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Employing the perturbation approach to the interaction of an electromagnetic wave with a gyrotropic sphere
recently developed by Ford, Furdyna, and Werner, we discuss the differences in the behavior of resonance
field, resonance strength, and resonance width for single-carrier magnetoplasma spheres in the helicon regime

and for compensated two-carrier magnetoplasma spheres in the Alfvén regime.

1. INTRODUCTION

Recently, Ford and Werner' solved the boundary-
value problem associated with the interaction of
time-varying electric and magnetic fields with a
spherical plasma in an external static magnetic
field. Their solution is valid in the regime in
which the sphere radius is much less than the wave-
length of the time-varying field in the medium sur-
rounding the sphere and applies to any nonmagnetic
system which can be described by a dielectric ten-
sor of the form
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However, since the general solution is formal, not
analytic, and requires extensive numerical calcu-
lations, the problem was also solved, under more
restricted conditions, via a perturbation expansion
in powers of a dimensionless parameter propor-
tional to the square of the sphere radius.? The
perturbation expansion yields analytic expressions
which provide an adequate description of the major
magnetic dipole resonance observed in InSb spheres
by Evans, Furdyna, and Galeener.%* Such analyt-
ic expressions, in addition to their quantitative
validity in the case of very small spheres, can, in
fact, lend insight into the general solution, bring-
ing out trends which resonances in larger spheres
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exhibit.

An understanding of dimensional resonances in
multicarrier spherical plasmas situated in a mag-
netic field is required for interpretation of recent
microwave studies of electron-hole drops in Ge.™"
To aid in the understanding of these phenomena, we
contrast the behavior of the major magnetic dimen-
sional resonances for one-carrier spherical plas-
mas (which have been experimentally investigated
in the microwave regime? 89) with that for com-
pensated, two-carrier spherical plasmas. Here-
in, we deal only with carriers described by an iso-
tropic band structure and employ the perturbation
theory exclusively. The comparison of the two
types of plasmas highlights certain basic and sur-
prising differences in their response, specifically,
in the dependence of resonance strength on radius
and on carrier density. Such differences have not
been fully appreciated to date, and an awareness
of them should help in understanding the more complex
situation found in electron-hole drops in Ge.

In this paper, we first review the general for-
mulation of the expressions for the power absorbed
by a spherical plasma consisting of » types of car-
riers. We then discuss single-carrier and com-
pensated, two-carrier spherical plasmas under
conditions appropriate for the microwave regime.

II. POWER ABSORBED BY n-CARRIER SPHERICAL PLASMA
An incident time-varying magnetic field, ﬁ“’e"”‘,
can be resolved into three components Hy —two or-
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thogonal circular polarizations transverse to the
dc magnetic field B (designated by the subscripts
m=+ and =) and a linear polarization parallel to
B (designated by the subscript m =11). As shown
by Ford, Furdyna, and Werner, % these polariza-
tions correspond to normal-mode excitations of
the gyrotropic sphere, i.e., each field component
ﬁ:," elicits a linearly independent response, which
can be considered separately from the others. In
mks units, the mean power absorbed P from any
of the linearly independent components of the time-
varying magnetic field by a sphere having a com-
plex magnetic dipole polarizability « is

P, =twIm(M,  H*)=(w/2u,)(Ima,,)| H®|2, (2)

where M,,= a,,,ﬁ,’,‘f is the induced magnetic dipole
moment of the sphere. Throughout this paper, Re
and Im indicate the real and imaginary parts of
complex quantities. According to Ford, Furdyna,
and Werner, 2 the polarizability corresponding to
the mth mode of excitation can be written

eff
2n a w Ko,

=15 & 1 - % (wa/c)%ket @
where a is the radius of the sphere,
K =2k, K,/ (Ke+ Kpp),  KS =2k,K./(K, +K.), (4)

and K, = K, + iK,,. In particular, the imaginary part
of the magnetic polarizability, which is directly
proportional to the power absorbed by the sphere, is

21 a’w?
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(5)
The Drude expressions for the dielectric tensor
elements of a semiconductor with » types of car-
riers and an isotropic band structure are
i =1
wpi Wt Wy —IT;
K*:K'—Z _w ( T w ) -
i=1 WEWei )"+ T
and (6)
Z: wp{ w - lT;
W were +77¢ 7
where
- 2 _ 2
Wey =q;B/my , Wiy =m; €%/ €gm; ,

7; is the ith carrier relaxation time, g; is the
charge (including sign) of the ith carrier, »; is the ith
carrier concentration, m; is the effective mass of
the ith carrier, and «; is the dielectric constant

of the lattice.

III. SINGLE-CARRIER SYSTEM

For a single-carrier plasma, the preceding
equations can be put into particularly enlightening
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forms whenever «; can be neglected with respect
to the free-carrier term (e.g., in the helicon lim-
it, where w?> Kww, and w?> w?, 7)., Neglecting
K;, we obtain

ot _q W (2w w,) = 277

i e Coro)iar? ™

and
Kﬁu =K

zZ

It is immediately apparent that, since «,, is field
independent, no resonances (as a function of B)
will be observed in the longitudinal field configu-
ration. But, as the free-carrier term is reduced
to a point where k; is not negligible (by, say, re-
ducing the carrier concentration), a broad shoulder
will develop in the power absorption of the longitu-
dinal component of the incident time-varying field
at low dc magnetic fields. 1°

Returning to Eq. (7) and substituting the result
into Egs. (2) and (5), we get

1 a‘wne?

P‘:15 m

|[H=[2.  (8)
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Resonant absorption (as a function of B) occurs in
the cyclotron-resonance-active transverse polar-
ization at | w, | =2w +f wpgne?/m. The line shape
of the resonance is Lorentzian in B, having a half-
width at half-power of

2 2
(AB)y5 = I (9)

where p is the carrier mobility. For very small
radii, the resonance field is dimension indepen-
dent, occurring when |w, | =2w. But, as the
sphere radius increases, the resonance condition
gradually acquires a completely dimensional char-
acter. The strength of the resonance varies with
the fifth power of the radius and is directly propor-
tional to the relaxation time and the carrier con-
centration. Reducing the carrier concentration so
that k; is a non-negligible fraction of the free-
carrier term skews the resonance and shifts the
position of the resonance from that given by Eq.

(8).
IV. COMPENSATED TWO-CARRIER SYSTEM

Now we turn to a compensated system, consist-
ing of equal concentrations of electrons (e) and
holes (%). In the limit in which (w,),, s> lwe ¢, 4
> w75, we have k, ~«k_and

1
Rer, = M) and tme - 2L
0 0 av

(10)
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Tay = ToTn(Mg + 1)/ (MeTy + My, T,)
Also, |Rek,.| > Rek, and Imk,,>>Imk, so that
kM =2k, and Ki'f=k, . (11)
Substituting these expressions into Eqs. (2) and
(6), we get
Pu- e B R

(12)
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where
(BAMY2 - { #r(wa/cPn(m,+ my)/ €y (m=%), (13)
" & (wa/cln(m, + my)/ €y (m=1) .

Setting the derivative of the absorbed power with
respect to B equal to zero yields the resonance
condition

aw[i n(my, + my) (1

1\ c (21 €
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On eliminating B in Eq. (12) by using Eq. (14), we
obtain the magnitude of the resonance

PR = (Tn/100)a%w?re, f | HiE|? (15)

where

(1 +1/w?72)2

f= 1+ w1 - (1 +1/uPr2 )2 -

In the Alfvén limit, ' in which (w,)s, > (We)e,n
> w> 751, the quantity f becomes unity when terms
of the order of 1/w?72, are neglected with respect
to 1.

Using Eq. (12), we can show that the separation
of the squares of the upper (BY#) and lower (B%#)
half-power points is

(BRF)? = (BR)? = (2/ wTay)(Bp'")?

(16)

x(2/f-1+1/f2?5)V2 . (17)
Since, in the Alfvén limit,
(BRH)Y? - (BR"Y? =2(AB,) B, (18)
where AB, = BY7 - BL# we have
AB, = B2 /wT,, . (19)

Thus, as expected, the resonant field varies
directly with the sphere radius @ rather than a2,
as for single-carrier systems. Unlike the single-
carrier case, the width of the resonance is not
independent of the resonance field but increases
in a manner directly proportional to the resonance
field. Furthermore, quite surprisingly, the mag-
nitude of the resonance is independent of the car-
rier concentration, Also, the magnitude of the
resonance absorption varies as the cube of the
sphere radius, !2 not as the fifth power, as for
single carriers. As the radius is reduced, the
resonances will gradually move into a field range
where | w, |,,; is not much greater than w. As the
resonances do so, their character changes smooth-
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FIG. 1. Resonance strength and resonance position as
a function of the radius of a spherical plasma composed
of two compensated carriers of opposite sign. The re-
sults displayed were calculated using the following pa-
rameters: ng,,=10'" cm™3, m,=0.01 my, my=0.1my,
Ten=10" sec, k;=16, and v=25 GHz, where m, is the
free-electron mass and w=2m. The symbols+, —, and
I denote the appropriate mode of excitation of the
sphere (see text). The cyclotron-resonance-field po-
sitions for electrons and holes are indicated by the let-
ters e and k, respectively.
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ly from a dimensional to a radius-independent
resonance., Also, their resonance strength changes
from a cubic to a fifth-power dependence on radius
as the radius grows smaller. Figure 1 illustrates
the transition of resonance fields from a dimen-
sional to a nondimensional character, 3

In the Alfvén limit, no difference exists between
the two transverse circular polarizations that are
the normal-mode excitations of the sphere. How-
ever, the longitudinal resonance has the same
strength as the transverse resonances for a given
radius but occurs at a field v 2 smaller than the
resonances in the transverse polarizations. Like-
wise, in keeping with Eq. (19), the width of the
longitudinal resonance is also V2 smaller than that
of the transverse resonances.

In summary, between a single-carrier spherical
plasma in the helicon region and a compensated,
two-carrier spherical plasma in the Alfvén limit,
there exist several important differences:

(a) Resonance field. In the single-carrier sys-
tem, a resonance occurs only for the cyclotron-
resonance-active circular polarization, and its
position depends on @%. In the compensated two-
carrier system, resonances occur in all three
linearly independent modes of excitation, the reso-
nances for the transverse polarizations occurring
at the same field while the longitudinal resonance
occurs at a field smaller by a factor of V2. The
positions of all the resonances depend directly on a.

(b) Resonance strength. The resonance strength
is proportional to @° and » for a single-carrier
system. It is proportional to @® and is independent
of n for a compensated two-carrier system.

(c) Resonance width at half-power. For a sin-
gle-carrier system, the resonance width is inde-
pendent of resonant field. It depends only on m
and 7. For a compensated two-carrier system,
the resonance width is directly proportional to the
field at which resonance occurs.
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