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We discuss renormalization-group and mode-coupling theories of critical dynamics for several models. We
show that to lowest order in ~ = d, —d, where for d & d, conventional theory is valid, the renormalization-

group differential equations are related by a simple transformation to those obtained from mode-coupling
theory. Furthermore, the values of the dynamical fixed-point parameters essentially coincide with the critical
amplitudes of the diverging transport coefficients, as determined by mode-coupling theory. In addition, we

present a correct renormalization-group treatment for dynamical systems with more than one time scale, as
for the binary liquid. We stress the fact that there are two distinct classes of critical dynamics, as illustrated

by the results for the models studied here. We also discuss the instability of the conventional fixed point (time-
dependent Ginzburg-Landau like) against mode-coupling perturbations for d & d„with particular emphasis on
a model for superfluid helium.

I. INTRODUCTION

In this paper we present renormalization-group
and mode-coupling analyses of several models of
critical dynamics as defined by appropriate Fok-
ker-Planck stochastic equations. Our results are
valid to lowest order in c= d, —d, where the con-
ventional theory of transport anomalies is valid
for dimensionality d&d, . These models have been
studied previously to this order in z, both by re-
normalization-group analyses" and more recent-
ly via mode coupling theory. ' Thus many of our
results are not new in that they are contained ei-
ther explicitly or implicitly in the works of Hal-
perin, Hohenberg, and Siggia, ' and Ma and Mazen-
ko, 2 as well as to some extent in our earlier mode-
coupling calculations. 3 However, our aim here is
to clarify certain issues that have not yet been
adequately discussed in existing literature. First,
we wish to show the intimate relationship that ex-
ists between the renormalization-group and mode-
coupling approaches. In particular, we show here
that to order z they yield identical results for the
basic renormalization-group differential equations
that determine the fixed-point values and dynam-
ical critical exponents. More precisely, a simple
scale transformation transforms the mode-coupling
equations into the corresponding renormalization-
group equations. In particular, the values of the
dynamic fixed points are essentially given by the
amplitudes of the diverging transport coefficients
as determined by mode-coupling theory. Second,
we attempt to clarify the previous renormaliza-
tion-group work on the binary liquid, both as re-
gards the proper treatment of a system with two
distinct time scales as well as in the different
role played by the "bare" transport coefficients
in this case. Finally, we explicitly examine the
problem of the relative stability of the conven-

tional [time-dependent Ginzburg-Landau (TDGL)-
like] and nonconventional fixed points with respect
to the mode coupling and certain other perturba-
tions. This is of particular interest with respect
to the question of the correct fixed point for super-
fluid helium. In fact, some authors~ have argued
recently that such a system has a TDGL-like fixed
point' for d&d„a result which is contrary to that
of Halperin' et al. and of our present analysis.
We argue here that this TDGL fixed point is in fact
unstable with respect to the mode-coupling per-
turbation and hence that it is not the correct fixed
point for superfluid He. This result is implicitly
contained in the work of Halperin et al. '

The structure of our paper is as follows: in Sec.
II we summarize some formal aspects of the dy-
namic renormalization group. In particular, we
discuss the dynamical analog of the set of eigen-
operators and eigenvalues (crossover exponents)
which is of fundamental significance in the static
renormalization group. "We also briefly discuss
the formal relationship between the renormaliza-
tion-group and mode-coupling theories. In Secs.
III-VI we give a renormalization-group analysis
of Fokker-Planck stochastic models for the crit-
ical dynamics of the Heisenberg ferromagnet, su-
perfluid helium and planar ferromagnets, and bi-
nary liquids. Two models for helium are dis-
cussed, one a simplified symmetric model given
in Sec. IV and the other a more satisfactory asym-
metric model given in Sec. VI. In all these cases
we find that the conventional fixed point is unsta-
ble with respect to the mode-coupling perturbation
for d&d, . In Sec. IV and V we discuss, respective-
ly, the stability of the TDGL (conventional) fixed
point for superfluid helium and the notion of as-
ymptotic closure of long wave fluctuations in crit-
ical dynamics. We present some concluding re-
marks in Sec. VII. Finally we present in Appendix
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A a simple method of eliminating to order a the
"rapidly varying" degrees of freedom in the Fok-
ker-Planck stochastic equation.

II. DYNAMIC RENORMALIZATION GROUP

In this section we give a brief review of the for-
rnalism of the dynamic renormalization group"'
within the context of a stochastic equation for the
probability distribution function P((a},t) of a set
of gross variables' (a,(k)}with wave number k.
We denote this set by the symbol {aj. For con-
venience we will limit our discussion to the case
when the stochastic equation is of the form

8P—=SP
8t (2 1)

v,„-({a}),
i k

where p, &
is two or zero depending on whether or

not conservation laws exist for the variables a, (k)
and a~(k}, L,~ is a "bare" Onsager kinetic coeffi-
cient, C is the free energy associated with {a}
divided by k~7, and v, „- is the "instantaneous ve-
locity" of a, (k). The so-called "streaming term"

which is of the type studied in the text. To lowest
order in & the renormalized stochastic equation
maintains this simple form; in higher order in e,
memory effects would have to be included. Al-
though our discussion will be limited here to the
form [Eg. (2.1)], a general discussion of an exact
dynamic renormalization group which includes
memory effects will be given elsewhere. ' The
stochastic operator 8 in Eg. (2.1) can be written
generally as

8 8 8@
k~oL,

q
+

saq(k} Baf (k) &aj~(k)

k- bk, a, (k) 5' a,~(bk), t - b*t, (2 2)

where x, =1 ——,'g when a, is the order parameter.
The above scale transformation of time is appro-
priate only when there is a single relevant time
scale, as for the Heisenberg ferromagnet. More
generally, as is discussed in the text, one must
consider a set of dynamical exponents (z,}in order
to scale the set of time scales. The two operations
above (elimination of short wavelengths and scale
transformation) can be considered to constitute a
dynamical renormalization-group transformation
on the set of scaled variables which parametrize

The relation of these scaled variables to the
original physical variables (g}can be obtained by
applying the renormalization transformation to Eq.
(2.2). This yields a relation between the original
stochastic operator 2' azd the new stochastic op-
erator Z' of the form

in v« in Eg. (2.2) describes, for the examples
studied here, the coupling between modes and is
proportional to a coupling constant X, . Thus the
stochastic operator Z((pj} is a function of a set
of parameters (p j which includes the bare On-
sager coefficients (L,,j, the mode coupling co-
efficients (A.,j, and any thermodynamic variables
such as temperature and magnetic field which oc-
cur in the free energy 4. These latter variables
must be adjusted to their critical-point values for
the system to be at criticality.

The dynamical renormalization group can be dis-
cussed in a manner similar to that for statics. We
first eliminate the "short wavelength" fluctuations
which occur in Eq. (2.1}by suitably integrating
over all Fourier components a, (k) with b 'A & k& A,
where A is the upper cutoff in the sum over k in
Eq. (2.1) and b &1. Next, we apply the scale
transformation

Z ((b"&a,(bk)}, t', V, (L }(X })=b 'S~({a,(k)} $/b, V/b~, (b~~U~& "sL },(b~"&~&X&}), (2.4)

where p, , is the exponent which characterizes the
transformation of v, „-, i.e-;

ve -((O'Ja~(bk) j, $, V, X()

= h "~v', „((aq(k}j, $/b-, V/O', X',.). (2 6)

In the above the superscripts 1 and 2 denote the
quantities before and after elimination of short
wavelength fluctuations, respectively, V is the
system volume, and $ is the correlation length.
We suppress all other thermodynamic variables.
Thus upon iterating the renormalization transfor-

mation l times we can identify

= A. '. A. = b' "i~iA.'
i& i, l+j.

~1+1 RbI Ly (2.6)

where Rb represents the renormalization-group

L]~ i=Li~, L]~ „1=b « I ]~,

in an obvious notation. These constitute the ap-
propriate scale transformations. The renormal-
ization-group equations may then be taken to be
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operation described above. A fixed point p, * is
given by the solution of

pQ g pQ (2 7)

k = -GP(k)
dk

(2.8)

In order to find a fixed-point solution the system
must be at criticality and the exponents p and s
must take certain values.

It is often convenient to give a differential for-
mulation of Eq. (2.6). For thispurpose we introduce
the variable k = k,b' for some constant k, and
choose (b —1) to be infinitesimal. We also define
the scaled variables L,i(k) = L„,and $. ., (k) = a; „
so that (p,] -{P(k)j, and transform Eq. (2.6) into
the differential form

Eqs. (2.10) and (2.11) arise from (a) the arbitrari-
ness in choosing a scale for k and (b) the invari-
ance of the renormalization-group equations (RGE)
to multiplication of the members of (P) by some
arbitrary constants. The different k dependences
of L,ian. d L&, in Eqs. (2.10) and (2.10') come from
the fact that X;i(k) is the transport coefficient af-
ter renormalization is repeated ln(k/k, }/ink times,
whereas L,i(k) contains the contributions of fluc-
tuations whose wave numbers are greater than k.
Substitution of Eqs. (2.10) and (2.11) into Eqs. (2.8)
or (2.9) then yields differential equations for I,i(k)
and A, Note however, that since at criticality
L,, (k) diverges for the models studied here as
k-0 for d&d„one cannot ascribe fixed-point val-
ues to the L,i. On the other hand, Eq. (2.10) can
also be written

or, in the autonomous form I' (k) =A 'k"'U "I, (k'/k)k' ~1j. (2.10')

(2.9)

L;,(k) =A;,k' g&iL,,(k /k) (2.10)

where 7' = —ink and where G is the infinitesimal
generator of the group transformation. Equation
(2.9) is the dynamical analog (ignoring memory
effects} of Wilson's differential form of the renor-
malization-group equation for the static Hamilto-
nian. ' The dynamical fixed point corresponds to
G p.*=0.

We now digress to discuss the relationship be-
tween the renormalization-group and mode-cou-
pling approaches. ' The latter yields equations for
the physical transport coefficients L,i(k), and the
mode-coupling coefficients A,&, for small values of
the wave number k. These equations describe the
effect of long-wavelength (k -0) fluctuations on the
transport properties of the system. The renor-
malization group, on the other hand, yields equa-
tions for the scaled variables L,, (k), and R,.(k), in
the limit k- ~, where k again describes the effects
of long wavelength fluctuations, as 3- . The re-
lationship between these two approaches can be ob-
tained by linking the scaled variables to the phys-
ical variables by suitable scale transformations
which take into account the different limiting val-
ues of k which are involved in the two cases. Thus
we introduce

This suggests that there is in general a simple re-
lationship between the critical amplitudes of these
diverging kinetic coefficients and the fixed-point
values of L;J.

In fact, if we adjust arbitrary constants so as to
obtain A, J = k"+~~ ", we have as k -0

L,,(k) L+,k'i(i . — . (2.12)

As we show in our discussion of the various mod-
els, the mode-coupling equations (MCE) derived
previously' for the JL,i, A, ) are equivalent (to or
der c) to the RGE for P, &i, R,). Furthermore, the
fixed-point values in general satisfy Eq. (2.12).
This intimate relation between MC and RG ap-
proaches is to be expected, since in both cases
one attempts to eliminate the short wavelength
fluctuations in the dynamical equations of motion.
In mode coupling in its original version, one does
this in one step, whereas in the RG approach one
integrates out these fluctuations in a series of
small steps.

Returning to our discussion of the RGE, we now
consider the concept of dynamic eigenoperators
and eigenvalues (crossover exponents). Consider
linearizing Eq. (2.9) for a small perturbation 5P
about the fixed-point value p.*, i.e.; p. = p, *+5p, .
Then one obtains from Eq. (2.9) the eigenvalue
problem

95p. = -yap, , (2.13)

(2.11)

where z', i-—(p, i+x, +xi) is the conventional dynam-
ical critical exponent and zo, = p.,+x, is the scaling
exponent of the mode-coupling term with X,. (Note
that so,- in fact is the dynamic critical exponent for
such systems as isotropic and planar ferromagnets
and superfluid helium. } The arbitrary constants in

where d(5P)/d7' = -y5P and 9 is the linearized form
of G. Thus in general one finds a set of dynamical
eigenvalues Q,j which describe the response of the
system to perturbations around the fixed point. In
terms of the original parameter b we have 5 p
=Ae"=Bb'". Thus, as in statics, we can classify
dynamical eigenoperators as relevant, marginal,
or irrelevant, depending on whether y is greater
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than, equal to, or less than zero, respectively.
These eigenvalues can be considered as crossover
exponents, as in statics, which characterize the
stability of a given fixed point with respect to a
given perturbation. In Secs. II-VI we evaluate the
fixed points, eigenoperators, and eigenvalues for
the dynamical models mentioned earlier, to order
e = d, —d. Since' the static correlation function ex-
ponent ri = O(P), we take g= 0 in all of these calcu-
lations.

For completeness we note that in the case where
there is only one dynamical exponent z rather than
a set {z,.) there exists a fixed-point stochastic op-
erator 2* for the renormalized stochastic equa-
tion

—P=ZP, (2.14)

where P is the scaled probability distribution func-
tion for the long wavelength fluctuations. This
agrees with a proposal originally made by Kura-
moto. ' More generally, however, when there is
more than one time scale, a fixed-point stochastic
operator does not exist. However, there is still
a fixed point p, * in the parameter space, which is
obtained by requiring that the form of the stochas-
tic equation remains invariant, as is discussed in
more detail in subsequent sections. We now illus-
trate the various ideas summarized here by ana-
lyzing several models which have critical trans-
port anomalies.

III. ISOTROPIC HEISENBERG FERROMAGNET

W'e begin by discussing a dynamical model for
the Heisenberg ferromagnet in 6 —& dimensions.
A detailed renormalization-group analysis has
been given elsewhere' to order &. Our main in-
terest here is to show the equivalence to order c
of the mode coupling' and renormalization-group
treatments. We treat this model in more detail
than for subsequent models, in order to illustrate
the nature of our calculational scheme. This mod-
el is somewhat easier to discuss than the others,
owing to the fact that it has only one kind of vari-
able.

Our initial Fokker-Planck equation for the prob-
ability distribution function P,({SQ,I) for the Fou-
rier components {SQ of the magnetization density
S(r}, with

with

and

(a = z, y, z) (3.3)

@112 ~ Q aBr I-I sSy
|I Br

(3 4)

(3.5)

The effective stochastic operator

&, =-
&&&sw —&&'(&"') '&'&aw

with

(3.6)

(3.7)

The various terms which appear in Eq. (3.3) are
as follows: 4 ({Sj))is the free energy divided by
kgT E gy is the three-dimensional Levi-Civita
tensor, L, is the bare Onsager kinetic coefficient
for spin diffusion, and X is the mode-coupling
constant. As usual, the sum over k is from zero
to an upper cutoff A. The mode-coupling term
corresponds to a precession of spins in the local
magnetic field and its effect is negligible for
d& 6.'" " Thus the conventional theory of criti-
cal dynamics, which ascribes all the critical-dynam-
ical anomaly to the thermodynamic driving force
BC/BS

&
(with the Onsager coefficient remaining

finite) is valid for d) 6. For d(6 the mode-cou-
pling term is significant and its effect can be
treated for small & by the following renormaliza-
tion-group approach. First, we eliminate the
short-wavelength spin fluctuations (SW) by inte-
grating Eq. (3.2) over those {S-„}with wave number

b 'A(k(A, with b)1. To first order in & we can
drop the quartic term in {S~)from C and retain
terms up to second order in g a,s noted in Ref. 2.
Thus, as is shown in Appendix A, this yields a
Fokker-Planck equation for the reduced probability
distribution function P,({ S),If}, for the remaining
long-wavelength fluctuations (LW), which takes
the following form:

SI ——V ' '
~

dr e '"'S (r)

takes the form"

(3.1)

(3.2)

~'=-g g sS. l~"({Sg)—&~™({S-))&] (3 6)

In the above &O&ew is the partial average of any
operator 0 over the short wavelength spin fluctua-
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tions {S}«defined by

&o&,„= ' as},„owsv(fs}} (3.9)

where J2«(fS}}is the equilibrium distribution func-
tion for (S}». {O)2„is still an operator in that it
acts on the long-wavelength spin fluctuations (S}„„.
Also, note that both in our initial starting point
[Eq. (3.2)] and in the derivation of Eq. (3.5), which
is based on the Markoffian approximation, we have
ignored memory effects. Although there exists an
exact formal procedure for eliminating a part of
the degrees of freedom that makes use of a projec-
tion operator, as noted in Sec. I, the present ap-
proximation suffices for our present purposes.

Next, we observe that the second term of Eq.
(3.6) can be transformed by making use of the fact
that

Thus this second term becomes
LW

(5vf(2' ')'IIU y) g + ),
g ey

(3.11)

where 5v((
=—v(F —(v)l)22(. In the present approxima-

tion the small q behavior of the expression in an-
gular brackets in (3.11) is given by

{6VPf(&' ') '62)~),)2

q2 1 1 s 2

2Ld V~k - sk

gq-bS~„-, t b t, V -b"V. (3.17)

The transformed stochastic equation at criticality
is thus

—I ((sg, f) =a g((S-„},f), (3.18a)

where

S, =Z(k2-'-«'g, 5 'L', ) =Z-(X„L,) (3.18b)

and Z(A, L,} is the original stochastic operator
(3.3) at criticality. Equation (3.18) defines the re-
normalization transformation for the parameters
X and L of the stochastic equation. Written ex-
plicitly, this transformation from (X„L,) to
(A.,„,L„,) is, with A= 1 hereafter,

= b~4""X
l+l gu

L —b ~L XDr lnb
' 1929 L j

(3.19a)

(3.19b)

These are the RQE obtained earlier by Ma and
Mazenko. ' They also define the renormalization
transformation for the stochastic operator
2, =Z(X„L,).

As noted in Sec. II, it is convenient to rewrite
Eq. (3.19) in a differential form by choosing b - 1
= 5 &0 infinitesimal and introducing the wave num-
ber k by k = k0b'. Thus we find the following differ-
ential form of the ROE for }((k}—= X, and L(k) = L,:—

setting all (Sg» equal to zero, so that we see from
Eq. (3.15) that 2, takes essentially the same form
as Z. This correspondence can be made more pre-
cise by making the scale transformation discussed
in Sec. II (with @=0):

where we have introduced the k-dependent suscep-
tibility g„- through the approximation k—)((k) = (s -4+ —,'e)l).(k),dk (3.20a)

c((s})=-.' P gxf'lsgl'. (3.13) k'
k—L(k) = (2 4)L(k)+ (3.20b)

We shall use this small q form hereafter. With
these results we can therefore write

ga 8, 8,

where the new Onsager kinetic coefficient is

(3.14)

L,'=L, + (X2,g /1922 ) (Inb/L, ). (3.16)

Next, we note that {v&)« is obtained from vf by

q2 1 SW I Qg
2

'= "2Ld (2v)'
' k' - Sk" '

At criticality y-„= gjh ' [2}=O(e )], so that to lowest
order in a Eq. (3.15) reduces to dk 1922( k'"L(k) (3.21)

Note that here we have retained the z dependence
which arises from the volume integral over k, as
this is a crucial contribution. As noted before,

We now note that (3.15) in fact gives precisely the
renormalization of transport coefficients of the
mode-coupling theory. 3 In fact, if we denote by
L(k) the transport coefficient in which fluctuations
with wave numbers greater than k are included as
renormalization contributions, we see that L, is
L(b 'A) and L2 is L(A) If we write A. as k and
choose b -1 to be infinitesimal, we recover the
following differential form of the MCE'4 at crit-
icality:
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(3.22a)

(3.22b)

there is a simple relationship between the solu-
tions of Eqs. (3.20) and (3.21), namely;

X(k) =Ak' 4"

L(k) = (Ak')k~ L(k /k), 2 + ( x c (K))
(4.1b)

where g(r) and S(r) are the local-order parameter
and the local entropy density fluctuation, and

or

L(k) A-.k8-6~skg-4g(k /k) (3.22b')

L(k}= I.*k (3.24)

which also follows from Eq. (3.22b') be replacing
L by its fixed-point value L~. This leads to the
observation made in Sec. D that the critical am-
plitudes of the diverging transport coefficients
are just the fixed-point values of these transport
coefficients in the RGE.

Finally, we note that in this example there is a
fixed-point stochastic operator 2*—= Z(X*, L*)
which is the dynamical analog of the fixed-point
Hamiltonian in equilibrium critical phenomena.
This, however, is true only when critical dynam-
ics is governed by a single dynamic critical ex-
ponent z.

The arbitrariness in the constants A and k has
been discussed earlier.

The conventional (2*=0) and nonconventional
(k~ x0) fixed-point solutions of (3.20) as well as
the dynamic critical exponents, eigenoperators,
and eigenvalues are given in Tables I and II. Note
that the eigenvalue y~ = 2 e for the conventional
fixed-point signals its instability against the
mode-coupling term for d&6, i.e., the nonconven-
tional fixed point is stable in that case, the con-
clusions also reached by Ma and Mazenko. '

We now consider the MCE [Eq. (3.21)]; its as-
ymptotic solution for small k is

L(k) = (y, /96m )' 'X,k ' '. (3.23)

According to Eq. (3.22a), R(k) =X*=AX near the
nonconventional fixed point. Then, with the choice

or A= 1, Eq. (3.23}becomes

k & '+~i"

dk L(k)+k I"t'(k) '

d k'' '
dk L(k)+ X(k)

'

(4.2a)

(4.2b)

The symbol L denotes the complex conjugate of L
and g is the appropriate mode-coupling coefficient
between the order parameter and entropy fluctua-
tions given by g'= X'/8w'. The corresponding RGE
for the scalar quantities ((k), L(k), and g(k) are

k—L(k) = (z —2)i(k) +d - g(k)'
L(k)+ j(k)

(4.3a)

g is the complex conjugate of P and c.c. denotes
the complex conjugate of the term that precedes.
At criticality we set X;= k "i" and C~(k) =k
where n and. v are the usual specific-heat (C~) and
correlation-length critical exponents. The sto-
chastic operator for the planar ferromagnet is ob-
tained from Eqs. (4.1) by identifying g, tiI, and S
as the components of spin density (S„+iS,)/W2,
(S„—iS,)/v2, and S~ respectively, and setting
C~(k) = 1, where L, is now real. Here we should
point out that the present model for superfluid he-
lium is not quite satisfactory from the renormal-
ization-group point of view since 4 already con-
tains critical anomalies. " We will discuss a more
satisfactory asymmetric model of superfluid he-
lium in Sec. VI.

These systems can be treated in the same way
as the ferromagnet so that our discussion will be
rather brief. For superfluid helium the MCE for
the thermal conductivity P(k) and the Onsager ki-
netic coefficient for the order parameter relaxa-
tion rate L(k) (which is generally complex) are,
for the dimensionality d=4 —e (e&0},

IV. SYMMETRIC SUPERFLUID HELIUM MODEL

AND PLANAR FERROMAGNET

First we define the models by writing down the
stochastic operator Z. For helium

dr =+—+ c.c.6C

O'er

5g 5g

~e
6S(r) 6S(r) 6S(F)

54 5 54
6y(r) 6Sr 6S(f ) 6y(-)

+c.c. , (4.1a)

k —j(k)= z-2- —j(k)+„
dk ~ L(k)+I(k)

(4.3b)

d ~ d Q
k —g(k) = z ————g(k).

dk 2 2v
(4.3c)

g(k) Aks& /2~ /2vg (4.4a)

L(k) =Ak' 'i "k~L(k' /k)

t (k) =Ak" "k' "t'(k' /k)

(4.4b)

(4.4c)

The solutions of these two sets of equations are
related by
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TABLE I. This gives the fixed-point values and dynamical critical exponents (z) to order ~ =d~ -d for the models
studied in this paper. For given fixed-point values of transport coefficients there are two fixed-point values+A, * and
+g* which are mirror images to each other as first pointed out in Ref. 2. In the bottom row we have also set C*=1
and g* =~*/(8x2) i~. The conventional fixed-point behavior for the asymmetric model of superQuid helium has been
studied in Ref. 5 although we do not reproduce the results here.

Model Fixed-point values

Conventional fixed point
Dynamic critical

exponents Fixed-point values

Nonconventional fixed point
Dy~mic critical

exponents

1. Heisenberg

ferro magnet

L*~ 0
A

g + —0

I *=0(o/96m a)~/lh, *l

A. *~ 0 z =4 —gei

2. Symmetric
model of
supe rfluid
helium

3. Planar

ferro magnet

4. Binary

liquid

g+ Q

I. «, E*~0

gQ —
Q

f 4yeQ

g+ Q

g gg 0

ZL 2

zg =2+&/p

z=2

z, * =(6/2~) '&lg*l

& *=~(6/2~)'~l g'I

gg~ 0

& *= (2/~) '"lg*l

(; *= (2/~) '&lg*l

gQ~ Q

g +2/f
ie

g+~ Q

z =2 —pE2

z -gg=2 -gEi 1

~c=4-8'
z~ =2 —g6i

5. Asymmetric
model of
superQuid
helium

I.*=lgl (2.44/~)'~

„(1+o.48o; )O.V32

(; *=lgl(5/6x0. 722m) /

z =2 —f6

TABLE II. This gives the eigenoperators and eigenvalues to order ~ for the linearized renormalization-group equa-
tions for the models considered in this paper. The symbols R,M, andI denote relevant, margiaal, and irrelevant
eigenoperators, respectively, for & & Q. Note that in all cases the conventional fixed point is unstable with respect to
the mode-coupling perturbation (P~, g~ & 0) for c &0.

Model
Conventional fixed point

Eigenoperator Eigenvalue Relevance
Nonconventional fixed point

Eigenoperator Eigenvalue Relevance

1. Heisenberg

ferro magnet

2. Symmetric
superfluid

6L yL =0
i
2

yL =0
Im6E, =6L -6L ImL

2

helium

model

ye =0

y =~/2

64+ i (1+~73)(6L+6L) y ~ =Go~(-lg. i 73)

6g g~ =0

3. Planar

ferromagnet

4. Binary

liquid

6L

6g

6g

6g

3'L =0

pg =0

Ei
2

p ~=0

ye=0

pg =YE1

6I +6/

6j' =6 (n'/4)
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(
8 8

&0~ + re{,—P = (2~+L,)P
L

(4.5)

The scale transformation of time [E{I.(2.3)] must
now be generalized to include the following two
scale changes of t~ and t~, rather than a single
scale change of t:

tI b'I t, t~ b 'C. (4.6)

After applying the renormalization transformation
the new stochastic equation which corresponds to
E{I.(3.18}is

[g (bs j 2L ) + kz/ s{,g (I{Sr2 a/Pl )]P (4 7)

The RGE which correspond to E{I.(4.3) are

k L(k) = (zr, —2)X(—k), (4.7a)

k—f(k) = z, -2-—$(k).
dk

(4.8b)

The fixed-point condition together with nonzero i*
and f* leads to the conventional dynamic critical
exponents z~=2 and z~=2+a/{{. As is clear from
Table II, this fixed point is unstable against the
mode-coupling perturbation g for d&4. Finally,
we note that in this example there is no single
fixed-point stochastic operator 4'*. However, Eq.

The fixed-point solutions and corresponding eigen-
operators and eigenvalues are listed in Tables I
and II. We note the following points: For the non-
conventional fixed point [g(k) -g~ 40] g* is a free
parameter as in the Heisenberg ferromagnet. If
we choose g~ =g or 4 = 1 in E{I.(4.4a) then the
critical amplitudes of the diverging transport co-
efficients are related (as in Sec. II) to the fixed-
point values, i.e., L(k) = L~k "/' and t'(k) =L k

where we have used n/{/=-', e.
Next, we discuss the conventional fixed-point

solution g~ = 0 in some detail, as it provides a sirn-
ple example of the problem posed by the existence
of two time scales. First observe that the fixed-
point condition dL/dk = {Il'/{fk = 0 cannot be satisfied
in this case when both L~ and g* are nonzero.
Second, the consistent treatment of this case re-
quires an introduction of two dynamic critical ex-
ponents, z~ and z~, and corresponding character-
istic frequencies co~ and e~. The stochastic oper-
ator g is also split up into Z~(L, ) and Rt(f,),
where we can ignore the mode-coupling term here.
We now introduce two dimensionless times t~ -=~~t
and ft = &og whi—ch we treat as independent variables
in the stochastic equation, i.e.;

(4.7) can be decoupled into two fixed-point stochas-
tic equations

a P = Zi(L~)P, (4.9a)

8 P=—Z (f*)Pf gt
(4.9b)

This case is rather trivial, though, since the or-
der-parameter relaxation and the heat transport
are completely independent here. However, an
analogous situation exists for the binary liquid
except that there are two interacting processes,
as we discuss in Sec. V.

The treatment of the planar ferromagnet is com-
pletely parallel to that of the above model for su-
perfluid helium. Both the MCE and the RGE for
the planar ferromagnet can be obtained from those
for helium by letting n -0 in E{is. (4.2) and (4.3),
respectively, and noting that L(k) is real for the
planar ferromagnet. The results that one obtains
in this case are summarized in Tables I and II.
The mode-coupling coefficient g in this case is
given by (kzT)'/8w'y{{ which is twice the value of
the corresponding g' in Ref. 3.

As a final note we comment on some recent "mi-
croscopic" studies by several different authors4
of the critical dynamics of the single-component
Bose fluid in 4 —& dimensions. All of these studies
found the same fixed point as that appropriate for
the TDGL model. ' To lowest order in ~ this is the
same as the conventional fixed point. However,
all of these calculations are based on formulations
in which only the order parameter is involved;
couplings to other slowly varying modes such as
the entropy density are not included. Our result
indicating the instability of the conventional fixed
point against such a mode-coupling perturbation
for z&0 would suggest that the parameter space
considered by these authors is simply too small to
allow for the poss.'blity of non- TDGL fixed points.
Although we have not carried out our calculation
to O(c }, the following fixed-point behavior seems
quite plausible for a single-component Bose fluid:
For a &0 the Gaussian conventional fixed point is
stable. For e & 0 the non-Gaussian nonconventional
fixed point is the most stable one. The non-Gaus-
sian conventional (TDGL) fixed point is unstable
against g, whereas the Gaussian nonconventional
fixed point is unstable against the coefficient u of
the quartic term in 4. The Gaussian conventional
fixed point is unstable against both u and g. In the
above, Gaussian and non-Gaussian refer to the
static fixed point, and conventional and nonconven-
tional to the remaining dynamic fixed point.
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V. BINARY LIQVID

We define our model by the following stochastic
operator Z:

{c}and {u}follow as in the noninteracting case dis-
cussed in Sec. IV.

The RGE for d=4 —z are

6c(F) 6c(P) 6c(r)

—q, J( sr
(~ (v —vv)

(~)
+u(r))

54
+ x dr

~) v(c6l —
( ) ~ vc(r))

(5.1a)

where c is the local concentration fluctuation, u(r}
is the transverse local velocity, and ( ), denotes
taking transverse components. Here also

k —((k) = (z~ —4)f(k)+ g-

k—i)(k) =(z„—2)$(k)+—„0 1 g(k)2
dk " 24 j(k)

'

k—g(k) = " —3+—g(k).
d zg+ zq

dk 2 2

The corresponding MCE are

d 3 g
dk 4 k'q(k} '

d 1 g
dk "( }= 24k'1(k}'

(5.3a)

(5.3b)

(5.3c)

(5.4a)

(5.4b)

lc-Pa

2» )jp

with g„-=k "and

(uzu z) = 1 —kk/k2.

(5.1b)

(5.1c)
g(k) =Ak ~0+*/ ~ »+~~

f(k) = k+Bk*&4$(k /k),

(5.5a)

(5.5b)

The general relationships between the solutions of
Eqs. (5.3) and (5.4) are

As mentioned earlier a correct analysis of this
case requires an introduction of two time scales,
t~= (d~t and t„=(d„t, with corresponding dynamic
critical exponents z~ and z„ for the diffusion and
viscous relaxation, respectively. This point was
not explicitly discussed in the previous HG treat-
ment' of the binary liquid. After a renormaliza-
tion transformation the stochastic equation at
criticality takes the form

= l&g(& i.i)+ &'~'~, (ng.i) + &""'"'"g'( g ).~) jP,

g(k} = k+B 'k'~~@(k' /k). (5.5c}

If we compare these relationships with analogous
relationships such as (4.4) we see that in this case
there is an extra free parameter as well as two
exponents z~ and z„. The fixed-point solution of
Eqs. (5.3) requires that P/dk = di)/dk = dX/dk = 0.
This is in contrast to the earlier treatment by
Halperin et al.' based on a single z whose equa-
tions do not have a solution in which all three de-
rivatives are simlutaneously zero. For the non-
conventional fixed point (g*e0) Eqs. (5.3) yields

(5.2)
18z~=4 -—,9 a, (5.6a)

where f„g„and g, denote the concentration con-
ductivity, the shear viscosity, and the mode-cou-
pling coefficient, respectively, with g,' = X'/8z'.
Likewise &, 2„, and Z' are the stochastic oper-
ators that describe the diffusion, viscous relaxa-
tion, and the coupling between these two, respec-
tively. Although the scale invariance of the pro-
cess at the fixed point g„,= f, , = f*, etc., is not
apparent in Eq. (5.2), this can be seen more readi-
ly by eliminating either u or c by the method of
Appendix A. Thus, up to the self-consistent sec-
ond-order treatment in 8', we have

„,= 2 —(8'(1/S„)S'),
O'8 „,= b'g„—5'(g'(1/Z )Z'), ,

where z -=z~ —z„and ( )„-and ( ),denote partial
averages over equilibrium distributions P,({u}}and

P, ({c}),respectively. The scale invariance for

1=2 —
gg 6v) 19 (5.6b)

g42/fQg4 f ~4 (5 7)

which agree with results of Halperin et al.' At the
conventional fixed point (g~ =0) we have z~ = 4 and
g„=2. As can be seen from Table H and as is gen-
erally true for the models studied here, the con-
ventional fixed point is unstable against the mode-
coupling coefficient g for d&4. We note as in the
previous example that there is no single fixed-
point operator for the binary liquid.

For the nonconventional case, with g*=Ag,
specifying g* is not sufficient to determine f* and
g~, in contrast to the other models studied here.
Rather, only the product P*g* is fixed to be
(19/24')(g*)'. Likewise the choice A = 1 is not suffi-
cient to determine uniquely the critical amplitudes of
f(k) and q(k}. This fact is related to the existence
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of the following "constants of the motion" of Eqs.
(5.8) and (5.4) for the values of z8 and z„given in

Eqs. (5.6):

p = r(-&)/f)(/8)", (5.8a)

p =- t(u)/q(u)". (5.8b)

Namely, p and p are independent of k. The fixed-
point values (critical amplitudes) depend on p as
well as g8 (p as well as g}. That is, we have

and

pl /19[(g8)2/f]1 /819

P-1/19( 82/f }1/19

t(y) pl/19(g2/f)18/19y 18$/19

li(y) p-1/19(g 2/f )1 /19/ -8/19

(5.9a)

(5.9b)

(5.10a)

(5.10b)

The critical amplitudes in E|ls. (5.10) are again
given by the fixed-point values f* and g* if in ad-
dition to choosing" g*=g we also require that p= p.
The free parameter B then becomes equal to
k"' ". The appearance of these constants of mo-
tion in this problem reflects the fundamentally dif-
ferent character of the critical dynamics of the
binary liquid as compared to that of the other sys-
tems studied here. To make this even more trans-
parent we note that we can also write p as p= f(A)/
li(A)", where g(A} and 1)(A) are the "bare" trans-
port coefficients which are determined by the
short-wavelength microscopic motion of the sys-
tem. Similarly, we have p= r9/rp~, where t9 and

$0 are the initial transport coeff icients, that is,
the transport coefficients whir:h appear in the sto-
chastic equation before any renormalization is
performed. Therefore, in contrast to the earlier
examples considered, for which the fixed-point
values and critical amplitudes were completely
determined by specifying the coupling constants,
which are to some extent presumably universal,
for the binary liquid the fixed-point values and
critical amplitudes are not universal, since mi-
croscopic details enter through the ratios p and p.

The above result is in a certain sense not sur-
prising. Namely, some years ago one of us intro-
duced the concept of "asymptotic closure of long-
wavelength fluctuations" in critical dynamics, for
the class of second-order phase transitions in
which there is spontaneous breakdown of continu-
ous symmetry. " According to this hypothesis,
the nonlinear coupling among just the long-wave-
length fluctuations completely determines the crit-
ical dynunics. The examples considered in Secs.
III and IV belong to this class, whereas the binary
liquid does not. Namely, in the binary liquid,
while the product of the critical amplitudes (*g~

of the thermal conductivity and the shear viscosity
contains only g~, the strength of coupling between
long-wavelength fluctuations, the ratio f8/r/8 in-
volves p = f(A) /2i(A)18 which cannot be determined
by the MCE or the RGE themselves but depends
on the "initial data" thai involve short-wavelength
fluctuations. Therefore, in this latter case one
would naturally expect that the short-wavelength
fluctuations should somehow influence its critical
dynamics. The results obtained above provide con-
crete manifestations of this concept.

VI. ASYMMETRIC MODEL OF SUPERFLUID HELIUM

In this section we describe a mode-coupling
calculation for a more realistic model of super-
fluid helium than that considered in Sec. IV. The
model is very similar to the one considered by
Halperin, Hohenberg, and Siggia' and is described
by a stochastic equation whose stochastic operator
takes the same form as (4.1a) except that 4 now
assumes the following analytic form:

4 =, /f9{,'9, [y(r)['+-—,')v'y(r))'+rc, )y(r))'

+ [S(r)'/2C9]+ v8S(r) [rp(r) [ 2), (6.1)

where r„Q„C„and v, are analytic functions
of thermodynamic variables. As before, we limit
ourselves to criticality.

First we are concerned with the static part of
the problem where we derive 4, obtained by el-
iminating from 4 the short-wavelength fluctua-
tions (pi), gf), and (SI) with q &k&1:

e &=
~( e (6&)

where the symbol f" stands for the integrations
over short-wavelength fluctuations. The 8-expan-
sion calculation can be readily performed by first
dividing 4 into the following three parts:

+ @,&a + 4, (6.8)

where 4~' (48~) is obtained from 4 by omitting
all the fluctuations with wave numbers greater
(smaller) then q, and 4' is the remainder con-
taining both short- and long-wavelength fluctua-
tions. Then we treat 4' as a perturbation antici-
pating that 2|8-0(8) and v8-O(z'/2) and obtain
aside from an unimportant constant,

4 =4 +&4') --'&(4')')'

+ (1/~i )&(4')')'+" ', (6 4)

where (" ), is the average with the weight e +'
and ( ~ ~ )' denotes the cumulant average For
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small q, C, takes the form:

1
&, = —, Q(~(~)+&)I((I'+ vs(e) 2(;,(r(~e;;,s. +, ,.~( ) Zl I'+ ~ *~(q)g~)u :-.)-.+",

{&g) {%~)

(6.5)

r(q) =r, +8)(u. I ))t'-'u),

1 1, ~dk
C(} C c 0 kx+')

A

v(q) = vo —4K~vo(4u&) + v()C()) 1~6

(6.6a)

(6.6b)

(6.6c)

where ~ denotes a summation over wave numbers
~&a

smaller than q. Here, retaining only the lowest
order corrections in q, we find with K, = 1/8)r'

dL(k) 4K, [X+ ic(k)v(k)L(k)]'
dk k " 2$(k)+C(k)L(k)

(6.11a)

I

operator with the renormalized transport coef-
ficients. Alternatively, one can use the fact that
up to the first order in q these renormalized
transport coefficients at criticality are the same
as the wave-number-dependent transport coef-
ficients L(q) and g(q). The calculations of the
latter are described in Appendix 8, and we find

and similarly for u, where
dl'(k) K,

dk k'" ReI, (k)
' (6.11b)

dC(k) 4K, v(k)' C(k)'
y~+6 (6.9a)

[4u(k)+ v(k}' C(k)]. (6.9b)

If we know that"

u(k) =u(0)k', (6.10)

Eqs. (6.9) determine v(k) and C(k) self-consistent-
ly. We note that the calculational scheme quite
similar to that described here has been also pro-
posed by Rudnick" for the usual Wagon Hamilton-
1RIl.

We now go on to discuss the dynamic aspect.
One could eliminate the short-wavelength fluctua-
tions from the stochastic equation by the method
illustrated in Sec. III and described in Ref. 10 in
a general way and obtain the effective stochastic

(6 'I)

uo is the coefficient of
~
P(r} ' of C when {S(r)}is

eliminated. ' Equation (6.6a) determines the crit-
ical temperature by requiring

lim r(q) =0,
qaQ

and will not be needed subsequently.
Equations (6.6b) and (6.6c) can be made self-

consistent by replacing v„u„and C, in front
of the integrals by v(k), u(k), and C(k) as follows:

1 1 ~ v(k)'
c(q) c, ' k'"

v(q) =v, —4K, [4u(k)+v(k)'C(k)] „dk.
h v(k)

(6.8b)

In the differential form Eqs. (6.8) become

Equations (6.9) and (6.11) together with Eq. (6.10)
constitute the M| E for the present model.

Now, the RGE for the quantities C(k), etc. ,
"

which corresponds to our C(k), etc. , have been
recently obtained by Halperin, Hohenberg, and
Siggia' which read up to 0(&) in the present nota-
tion as

k—C(k) = ——C(k)+4K,v(k)'C(k)', (6.12a)

l —v(k)=(—+ ——18)(',ri()) —4)(,C(k)v(k)' (k),

(6.12b)

d A d 6
k—X(k}= s- ———X(k)dk 2 2v

(6.12e)

where z is the dynamic critical exponent.
The solutions of Eqs. (6.12) are related to those

of the MCE in the following way:

c(k) =w-'k- i"c(k'„/k),

v(k) =~'I k'(' +I) '~v(k) /k),

L(k) =B&'i k~2L(k /k),

q(k) =J3~-~i2k-~=i q(k./k),

Ii kg~+Ii2-nt2vg(g /k)

(6.13a)

(6.13b)

(6.13c)

(6.13d)

(6.13e)

where A, B, and k are arbitrary positive num-
bers and we have chosen

u(k) =k'u(k'/k), (6.14)

k L(k}= (—z —2)L(k) + 4K, [X(k) + iC (k) v(k) L(k) ]
~

x [2f(k)+ 0(k)S(k)]-', (6.12c)

k—t'(k) = 2 g —d ——f(k)+ y(k)2, (6.12d)
dk v ReI. (k)
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Eq. (6.14) implies that u(0) of Eq. (6.10) is nothing
but the fixed-point value u«of u(k) as k

The nontrivial fixed-point condition k dX(k)/dk =0
with ~ 0 yields the well-known result'

8 = 2 —2 6 + o(/2 V (6.15)

and hence ~ =8 '~ is independent of k. We now

choose 8=1. If we further choose 4=1 so that the
critical amplitudes of C(k) and v(k) are given by the
k- ~ limits C* and v* of C(k) and v(k), respective-
ly, we again recover the results of Sec. IV,

L(k) = L*k~ ' ' and f(k) = g*k~' '. Here, however,
L* and g* are the fixed-point values of L(k) and

t(k) of Eqs. (6.12) as k-~, which are obtained in

Ref. 1 and are quoted in Table I, and differ from
those of Sec. IV. Here again the critical ampli-
tudes are uniquely determined once the mode-cou-
pling coefficients X and v and the specific heat,
all of them the equilibrium properties, are fixed,
quite in contrast to the binary liquid of Sec. V.

attain finite fixed-point values, whereas in MC
the concept of fixed point does not enter at all.
In the same sense, the treatment of Halperin
et al. is intermediate between the two extremes
in that only f and the ratio g'/pq attain finite
fixed-point values.

Finally we remark that the two approaches de-
scribed here are not limited to critical dynamics,
and indeed a "mode-coupling"-type treatment of
static critical phenomena was presented by Wil-
son himself ."'"

„P„,(f) =—SP„,(f) (Al)

APPENDIX A

We describe here a simple way to eliminate the
rapidly-varying degrees of freedom (B}from the
slowly-varying degrees of freedom (A} in the sto-
chastic equation for the entire system
({4}plus (B}). This equation is of the form

VII. CONCLUDING REMARKS

One of the main purposes of this paper was to
display explicitly the close relationship between
the renormalization- group and mode- coupling
approaches to critical dynamics. Up to first
order in & we were able to exhibit their equiv-
alence, and the relationship somewhat resembles
that of the Schrodinger and Heisenberg represen-
tations in quantum mechanics. Beyond first order
in & the relationship may be more complicated pri-
marily owing to the different attitudes toward
dealing with the static aspects of the problem
taken by those working in the two approaches.
The mode- coupling approach regards whatever
is known about the static aspects of the problem
as input to the theory, whereas the renormaliza-
tion-group approach tries to deal with both the
static and dynamic aspects simultaneously.

Another point that emerges concerns the cases
with multiple fixed points. The concept of fixed
point is not apparent in the mode-coupling ap-
proach. However, the choice of a fixed point is
made a Pro~~ in the mode-coupling approach
when the starting model system is chosen. In fact
in this approach one is always led to the stable
fixed point of the RG as allowed in the space of

parameters entering the chosen model, as one
can see, e.g. , in Eq. (2.10'}. Here, in the limit
of small k, L,z(k'/k) approaches the value at its
stable fixed point with the appropriate exponent z.

We may regard our RG treatment and the mode-
coupling theory of a binary liquid as the two ex-
treme representations of the same theory in the
sense that in RG all the parameters g, f, and q

—P~(t) = 2~P~(f) + d(B}2»P»(f) (A3)

We now assume that {A}and (B}were uncoupled at
some initial time f =0 and that Ps(0) equals its
thermal equilibrium IB. Thus we only need to
consider the first-order effect of 2» on P»(f)
in (A3), where we choose f to be small enough that
P„(t) remains practically unchanged (the Markoff
approximation}. To this order we then find from
Eq. (Al)

(A4)

with Z, = Z~+ SB. We now substitute this into the
second term on the right-hand side of (A3) to ob-
tain finally

sfP (~) =&«P (~)
a

(A5)

where the effective stochastic operator is given by

Z, =Z —(2 (1/2 )2 )

with

(A6)

(o), = d{B}oP; (A7)

with

(A2)A B AB3

where Z„and Zs describe the variables {4}and

(B}, respectively, and 2» describes the interac-
tions between them. We now eliminate the variables
{B}to second order in Z». First we integrate Eq.
(Al) over {B}to obtain an equation for
P~ = Jd{B}P»
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for an arbitrary operator O{{Aj,{Bj). In deriving
Eqs. (A5) and (A6) we have assumed that t is still
sufficiently large that {SABe~ZAB)B vanishes be
fore the time s = t. We have also split up L so that
{LAB)B=0. That is, if (LAB)B is not zero, then we

A+ {~AB)B A ~ ~AB ( AB)B
as Z~. In the text {Ajand {Bj correspond, re-
spectively, to the long- and short-wavelength fluc-
tuations.

APPENDIX B

Let us consider a general critical dynamic mod-
el expressed in terms of the following stochastic
equation for the probability distribution function
P(a, t)

a—P(a, t) =Z(a) P(a, t), (81)

where Z(a) is a stochastic operator and a is a set
of the gross variables arranged as a vector. In-
troduce a propagator matrix G(t) by

G(t) =-(~"a») x'

def ined through

(812a)

C(q) = fp+ KB(q, t) dt,0
g

S

where

Z„(q, t) = (Z„(q)et-"-~&Bat(q)),

If (q, t) = Q', (q)e"' "-~',(q)).

(812b)

(813a)

(813b)

The fluxes J„(q), etc., can be obtained from Eqs.
(811) where it is enough to retain only the 0(&'/')
contributions, and we thus find

dad(a) .. = da([l, a]-L, X
' a) ~ ~ ~, (811a}

J~(a») P,(a) -=([&,a*]+a* .
X

' ~ Lp)P, (a}. (81lb)

Here we have used the fact that 1da".=ZP, =O.
We now apply this result to the calculations of

the wave-number-dependent transport coefficients
L(q) and t (q) which are expressed as

where a* is the complex conjugate to a,

x
-={aa*), (83)

zA. |
~~(t& = (4 ~

——t I x ~ -at.
CQ

iX
~ (q) =- I ov. ——./. Z

CQ V

(814a)

(814b)

{XOF)-=l~ daX(a) OY(a}P,(a), (84)

(pXP, = a» X
' (aX)P, -+{X)

and use the identity"

(86)

d ( t—e'B = e'B&pk+ ds e "~'B (peed"' ~'B{l —(p)Z
dt +0

+ et(1 0'&B(I (p)g- (87)

for the time-displacement operator in Eq. (82) to
deduce

d G(t)=-X '
Lp G(t) — dsX ' K(s) G(t —s)d-

(BS)

with

(Be)I., =- -(aSa»),

K(t) —{Jet&1 e&zest) (Bio)

where J and J~ are the vector functions of a and a*

and X and F are arbitrary functions of a. 0 is an
operator acting on everything to the right and P,(a)
is the equilibrium probability distribution function
of the following form:

P (a} 5ie-o(a&

Next we introduce a Mori-type projection oper-
ator 6 through

&, (q) =tX~„.g(q k- -'q')PI((;-;

= [complex conjugate of J'(B(q)]. (814c)

Note that the terms involving X and vp arise from
the streaming and dissipative mode coupling, re-
spectively, and the signs in front conform to the
general rule found previously. " Up to O(c) Eq.
(813) can be evaluated by noting that (a) the time
displacement simply gives rise to independent free
propagations of S„- and P; such as

(t) B ((P/CP&k tg (815a)

y;(t) -e-'"'""tq-(0) (815b)

q»(t) e-&1'p / x o&t ~(({0) (815c)

and (b) P, can be replaced by its Gaussian part,
and we obtain

4Co
Co „„-ip/Xo+ (2fp/Co)(Q-k)'

(816a)

I(q) = t, + x' q"[(2q k)'- q']
~ x Lo/X((. x + Lo/Xo

(816b)

where
]

(2(()' „
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Using g~= k at criticality we note that near four
dimensions we can take the limit q-0 in the inte-
grands of Eqs. (B16) and introduce the lower cutoff
at k =q.'" Furthermore, the second-order re-
sults [Eqs. (B16)]can be made self-consistent by
replacing pp Cp I.p alld fp in the second terms
by v(k), C(k), L(k), and 0(k), respectively. That
lsd

(B17b)
sw 4(~, k)2

k ReL(k) '

with q=q/q, etc. These can then be converted to
the following differential equations that determine
L(q) and t'(q) where C(k) and v(k) are detained by
solving Eq. (6.9):

pS% 2

L(q) =L, + „+iL(k)v(k)
~k

4C(k)
k [L(k)+ 2&(k)IC(k)] ' (B17a)

dL(k) 4K» [X+ iC(k) v(k) L(k)]s
dk k'" 2f(k)+ C(k) L(k)

df (k) K»
dk k"' ReL(k)

(B18a)

(B18b)
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