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Equivalence of two exactly soluble models for tricritical points
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An exactly soluble n-component continuous spin model with tricritical points is shown to be equivalent, in
the limit n — 0, to a one-component model with anharmonic long-range interactions.

In a recent paper! we studied an exactly soluble
model for tricritical points. The Hamiltonian of
the model reads
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We were able to draw the complete phase diagram
in the B-A-T space; here A =2dC and d is the di-
mensionality of the lattice. In the B-A-T space
we found a line of tricritical points.

At the same time, Emery? proposed and solved
an n-component vector model which also exhibits
tricritical behavior. This model is defined by
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where §,, is a vector in R".

The aim of this note is to demonstrate that in
the limit N, n - » the model defined by (2) has the
same free energy as the model defined by
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for N-w. [Clearly (1) is a special case of (3).]
To establish the equivalence between (2) and (3)
we calculate the free energy corresponding to (3).
We suppose that

V()= =Vy> -, (4)
Limt=2v(6)>0, (5)
Jyy =J(|F, -F;])=0, J(0)=0, (6)

and, following Kac and Thompson,® write
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We made the transformation X; - {X; to obtain this
last expression. QS¥(¢?) is then the partition func-
tion, without the renormalization factor A, defined
in Ref. 3, of a spherical model with £%J;, and ¢k
as parameters. The free energy

—BF¥(E%) =lim N™' In@y(¢%) ®)

is well known** and using the Laplace method® we
can write
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so that the free energy per spin of (3) is given by

-8B, 1) = max [-BV(£?) +1ng - BFS(&?)].
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The maximum in (10) can be evaluated with the aid
of the derivative with respect to ¢£2; we then find a
set of self-consistency equations determining the
free energy of (3):
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where
o =en [ dtomlt-3@), (14)
fu k=514, (15)
and
J(@) =) J({) cosw-1. (16)
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This set of self-consistency equations is identical
to that found by Emery?® for the free energy of the
model defined by (2) for N,n-«. Consequently
both models are equivalent.

The model defined by (3) has another interesting
property. Provided that V(z) is a convex function
of z, for z >0, and there is a phase transition, the
critical temperature is given by

BE=L: 510, it (&D), (17
where £2 is the solution of
t(£3)=J(0). (18)

Now (17) is also the critical temperature of a
spherical model with } X3 =Nt3. Moreover, for
h =0 and B= B, it can be seen that the free energy
of (3) and the free energy of this spherical model
are identical:

¥*(B,h =0) =F* (B,h =0; y_ X3 =Ngg> . (19)

For 8= B, the behavior of the model (3) is then
that of the spherical model provided that V(z) is
a convex function on the positive real axis.
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