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Nuclear relaxation in one-dimensional Hubbard systems
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Measurements of the proton nuclear relaxation time T, have been performed at room temperature in two
conductive tetracyanoquinodimethane (TCNQ) salts: N-methylphenazinium-TCNQ and quinolinium-(TCNQ)2.
A frequency dependence of T, is reported, which provides evidence for a one-dimensional diffusive motion.
In order to explain this result, the spin correlation function is calculated for the Hubbard chain model by
explicitly taking into account the one-dimensional character of the system. A diffusive process is shown to
arise from the scattering of the conduction electrons by the Coulomb repulsions.

I. INTRODUCTION

Theoretical investigations of the Hubbard chain
model have been stimulated recently by the ex-
perimental studies in one-dimensional (1D) con-
ductors, in particular tetracyanoquinodimethane
(TCNQ) salts. But whereas thermodynamic prop-
erties have been intensively studied, dynamic
properties have received only little attention.
This paper is concerned with both the experiment-
al and the theoretical aspects of the spin dynamics
in the Hubbard chain model. First we report a
frequency dependence of the nuclear relaxation
time T, in two conductive TCNQ salts: N-methyl-
phenazinium (NMP)- TCNQ, and quinolinium-
(TCNQ), . This fact is rather surprising since the
observation frequencies (the electronic and the nu-
clear Larmor frequencies) are much smaller than
the energies which characterize these quasimetal-
lic systems. Actually no frequency dependence is
expected from the current theories which were
previously used to explain the nuclear relaxation
in these compounds. '-' The experimental results
provide evidence for a 1D diffusive motion of the
electronic spine, as previously reported in other
1D systems, i.e., Heisenberg chains' and linear
excitons. ' Therefore, we present in Sec. III a
calculation to obtain the low-frequency part of the
spin correlation function, taking into account the
1D character of the system. It is shown that a dif-
fusive behavior arises from the scattering of the
electrons by the Coulomb repulsions.

perature on polycrystalline samples. The results
are given in Figs. 1 and 2. The nuclear relaxation
rate T, ' is plotted against the inverse square root
of the nuclear Larmor frequency v„' ' in order to
make apparent the 1D diffusive behavior. Qne ob-
tains a straight line in the entire frequency range
(from 7 to 100 MHz) for quinolinium-(TCNQ}„and
only from 40 to 100 MHz for NMP-TCNQ. Before
we attempt to analyze these results, we present
a few other experimental features. A change in
the T, values, especially for NMP-TCNQ, was ob-
served after the samples were exposed to open air
for a few days. The increase in the relaxation
rates was about Sl@, and was frequency indepen-
dent. A possible explanation is that the additional
relaxation is induced by the surface-absorbed ox-
ygen on the finely divided samples. Definitive
measurements (Figs. 1 and 2) have been performed
on vacuum-sealed samples. %e have also mea-
sured T, as a function of the temperature at given
frequencies. The temperature dependence of T,
in quinolinium-(TCNQ), is found to display a Kor-
ringa-like variation between 150 and 300 K as pre-
viously reported. ' The NMP salt shows a rather
small variation in the 100-300-K range. Our re-
sults at 25 MHz for vacuum-sealed samples agree
with the results previously reported. '

As long as the electronic and nuclear Zeeman
energies +, and +„=2gv„are much smaller than
the thermal energy kT, the nuclear relaxation rate
due to concentrated electronic spins is expressed
for a polycrystalline sample as'

II. EXPERIMENTAL 1)T, = —,
' v[6(d')4'(ru„}+(7(d') +5(a'))4+(e, )],

The proton nuclear relaxation time has been
measured in NMP- TCNQ and quinolinium-(TCNQ),
as a function of the nuclear Larmor frequency be-
tween '7 and 100 MHz, using a standard n ——,

'
m

pulse method. The recovery of the nuclear mag-
netization is exponential over about a decade.
Measurements have been performed at room tern-

where (a') and (d') are the mean square of the
scalar and dipolar parts of the hyperfine couplings
(in S units). 4+(+) is the Fourier transform of the
local electronic spin autocorrelation function:

4'(t) =(s~(t)s~(0)) .
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diffusive behavior, 4(~) can be written as

4 (~) = (C/2 v)[1/(2D&g) )'i'], (2)

where C is a normalizing constant and D is the
diffusion coefficient.

In Eq. (1) we have neglected the crosscorrela-
tion functions

(s~(t)s~, (0)) with Xe A'.
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FIG. 1. Proton relaxation rate as a function of the
inverse square root of the nuclear Larmor frequency in
NMP- TCNQ.
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FIG. 2. Proton relaxation rate as a function of the
inverse square root of the nucl. ear Larmor frequency in
quinolinium- (TCNQ) &.

Similarly we define:

4'(t) =(s~(t)s'„(0)) .

The time evolution of the electronic spin s~ at
site X arises from the complete electronic Harn-
iltonian except the Zeeman term. For an iso-
tropic Hamiltonian, one has in the paramagnetic

As explained in Ref. 6, the contribution of these
terms is expected to be rather small in polycrys-
talline samples, for geometrical reasons. More-
over, the cross correlation functions have the
same low-frequency behavior as the autocorrela-
tion function, so that the assumption made in Eq.
(I) is not crucial.

A quantitative analysis of the experimental re-
sults requires some knowledge of the strength of
the hyperfine couplings. As a first approxima-
tion the scalar part can be calculated from the
hyperfine constant of TCNQ in solution (1.5 G),'
taking into account the average number of elec-
trons per TCNQ site; this gives (a') =1.9x10"
(rad/sec)' for NMP- TCNQ and (a') = 0.9x 10"
(rad/sec)' for quinolinium-(TCNQ), . There are
some experimental data available which show that
in TCNQ salts the scalar coupling should be dom-
inant (i.e., the observation of a positive Over-
hauser effect8). However, there is no reason to
assert that the dipolar part of the coupling is quite
negligible. Therefore, the first part of the right-
hand side of Eq. (I) could give an appreciable con-
tribution to the relaxation, especially because
4 (u„) is expected to be greater than 4 (u, ) . In the
case of quinolinium-(TCNQ)„one can interpret
the results in the following way: The &„contribu-
tion is assumed to be constant because ~„ is sup-
posed to be lower than the cutoff frequency which
limits the diffusion process (this assumption will
be discussed in Sec. IV). The frequency depen-
dence of T, thus only arises from the ~, contribu-
tion (+, = 660m„). Taking into account only the
scalar part of the coefficient of 4(&u, ), the diffusion
coefficient may be evaluated from the slope of TI'
against v„'~' by means of Eqs. (1) and (2), and one
obtains D/C' =0.6 eV. For NMP-TCNQ (Fig. 1),
the frequency variation of T, is more complicated.
It consists of two parts; in the high-frequency
region there is evidence for a 1D diffusive behavior
but the slope is not accurately defined, at lower
frequencies the variation of T, becomes smaller.
A possible frequency dependence of C (&u„) or cut-
off effects could be put forward to explain the ex-
perimental results. But it would be unrealistic to
attempt such an explanation at the present stage of
the theory.
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III. THEORETICAL

A. Previous theories

Most electronic properties of NMP- TCNQ and
quinolinium-(TCNQ), can be described in terms of
the linear Hubbard Hamiltonian

H =U+6 =u n), )n~)

sible extension will be discussed in Sec. IV. A
Priori, no conditions are imposed on the value of
u relative to 8 or kT.

B. Principle of the calculation

By performing the usual transformation,

c& =~-'&' ~ e-""c
Xo ~ ~ca~

'ko k+ zo + X+ zo 4y)
X.o

where c~~„c~„and n„, are, respectively, the
creation, annihilation, and population operator for
an electron of spin 0 in the Wannier state localized
at site A, u is the one-site Coulomb repulsion, and
8 is the nearest-neighbor transfer integral. We
define n as the average number of electrons per
TCNQ site [n = I for NMP- TCNQ and n = —,

' for
quinolinium-(TCNQ), ]. Orders of magnitude of u
and 8 have been deduced from the analysis of
transport and magnetic properties of NMP- TCNQ, '
u = 0.15-0.18 eV, and 8 = 0.04-0.05 eV in the high-
temperature region. Similar values are expected
for quinolinium-(TCNQ), .

In the framework of this model, Ehrenfreund
et al. ' have attributed the unusually large value of

T, ' in NMP- TCNQ to an enhancement of the relax-
ation due to the Coulomb interactions. This inter-
pretation is based upon the random-phase-approx-
imation calculation of the dynamic susceptibility
by Moriyaio and Izuyama et al ii Hone and Pincus'
have calculated the nuclear relaxation in the case
of a half-filled band (n = I) with strong interactions
(u» 8) by using a high-temperature expansion
(kT» 8), but they assume a Gaussian line shape
for the spin correlation function 4(t), which is very
dubious for 1D systems. Clearly the random-
phase-approximation calculation and the Hone-
Pincus theory cannot explain the frequency depen-
dence of T„because they do not take into account
the 1D dynamic properties of the system.

More recently, Villain" has considered the case
of infinite Coulomb repulsion (s» 8, ttT) for a non-
half-filled band (ne I). The problem is then re-
duced to the calculation of the position correla-
tion function for itinerant electrons. A 1D diffu-
sive law is obtained, 4(&u) ~ &u

't'. On the other
hand, the limit of electrons without interaction
(u = 0) can be solved exactly, " and for a narrow-
band system, a logarithmic divergence takes
place at low frequencies: 4(~) ~ in~ '.

The purpose of the following calculation is to
show how the Coulomb repulsions between elec-
trons change the coherent motion into a diffusive
(incoherent) process. The calculation is restric-
ted to the high-temperature limit, kT» 8. A pos-

the spin correlation function is expressed in Q

space,

C (t) = Q CQ(t) = Q (SQ(t)S Q(0)),

where the time evolution of the spin in Q space

S =X ' c~&c„&&

t

CQ (t) zQC Q (t) MQ (7)4Q (t —7) d7,
0

(4)

where 0=([SQ 8]S Q)/(SQS Q). In the high-tem-
perature limit (l'tT» 8), one has 0 =0. Further-
more, in the Markoffian approximation —the va-
lidity of which we shall justify later on—the
memory function MQ(t) is assumed to decrease
much more rapidly than the function 4Q(t) itself.
Hence, Eq. (4) is integrated as

4 Q(t) =(SQ'S-Q) e-'Q}'~ (5)

where

+ 00

6Q = MQ(t) dT .
0

The Fourier transform of CQ(t) has then a Lor-
entzian line shape, and the frequency correlation
function in real space is given by

( )
~(SQS Q) 5Q

m (g) +5g

As long as 0 =0 and the Markoffian assumption is
valid, it can easily be shown from Eq. (4) that
MQ(t) has the same short-time development as the
second derivative of CQ(t):

M, (t) =([S,', e](t)[e,S-,J&/&SQS-Q) . (8)

comes from the Hubbard Hamiltonian [Eq. (3)]:
S+ (t) lstS+ -&Ht

Owing to the commutation rule [SQ, U] = 0, the
problem is somewhat similar to the exchange nar-
rowing of the EPR line. It is therefore convenient
to use the memory function formalism, "as re-
cently applied to describe the EPR line shape in
Heisenberg system. " The spin correlation func-
tion in Q space is governed by the following equa-
tion:
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C. Coherent case

Although this is not the main object of the pres-
ent calculation, it is interesting to examine first
the case of vanishing Coulomb interaction (u = 0}.
For small wave numbers Q (whose contribution
is preponderant at low frequencies), the short-
time development of Mq(t) is written as

P= I/kT, p, is the chemical potential and N is the
operator for the total number of electrons. In
order to calculate Mq(t) in the site representation,
it is convenient to characterize the thermodynam-
ical state of the system by the parameter x, which
is defined as

(nein), i) =m'x,

Mq(t) =28 Q'(I ——,
' 8'Q't'+ ~ ). (9)

where m =(n), i) =-,'n. It is straightforward to ob-
tain the limits of x:

Assuming a Gaussian line shape for Mq(t), it can
be seen that the correlation times of Mq(t) and

Cq(t) are roughly equal [v, = (8Q) ']. Although the
Markoffian hypothesis is no longer valid in this
case, it is noteworthy that the present formalism
leads to the correct frequency dependence of
C(&u); indeed with dq =W28Q, Eq. (V) yields

n(2 n) —Wv8
C ((e) =4~~ ln

while the exact result for the coherent motion is":
4)((d)) = [n(2 —n)/4m 8][1.39+ ln(48/(e)].

D. Diffusive case

Let us now examine the case of interest for us:
u IO. Because of the condition kT» 8, the density
operator is reduced to p =exp[-P(U —pN)], where

Pu «1-@=1,

x=0 for 2m&1,pu»1-
x = (2m —1)/m' for 2m & 1 .

The static correlation function can be expressed
as

(S+S- ) g iq(v -x)(&+&- )
XX!

Since the density operator does not connect differ-
ent sites, only the A. = A,

' term remains:

(SqS q ) =N 'm(1 -mx) .
In order to evaluate Mq(t), a short-time expan-

sion of the time evolution operator is performed:

t t
A(t)=e' ' "=e ' ((+i e(t ldt — dtdte(, t )e(t )+ ~,~ ~ ),

0 0 0
(10)

where 6(t) = e 'u'8 e'~'. The first term (Hamiltonian U alone) causes an oscillation at frequency u, but no
decrease of the memory function; for small Q, the contribution of this first term, which we denote
Mq(t), is expressed as

M (t) =28'Q'((I —2m+2m'x)+[m/(1 —mx)][(l —mx)'e ™t+x(1—2mx+m'x)e'"']).

The decrease of Mq(t) therefore arises from the transfer term. The expression for 8(t) can be calculated
in the site representation

8(t}=8 cosut+8(1 —cosut)+6' sind t,

where

i

which gives for the time evolution operator [Eq.
(10)]

8 ~ ( y+da ya) ( ya yeta+ y+ya ya) t
2

Xo
A(t) =e'v'(I+tet ,'e t'+ —~ ~—), ~ (12)

e =-t8 Z (n„+da-n, a)(c,.c,+d.-e,+~.e,.).r ~

)i.a

For times shorter than 1/u, the leading term in
Eq. (11) is 8; this would give a correlation time
r, = 1/8Q for Mq(t), as in the Purely coherent
case. But for ut»1, one has

t
t
e(r) d~ =et,

0

where 6 appears as an effective Hamiltonian which
includes the scattering effects due to the Coulomb
inter actions,

t
6=— e ' e u' ed'v(ut»1).

Therefore, Eq. (12) applies if the scattering effects
are effective within a time shorter than the corre-
lation time for the coherent motion, i.e., if
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u»8Q.

Thus the short-wavelength functions (Q»u/8) dis-
play a coherent behavior, while for small Q the
memory function should be calculated from Eq.

(12), and the calculation is performed in the site
representation, and finally leads to

Mq(t) =Mq(t) ~&t Rq(t)+' ' '
I

where R q(t) is also an oscillating function,

Ro(t) =28 Q' 12m(l —mx)(1 —2m+2m'x)+ [(1—mx)'e " +x(1 —2m+m'x)e'" ]
m(3 —4m +4m'x) -fgt 2 igt

1-mx

In order to evaluate the area under Mq(t) [Eq. (6)],
we neglect the rapid oscillations at frequency u

Mo(t) =28 Q (1 —2m+2m x)

x [1—6m(1 —mx)8't' + ] . (l3)

Hence the Markoffian approximation is valid if
Q «1, which is the usual condition for the hydro-
dynamic limit. Assuming a Gaussian shape for
Mq(t) (the explicit shape is of no consequence in a
Markoffian approximation), we obtain for 5z.

+ oo

5q = Mo(f) dT =DQ
0

which defines the diffusion coefficient D:

D=8 w(1 —2m + 2m'x)
6m(1 —mx}

(14)

(15)

4(~) = [m(1 —mx}/2v][1/(2D&u)'~ ] . (16)

The condition of application for this result is
that the Coulomb interactions be strong enough to
perturb an appreciable part of the Q modes, i.e.,
u ~ 8. At this point it may be noted that the con-
tinuous transition from coherent to incoherent

This Q' dependence of the linewidth of 4o(&u} is
characteristic of a diffusive process. It is to be
compared with the result of the coherent case 6
=W28Q. The difference arises from the substitu-
tion of 6 for 8 in the time evolution operator [Eq.
(12)]. This leads for the second derivative of
Mo(t) to a term proportional to 8'Q' [Eq. (13)] in-
stead of 8'Q' in the coherent case [Eq. (9)]. The
physical meaning of this result is the following:
The free mean path of the electrons is limited by
the Coulomb interactions. For small Q, it is much
shorter than the wavelength of the unperturbed
transfer motion, and the coherency of this motion
is therefore broken by the scattering of the elec-
trons from a Bloch state to another one. This
gives rise to a diffusion process.

In order to obtain the frequency correlation func-
tion in configuration space, we must perform the
summation of the diffusive small-Q modes (Q
«u/8), and of the coherent large-Q modes. As
the contribution of the small Q is dominant at low
frequencies, we obtain from Eqs. (I) and (14)

motion could be described by treating the com-
plete Hamiltonian 6(t) [Eq. (11)].

E. Special case n = 1

The previous results are valid for any n as long
as kT»(9 andu&8. However, in the case of the
half-filled band (n =2m =1) for kT«u (x-0), Eq.
(13) yields Mo (t) = 0, and theref ore D = 0. In this
case, the hopping of the electrons from one site
to another is no longer possible. As shown by
Hone and Pincus, ' the density operator should be
expanded as a function of P6 in order to obtain
the term of virtual hopping. In fact, in this case
and for 8/u «1, the Hubbard Hamiltonian is re-
duced to the Heisenberg model with J =48'/u, "
and therefore one still expects a diffusive behav-
ior for the spin correlation function with a diffu-
sion constant D =v 2z8'/u. "

IV. DISCUSSION

Although the condition kT» 6} is not fulfilled in
our T, measurements at room temperature in
NMP- TCNQ and quinolinium-(TCNQ)„ the pres-
ent theory is able to explain some experimental
features. The most important is the co

' ' fre-
quency dependence of the nuclear relaxation rate.
Furthermore, a theoretical value of the diffusion
coefficient can be evaluated from Eqs. (15) and
(16). Taking 8=0.05 eV, one obtains for quino-
linium-(TCNQ),

D/C' = 8/m' =0.8 eV.

The agreement is quite good with the experimental
value D/C' = 0.6 eV. Moreover, the low-frequency
divergence of 4(s&) explains the large values of
TI o For instance, at v~ = 20 MHz, the calculated
scalar contribution v(a')4(co, } is I I sec ' for
NMP-TCNQ, and 4 sec ' for quinolinium-(TCNQ),
[to be compared with the experimental values T, '
= 70 sec ' for NMP- TCNQ and 7 sec ' for quino-
linium-(TCNQ), ].

Since we do observe a diffusive process at fre-
quencies as low as v, -10"sec ', this value gives
an upper bound for the frequency at which the co

' '
divergence is broken. The most efficient cutoff
mechanism for the 1D diffusive motion is likely to
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be the interchain hopping of the electrons. Thus,
the cutoff frequency +, should be of the same order
of magnitude as the interchain transfer integral
ru, -8'. From these considerations we may esti-
mate that the anisotropy of the conductivity should
be at least 10' in NMP- TCNQ and quinolinium-
(TCNQ), . To our knowledge the anisotropy of the
conductivity has not been measured in these com-
pounds, but such an order of magnitude has been
reported for TTF-TCNQ. " This estimate of the
anisotropy is based upon the assumption that the
diffusive process [4(ru) ~ e '~'] is observed at the
electronic Larmor frequency e„while +~ is less
than the cutoff frequency, +„&z, . If this were not
the case, that is, if the diffusive process at ~N

were also observed, the anisotropy of the conduc-
tivity would be as large as 10'. Because such a
high value is unlikely for TCNQ salts, it is reason-
able to rule out the e„contribution to the diffusion
as we did here above.

The temperature variation expected from Eqs.
(15}and (16) is rather small. It arises from the
temperature dependence of the parameter x. The
case of the half-filled band is somewhat special.
At high temperature the diffusion coefficient is
given by Eq. (15), D = 8, while at low temperature
one has D =~v8'/u. Taking into account the value
of the normalizing constant [C = —,

' in Eq. (16}, and
C = —,

' in the Heisenberg model], a slight enhance-
ment is expected for the nuclear relaxation rate
at the metal-Mott insulator transition,

7Tl insulator ~ Tl metal

while the enhancement factor given by the Hone-
Pincus theory' is roughly u/8. Equation (17) al-
lows a better fit of the small temperature varia-
tion of T, in NMP-TCNQ. '

However, the temperature dependence of T1 in
quinolinium-(TCNQ), (T, ' ~ T) provides a more

serious challenge to our calculation. By antici-
pating a more complete theory, a qualitative ex-
planation could be proposed: In quinolinium-
(TCNQ}„ the Coulomb interactions do not play a
major role with regard to the thermodynamic
properties because there is only one electron for
two sites. Thus the density operator would be
dominated by 8, although u & 8, p =exp[-P(8- pN)].
For kT& 8 the static correlation function thus
yields

C =(ScS o) =AT@(~r),

where q(rur) is the density of states at the Fermi
level. In this way one can explain both the Kor-
ringa-like temperature dependence and the 1D dif-
fusive frequency dependence with a diffusive con-
stant which remains roughly equal to 8.

So the main limitation of the present calculation
is the high-temperature assumption. A more com-
prehensive theory should take into account the ex-
act form for the density operator, p
=exp[-p(U+8 —}JN)]. However, it is likely that
our basic result —diffusive behavior of 4(&u) —re-
mains valid as long as an appreciable part of the
energy levels in Q space are thermally accessible,
that is, down to kT~8. Finally it may be noted
that other effects such as disorder and electron-
phonon couplings, which actually exist in TCNQ
salts, can contribute to the scattering of the elec-
trons. The present theory can also be refined by
taking into account the non-Markoffian effects
which occur in 1D systems. "
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