction
that would result in a uniform distribution of scat-
tering angles. It follows that the considerations
leading to Eg. 11(a), 12(a), and 13(a) apply if we
interpret

U(r. ) b'
+o

(18)
This potential function was used by Lindhard' to
estimate the depth in the crystal required to

It is now possible to proceed along the lines out-
lined in Sec. II only if the transverse plane is as-
sumed to consist of randomly distributed strings
(random-string approximation). We take this ap-
proach and discuss its shortcomings later. Thus
it follows that the rate a particle is scattered
through an angle 8 by a collision with a string is

~SCREEN OR FILM

f (8)=Z v, d b(8)
(17)

where N, is the number of strings per unit area
in the transverse plane, b(8) is obtained by the in-
version of Eq. (15), and v~ is the transverse ve-
locity far from the strings (i.e. , E~ = —,'m v', ).

A transport equation for the probability of find-
ing a particle at 8 can now be constructed in the
form (2).

Ba(8, t)
at

= Nv~
db 8'

de' f a(e —e') -a(e) J,
(18)

FIG. 1. Schematic illustration of experimental ar-
rangement for observing the distribution discussed in
the text.
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ZgZ2 g W

s & TF g d 2

(c) Finally consider

(22b)

achieve statistical equilibrium by a mean-free-
path argument. Inserting (20b) in (15) d

(17) gives
an uslIlg

P(e) =N, v~aTF — . . (21b)Z, Z, e' m

d 8 E, sin'( —'8) '

It can then be seen that Eqs. (lib), (12b), and (13b)
apply if

(a)

0.6

o.5
Ci

UJ

0.4
O
LLJ
N

~ 0,3

0.2

SA

ZZ 2

U( ) 1 2e caTF
d r

where c is a constant (-vY). This gives

(20c)
O. I

I I I, I

0 0.4. . . . 80.8 I.2 I.6 2.0 2.4 2.8
AZIMUTHAL ANGLE ( rad. }

P(8)=N 'a e ' '
)s & TF dg

1x —1/[1 —(1 —8/v}']'&' (21c}

(b) „
0.6

ING- RSA

so that (llc), (12c), and (13c) apply when one
takes

(22c)

U(r) — ' ~ I caTrZgZ 2

n r + 1

T = N, v~aTrc (Z,Z, e'/dE )'t'&t.

The potential-energy function gives in (20c) is
closely related to the Lindhard standard potential'
which is

o.5

a04
N

X&03
z

0,2
UILIBRIUM

Results for cases b and c are plotted in Figs.
2(a) and 2(b) and they display graphicall the trend to-
wards equilibrium in the transverse plane. Note
that the transverse energy dependence is incorpo-
rated totally in the time scale. Indeed the cases
a, b, and c illustrate how widely different trans-
verse energy dependencies result from different
assumptions about the scattering field. This fact
would seem to be quite useful experimentally since
observin theg e transverse energy dependence of
the transmitted beams's angular d' t bxs rx ution in-

orxen ation anglevolves only changing the crystal r t

IV. DISCUSSIONS AND CONCLUSIONS

The content of Sec. III indicates that simple
estimates for the azimuthal depende f tnce o rans-
mi e axial channeled particles can be made based
upon some reasonable model string potentials.

i ri u sons are notExperimentally azimuthal distr ibutio
rivial to measure and it might be hoped that the

foregoing analysis will stimulate quantitative work
along the lines. Secondly we note that the model
solutions obtained correspond only qualitatively
to accurate atomic potentials N thever eless they

o.l

I, I, I, I, I

0 o4 o.
I, I

8 I.2 I.6 2.0 2 4 2.8

AZIMUTHAL ANGLE (rad. )

FIG. 2. a A( ) agular distribution function corres d-
ing to the 1 r'

g /r potential function given in E . (20b), for
correspon-

several values of T. Equilibrium is T =~ A
ributxon function corresponding to the 1/r2 potential

function given in Eq. (20c).

r sux e stimulation,are exact solutions and under tabl
they can be used in conjunction with perturbation
methods to solve Eg. (18) for "hearby" more re-
alistic potentials.

The maUl approximation in the calculation '
th

assum
is e

ption of random distribution of strings in
the transverse lp ane, which ensured invariance
under translations. More concretely, for the ap-
p ication at hand, this corresponds to assuming
that successive collisions with t 'i s rings are uncor-
related. Thus the periodic arrangement of strings
in the transverse plane suggests that the a roxi-
mation m ay introduce serious limitations. After

s a e approxi-

all, periodicity is responsible for the strong cor-
related scattering that results i 'al
to begin with. The correlation in that case is most
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neatly described by the existence of the conserved
quantity E~ under the special condition that
Z s 2Z, Z, e'/d. We may anticipate that under
certain conditions similar stable trajectories in
the transverse motion may develop. Two examples
may be noted. The first occurs when the trans-
verse energy is so small that particles are trap-
ped and constrained to move in bound orbits. This
condition can arise for both positive and negative
particles. For the former case the terms proper
or hyperchanneling have been applied and of the
latter case the rosette motion' is an example.
This condition clearly represents strong corre-
lation; indeed other constants of motion may exist
(for example, transverse angular momentum),
and the previous calculation totally fails. The
second example may be realized for larger trans-
verse energies where trapping is no longer pos-
sible but one may imagine channeling due to
"strings of strings"'; i.e., simultaneous axial
and planar channeling. Here again the strong cor-
relation in collisions is representable by an ad-
ditional constant of motion, the planar transverse
energy. Under such conditions the model of course
again fails.

An example of the above may be observed in the
pictorial data of Ref. 2, Fig. (1) which shows the
transverse momentum distributions of 4-MeV
protons transmitted through a 0.51 —p, m silicon
crystal near the (100) axial direction. The azi-
muthal direction of the beam, as measured around
the axis direction, was directly along one of the
(100) planes. Clearly at the largest tilt angles
shown (which still lie within the axial critical
angle) a substantial fraction of the beam has been
trapped into planar transverse motions.

For strong string directions, which are the most
interesting experimentally, the importance of both
of these situations is minimized (for positive par-
ticles) due to the large distances between strings
in the transverse plane [see Fig. (3) of Ref. I].
That is, the binding energy for proper channeling
and the transverse energies for planar channeling
are quite small and thus initial conditions corre-
sponding to these possibilities represent a small
part of the total transverse phase space available
to the axially channeled particle. Experiments
must of course not pick out these conditions, for
example, by scanning through an axis along a
planar direction, if they are to be compared with
results from the random string approximation.

With the above considerations and limitations
in mind it might be useful to mention a few words
about the applicability of the two cases b and c
discussed in Sec. III. For trajectories of high
transverse energy and small impact parameter
(- a Tv), the I/r potential of case b probably best

describes the scattering, wheras for all impact
parameters at smaller transverse energies the
1/v potential of case c is more appropriate. Thus
for distributions far from equilibrium the results
of transmission experiments would over all be
best described by case c.

A free dimensionless time for equilibrium may
be taken as I/A, It follows that crystal thickness
I. of interest for studies of the trend towards equi-
librium canbe deduced by setting t =L/v in Eqs. (19),
(22b), and (22c) with T& 1/A, It may be noted that the
equilibration times for the I/r and 1/r' potentials
roughly agree at large transverse energies and
based on our previous discussion, we therefore
conclude that a reasonable estimate for all trans-
verse energies may be obtained from the I/r'
potential of case c. This suggests that crystal
depths required for equilibration are almost in-
dependent of transverse energy.

Up until this point the main emphasis has been
placed upon transmission experiments where one
measures the transverse momentum distribution
of the channeled particles. Backscattering experi-
ments on the other hand depend more crucially
upon the transverse spatial distributions. Never-
theless, it is possible to draw some conclusions
in this case also. It is well known that the major
attraction of the assumption of statistical equi-
librium lies in the predicted simple spatial flux
distributions of channeled particles in the trans-
verse plane. These distributions make possible
the simple calculation of backscattering angular
yields as a function of the position of the scatterer
in the transverse space of the crystal. Indeed,
such backscattering experiments have turned out
to be one of the most important applications of
channeling. However, often this spatial flux in-
formation is required at scatterers near the front
surface of a crystal, i.e., implanted impurities
at a depth at a few hundred angstroms or less.
Simple calculations show that equilibrium is not
achieved for many practical cases. It might be
worth a note at this point that statistical equilib-
rium is a possible property associated with the
four-dimensional transverse phase space. The
distributions deduced in this paper may be looked
upon as applying to the transverse momentum, 8

measuring the direction of its associated vector.
It follows that if the momentum component is not
in equilibrium, the distribution in phase is also
not and it is therefore not strictly proper under
such conditions to calculate the distribution in
space from the equilibrium phase distribution.
It is difficult to say, though, how serious an error
one will make using the equilibrium recipe. Ac-
tually arguments not based upon statistical con-
cepts may be invoked that suggest that these er-
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rors may not be very serious. '
Recently Barrett' published a note proclaiming

the "break down" of statistical equilibrium based
upon analysis of computer Monte Carlo calculations.
It was observed that large transverse energy par-
ticles originating from near string positions under-
went focusing collision sequences that led to an
anomalously large flux of particles near to strings.
Barrett further reasoned that since hard collisions
with strings will lead to such focusing collisions
at any depth, equilibrium will never be achieved.
It would seem that what was actually observed
is better described as a limitation of the random-
string approximation and contrary to the impli-
cation of the above-mentioned letter, statistical
concepts are particularly applicable to the ob-
served effects. To do so we return to our discus-
sion on the effect of simultaneous axial and planar
channeling. We assume that such trajectories may
be characterized by both an axial and planar trans-
verse energy. It follows from Hamilton's equation
that the transverse axial phase space is divided
into noncommunicating regions of planar and non-
planar trajectories. Statistical equilibrium in the
random string approximation corresponds to as-
suming uniform probability in phase for both re-
gions. As is well known, this procedure results

in a transverse spatial distribution uniform in the
accessible space for a given axial transverse
energy. ' The trajectories considered by Barrett
all correspond to initial conditions for nonylanar
axial motion. The region of phase space associ-
ated with planar-channeled motion therefore should
not be included in any averages over phase. On
the axial transverse energy shell the equilibrium
spatial distribution from all such trajectories
with conserved planar transverse energy has a
maximum at the center of the corresponding plane
and a minimum on the plane. It follows that for
the total phase space average to be uniform for a
given transverse energy the nonplanar component
must compensate and have higher probabilities
near the strings. Indeed, we may conclude that
the effects should be particularly large when a
large region of phase space is occupied by planar-
channeled motions, i.e., for weak axes formed
from strong planes.
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