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Theory of Brillouin scattering in anisotropic, piezoelectric semiconductors
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A theory of Brillouin scattering in piezoelectric semiconductors is presented. The formula derived for the
differential-scattering cross section is valid for crystals of any symmetry and of any optical or acoustic
anisotropy in any direction. The scattered light intensity is calculated on the basis of a new dyadic Green's

function for radiation in anisotropic conducting media. The expression for the phonon-induced fluctuation in

the dielectric-constant tensor is extended to incorporate the contributions from the free-carrier-screened

indirect photoelastic effect and from the free-carrier plasma. By using the Boltzmann equation, the phonon-

induced self-consistent electric field arising from the piezoelectric coupling and the deformation potential

coupling is calculated. The influence of a spatial exponential growth or decay in the phonon beam intensity on
the scattering cross section is considered.

I. INTRODUCTION

In the last decade Brillouin scattering has been
extensively used to investigate acoustoelectric do-
mains produced in piezoelectric semiconductors by
acoustoelectric amplification of a band of lattice
waves from the thermal-equilibrium spectrum. '
The main emphasis of the analyses has been de-
voted to (a) the evolution in time and space of the
various frequency components and angular com-
ponents of the phonon gas caused by the linear elec-
tron-phonon interaction, a ' (b) the lattice-vibra-
tion attenuation of the amplified modes originating
in the nonelectronic interaction with the thermal
background phonons, '8'~ (c) the nonlinear phonon-
phonon interaction due to the coupling of bunched
electrons of one frequency with the piezoelectric
fields associated with other frequencies, ' ' '9

(d) the phonon focusing or det'ocusing arising from
the elastic and the acoustoelectric angular dis-
persion effects, ~o '2 and (e) the properties of
acoustoelectrically inactive domains generated by
mode conversion. '

Parallel with the experimental studies of the
domains progress has been made to generalize the
theory of Brillouin scattering. The central points
in a theoretical analysis are the scattering kine-
matics and the scattering cross section.

In optically isotropic solids the scattering
kinematics is determined by the normal Bragg law
if one neglects the small change in the frequency
of the scattered light arising from the inelastic
nature of the diffraction process. 4 In optically
anisotropic solids deviations from the normal
Bragg law occur if (i) there is a polarization change
of light in the scattering process, "(ii) the refrac-
tive index depends on the propagation direction of
light, ~~'~7 or (iii) the scattering event involves a
combination of (ii) and (iii). In conducting crys-
tals an additional deviation from the isotropic
kinematics can occur if the conductivity is aniso-

tropic. 's

A theory of light scattering from an equilibrium
thermal distribution of acoustic phonons in cubic
crystals was given by Benedek and Fritsch. ' Us-
ing the autocorrelation function for the scattered
field the theory predicts the spectral distribution
of light scattered from a single acoustic mode of
finite lifetime. The scattering theory for cubic
crystals was used to investigate the acoustoelec-
tric coupling in QaAs. 3'6 Using an integral-equa-
tion method the theories of Brillouin scattering
were extended to incorporate optical birefringence
and depletion of the incident light beam by Hope.
Since this theory is rather complicated to apply to
elastic waves with arbitrary polarization and prop-
agation directions Hamaguchi ' derived, based on
the method of Benedek and Fritsch, and a model
of anisotropic scattering in hexagonal crystals,
and applied it to acoustic waves propagating paral-
lel or perpendicular to the c axis. Recently, the
theory of Hamaguchi has been extended by the
present author to account for the rotational con-
tribution to the direct photoelastic effect and the
angular deviation of the Poynting vector from the
wave vector of the diffracted light. Partly to
comply with the increasing interest in off-axis
acoustic waves in hexagonal crystals, the author
calculated Brillouin scattering cross sections of
off-axis phonons in CdS for a number of important
scattering geometries. For the complicated piezo-
electrically inactive, pure transverse phonon type
especially detailed results were given. Further-
more, based on the zeros for the quasilongitudinal
phonon scattering cross section a simple method of
determining the relative signs of the photoelastic
tensor elements was proposed. By means of a
Green's-function technique a theory of Brillouin
scattering valid for nonconducting crystals of any
symmetry has been published by Nelson et al. ~'

In contrast to the above-mentioned works this
theory takes into account the indirect photoelastic
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effect, that is, the succession of the piezoelectric
and the electro-optic effects. ' ' Recently, San'ya
and Hamaguchi~s have evaluated the contribution
from the indirect photoelastic effect to the scat-
tering cross section for acoustic waves propagat-
ing in the basal plane of CdS with the atomic
displacement parallel to the optic axis. An ex-
perimental separation of the direct and the indirect
photoelastic effect is not possible in this configura-
tion.

Although all the previous Brillouin scattering
theories have been concerned with nonconducting
media they have been applied to semiconducting
crystals. This can be justified for a number of
important experimental investigations, but is in
general not allowed. The present theory, which
takes into account the piezoelectricity and the con-
ductivity of the solid, thus has a much wider range
of validity. Furthermore, this theory is valid for
crystals of any symmetry and of any optical or
acoustic anisotropy in any direction. In Sec. II
the inhomogeneous wave equation for the diffracted
electric field is established. The time-indepen-
dent wave equation is solved by a Green's-function
technique and an explicit expression for the dyadic
Green's function for Brillouin scattering in aniso-
tropic, semiconducting crystals is given. Finally,
the time-averaged Poynting vector for the scat-
tered field is evaluated. In Sec. III the phonon-
induced perturbations of the optical dielectric-
constant tensor is calculated taking into account a
spatial decay or amplification of the acoustic mode
considered. For the direct photoelastic effect both
the P5ckel contribution~7 and the rotational con-
tributiona to the dielectric constant are con-
sidered. For the indirect photoelastic effect we
have included the screening caused by the free
carriers by calculating the phonon-induced self-
consistent field arising from the piezoelectric
coupling 9 and the deformation-potential coupling. 'o

The frequency- and wave-vector-dependent ac
conductivity is calculated by means of the Boltz-
mann equation, so that the treatment becomes
valid for acoustic wavelengths comparable with
the electron mean free path. The effect of an ex-
ternal dc field is also included. The screened in-
direct photoelastic effect is especially important
when the Brillouin scattering cross section due to
the direct photoelastic effect vanishes. By elimi-
nating the direct effect Brillouin scattering via the
indirect effect provides a possibility of studying
several aspects of the free-carrier screening in
piezoelectric semiconductors. Also the fluctua-
tion in the dielectric constant caused by the free-
carrier plasma, ~3 which is most important for long
optical wavelengths, has been calculated. In Sec.
IV the phase-matched Brillouin scattering kine-
matics is discussed, and the influence of a depletion

(or an amplification) of the incident optical and
acoustic beams on the scattering intensity for non-
phase-matched scattering configurations is con-
sidered. In Sec. V the equation of motion for the
lattice vibrations is established. Including the
piezoelectric coupling and the deformation-potential
coupling, approximate expressions for the acoustic
phase velocity and the linear electron-phonon damp-
ing (or amplification) coefficient in tensorial nota-
tion is obtained. In Sec. VI the squared amplitude
of the atomic displacement for a damped sound
wave is expressed in terms of a phonon occupa-
tion number. In Sec. VII the final expression for
the effective differential Brillouin scattering cross
section in an anisotropic, piezoelectric semicon-
ductor is given.

The theoretical formulas for the scattering kine-
matics and the scattering cross section derived
in the present work apply inside the crystal, where-
as experimental measurements are always made
outside the medium. A detailed, accurate analysis
of the surface effects for anisotropic crystals has
been made by Lax and Nelson, ' who in addition to
the transmission loss, took into account solid-
angle expansion of the scattered beam and source-
volume demagnification. In the theory of Hope
also the effect of internal reflections of both the
scattered and the unscattered light beams was cal-
culated. Simplified expressions for the reflectivity
corrections in cubic and hexagonal crystals have
been given by several authors. ' ' '

II. GREEN'S-FUNCTION CALCULATION OF THE
SCATTERED LIGHT INTENSITY

The present theory is based on a classical cal-
culation of the scattered light intensity. The clas-
sical approach is valid if the solid can be regarded
as a continuum, i.e. , if the electromagnetic wave-
length is large compared to a characteristic inter-
atomic spacing. This condition restricts the treat-
ment to electromagnetic waves having frequencies
in or below the ultraviolet region. Thus, we exclude
x-ray Brillouin scattering involving a reciprocal-
lattice vector. ' The appearance of an upper
limit on the optical wave frequency implies that
the acoustic wave vectors, detectable by the con-
sidered spectrum of the electromagnetic radiation,
are small compared to the Brillouin zone-bound-
ary wave vectors. ' ' '34 This, in turn, justifies
that elastic velocity dispersion effects, '4 in contrast
to elastic and acoustoelectric velocity dispersion
effects, "' can be neglected. Since the resonant
enhancement of the Brillouin scattering in the
vicinity of the intrinsic absorption edges~ is not
considered, the analysis becomes invalid for elec-
tromagnetic wavelengths below a certain limit.

Combining Maxwell's equations and the piezo-
electric equations of state, we obtain the following
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equation for the average electric field E(r, t) in a
piezoelectric semiconductor:

2
Vx[VxE(r, f)]+ —

3 E V~(r, t) E(r, t)

1
+ —V S(r, f) + ~ ——o(r, f) E(r, t)

~

=0,c 8t&
(1)

where r is the position vector, t is the time, V is
the gradient operator, c is the velocity of light in
vacuum, V~ is the contribution from the lattice
and the bound electrons to the relative dielectric-
constant tensor, a0 is the dielectric constant of
vacuum, e is the piezoelectric coefficient tensor,
P is the electric conductivity tensor, and f) is the
strain associated with the electromagnetic wave
due to the piezoelectric coupling. In the deriva-
tion of Eq. (1}it has been assumed that the elastic
wave propagates adiabatically, 4~ so that the terms
involving entropy changes do not occur.

As discussed by Kyame, 4'42 the mechanical en-
ergy in the mixed electromagnetic-mechanical
wave, which travels with a phase velocity close to
the electromagnetic phase velocity, will be small
compared with the electromagnetic energy. In the
following we shall neglect the mechanical deforma-
tion™SinEq. (1).

The presence of an elastic disturbance, propagat-
ing with a velocity close to the acoustic velocity,
produces a time-space fluctuation in the lattice
dielectric constant ' ' 7' and, for piezoelectrical-
ly active waves, also in the conductivity. '2~'4~'~~

Thus, we may write

and

(r f) =V 0+ 5 0„(r f)' (2)

E(r, t)=E&(rt f)+E~(r, t), (4)

where f, and E~ are the incident and the diffracted
electric field.

Inserting Eqs. (2)-(4) into Eq. (1), neglecting
the higher order products 5V„~ E~ and 5a ~ E&,
which correspond to a limitation of the theory to
first-order scattering processes, and utilizing the
fact that E, satisfies Eq. (1) in the absence of the
acoustic disturbance, one obtains the inhomoge-
neous wave equation

t vx[vxE (E, t)] (t, -t —v, —).E (t, t)

P(r, t) =P()+ &o(r, f),
where &e „and 5S'are the perturbations of the lat-
tice dielectric constant (V~, o) and the dc conductivi-
ty (oo} caused by the acoustic disturbance. Further-
more, let us decompose the average electric field
as follows:

for the diffracted field.
Assuming the incident light and the acoustic

beams to be monochromatic with angular frequencies
fy, and 0 we introduce the complex time-indepen-
dent amplitude 5V~(r, 0), 5Y&„(r, 0), E,(F, (d, ),
and E~(r, (d~) through

&F (r, f) =He[&™e (r, Q)e""'] (S)

&F(r, t) =Re[&P(r, Q)e""'], (7)

E, (r, f) =He[E, (r, (d, )e '"~'], (S)

E~(r, i) =Re[E~(r, (d~}e '"&'],

where the angular frequency of the scattered light
is given by

(dg = (g) g
+ Q (10)

It is well known that this relation in a particle
picture expresses the conservation of energy in
the phonon-photon scattering process. If a phonon
is created in the collision the frequency of the
scattered light will be less than that of the incident
light, producing the Stokes component, whereas
if a phonon is annihilated in the process, the scat-
tered light has a higher frequency, the anti-Stokes
component.

In general Q can be complex in order to describe
an exponential decay or amplification of the elastic
disturbance as a function of time. The imaginary
part of Q gives rise to a linewidth in frequency of
the Brillouin-scattered component. For a ther-
mal or a nonthermal distribution of piezoelectrical-
ly inactive phonons the linewidth determines a
phonon lifetime arising from elastic anharmon-
icity" "and boundary scattering. '" For a non-
thermal distribution of piezoelectrically active
phonons (eventually an acoustoelectric domain),
the linewidth can give substantial information
about the acoustic growth rate in the weak- and
strong-flux regions, ' and especially about the
rate of parametric subharmonic or higher-harmonic
phonon generation via the nonlinear phonon-electron
interaction. 4~'48 The starting point for a calcula-
tion of the spectral distribution of the scattered
radiation is the autocorrelation function for the
scattered electric field. '9'49 In the present work
we shall confine the analysis to time-independent
phonon distributions. Thus, the scattered power
calculated in this section refers to the scattered
power per unit frequency range integrated over
the experimental line shape of a particular Bril-
louin-frequency component.
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eq p(ld )e=Fq o(h)e}+ Ceo(&de)/ep (de ~ (12)

containing the contributions from the lattice and
the free carriers. In general both contributions
can be complex and frequency dependent, ' i.e. ,

o((oe}= Re[e p(Gate)]+ i Im[e, o(~de)]

and

Yoo((ue) = Re[™co((ue)]+i 1m[Pe((o,)] .

The complex amplitude 5P(r, ~e) of the nonlinear
driving polarization has been introduced through

5P(r, &ue) = &p 5™e„(r,Q) E&(r, u, ),
where

5e:„(r, 0) = 57„(r, 0)+i5(r (r, 0)/(ep(oe} (14)

is the phonon-induced fluctuation in the total rela-
tive dielectric-constant tensor. For nonconducting
crystals Eq. (11) is in agreement with Eq. (2. 1) in
the paper of Nelson et al.

A calculation of the Brillouin-scattered light in-
tensity requires a solution of the driven wave equa-
tion [Eq. (11)]. In a typical geometry used to ob-
serve Bril.louin scattering the nonlinear polariza-
tion is nonzero over a small but finite region in the
medium under study. Since outgoing-plane-wave
solutions are inappropriate for such a geometry,
Eq. (11) is best solved by a Green's-function
technique.

Decomposing the operator $(V, &u, ) into a real
part and an imaginary part, i.e. ,

Vn(V, (de) = Vns(V, (de) —iVnl((de)

where

n„(V, (d, ) = (c/(ue) [VV - 1V p] —Re[™e„o((ue)](16)

and

ns(~e) = 1mÃ..o(ae)]

the solution of the driven time-independent wave
equation is given by

fe(r, &oe)= —
l~

G(r, r ).55'(r', ere)dF', (16)
~0 ~r'

where the dyadic Green's function for Brillouin

Inserting Eqs. (6)-(10) in Eq. (5) one obtains
for the diffracted field the driven or inhomogeneous
time-independent wave equation

n(V, me) Ee(r, me)

=—((c/(u„) [VV - 1(V ~ V)1- e„p(ae)}~ Ee(r, u&e}

= (I/ep) 5P(r, (o,),
where 1 is the unit tensor.

In the above equation we have introduced the
complex frequency-dependent relative dielectric-
constant tensor

scattering in anisotropic, conducting crystals is'

&& Z&~R «~-~'&

(2v)' (19)

The matrix ns(ks, &ue) in Eq. (19) is given by

ns(ks, ~e) = n s(1 —ss ss) —Re[Y„,p(are)], (20)

with the definitions ns = cks/u&e and ss =ks/k„
(ks real).

If n~ vanishes the Green's function reduces to
that obtained by Lax and Nelson for nonabsorbing
crystals.

Since the sound field associated with an optical
wave in a piezoelectric crystal is of negligible
importance, ' the effective optical equation of mo-
tion for a phonon-unperturbed propagating plane
wave in a lossless medium (1m[V„p(&ue) =0]] takes
the form

lalg\

ns(kit l +e) El (21)

The eigenvalue problem in Eq. (21) leads to an
introduction of the real electric field eigenvectors
e„"=ese(9, ~e) with eigenvalues [I/n„"(s, u&e)]P de-
fined by

(1- ss) ese=(1/nse) (ReÃ„,p) ese

e s(s, u&, ) [Re&~,o(ve)] e „(s, Ide) = 5ee ~ (22)

It has been shown by Lax and Nelson'3 that the
inverse matrix ns (ks, are) can be expressed in
terms of the real eigenvectors and eigenvalues for
ns(ks, ue). Explicitly, the inverse operator can
be written in the form

(p Wy A A

(24)
where the last term represents the contribution
from the longitudinal forced plane wave. Insert-
ing Eq. (24) into Eq. (19) the Green's function
G(r, r') is expressed in terms of the real eigen-
vectors e se (y =1, 2, ~). Note that the integrand
of Eq. (19) becomes infinite only when k„ is "on
the energy shell, " i.e. , appropriate to a free
undamped plane-wave solution.

(@=I, 2, "),
(22)

where s is a unit wave vector. Besides the two
electric field solutions (rp =1, 2) which correspond
to freely propagating, linearly polarized, undamped
waves, we have included the third solution (infinite
refractive index), which can exist only as a forced
wave and be important in coupling various optical
processes in high-order nonlinear optical interac-
tions. ' 4 It should be noticed that the eigenvec-
tors can be chosen to obey the biorthogonality re-
quirement"
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G(r, r') = lim a '(k &u~) le'~s'" ' '
(2v)

(26)
where k =kR+ ski .

In the present theory the Green's function has
been expressed in terms of an integral over the

~+I

real part (ks) of the complex k space. Alternative-
ly, G could be evaluated as integrals along lines
parallel to the real axes (kz = riw0) in analytical
half-planes of the complex k space, if one utilizes
a three-dimensional Laplace transformation. Using
a procedure analogous to the preceding one obtains

G(r, r') =

~0
~ ~ jgyoo

1(k )
efk'(r' P) (27)2w'

In the following we shall use the expression for
G(r, r') involving integrals over the real part of
k space [i.e. , Eq. (19) or (26)].

In the next step, the integral in Eq. (26} is
evaluated assuming the observation point r to be
in the far-field ("Fraunhofer") region. Using an

Above the Green's function was evaluated in
terms of eigenvalues and eigenfunctions for the
optical equation of motion in a lossless medium.
In an absorbing crystal the effective optical equa-
tion of motion for a phonon-unperturbed plane
wave takes the form

a(k, v~) ~ E„=[n (1-ss) —F„o]~ E„=0, (25)

where n = ck/y~ and s = k/k Sin. ce the wave vec-
tors turn out to be complex in this case, i. e. , k
=(Rek+iImk)s, the eigenvalue problem in Eq. (25)
leads to solutions in the form of damped plane
waves (k=k" and n=n'=ek'/v~, p =1, 2, ~).
The propagation direction of the phase is given by
the real unit wave vector s. In a semiconductor
the complex part of the dielectric constant arises
mainly from the real part of the free-carrier con-
ductivity for photon energies less than the bandgap
energy Th.us, one usually has [Ime, 0(up„)), ~

«[ReÃ„,0(&o~)],z for every pair i, j. Using this
relation it can be shown49 that to first order in

[Imc„o(&o~)],&/[Re&„0(u&~)),&, is Rek "= ks' and Ren"
=nR". This implies that the damping of the optical
wave is determined by Imc„o(&u~) and the wave-
length by Re&„0(&o~). Furthermore, it is well
known that the principal vibrations in an absorb-
ing crystal in general are elliptically polarized,
and that the electric displacement vectors no
longer are perpendicular to the wave normal s.
Finally, it can be shown that the expansion of
a '(k, &o~) in terms of the eigenfunctions and eigen-
values for the absorbing crystal becomes com-
pletely analogous to that in Eq. (24).

Combining Eqs. (19), (21), and (25) yields the
dyadic Green's function for a semiconducting crys-
tal,

asymptotic method by Eckart ' one obtains

~$ kRR

G(r, r')=, s l~
a '(k„ls, v, ) . k„dk

R

(28)
where R=r —r' and 1„=R/R. The approximation
involved in obtaining the far-field Green's func-
tion, namely, ERR» 1, is an excellent one in the
optical region. Expanding a- (ks 1„,&o~) to first
order in az(&u~) one finds

A

a (ks la, (o~) = a„(ks la, (oq)+ zas (ksla, (oq)
A

' ar(~u) ' as(ks is~ ~u) ~ (29)

By inserting Eq. (29) into (28) and by using Eq.
(24) one obtains, neglecting the nonpropagating
mode, after straightforward contour integrations
(see Appendix A) the following first-order approxi-
mation to the far-field dyadic Green's function

ik R 1

eR eR Imf p Qg eR eR
0 ~ 8=is 2

5k R ef kRR
X

4nR

where ks" = (sr~ /c)ns (1„,sr~) y = 1, 2, and eg
= ez(1„, &u,). Suppressing the tensor notation a
rough estimate of the numerical ratio between the
second term and the first term in Eq. (30) gives,
assuming ks=ks (=ks), ns=ns (=ns), les I =I/ns,
and Ime„,0=a'0/eon~, the result

1-ef(kR kR")

(n„)ma, v, 1 —(k„"/k~s)'

o'p ERR
p

(n', }'e, (31)

where v„ is the time retardation of the diffracted
electromagnetic wave between the interaction re-
gion and the crystal surface, and r, (&u~) = I/Q, (&~)
is the dielectric relaxation time at v~. Thus, if
the retardation time is small compared to the ap-
propriate dielectric relaxation time, i.e. , for

(32)

e]kR" ~

E~(r, &o~) = Q [k„"(1„,(g )] e„(1„,u) )C",
y $ 2 4lTEP V

(33)

Q, ((u~) r, «1,
the electronic contribution to G(r, r') can be ne-
glected.

%hen the source dimensions are small compared
to the observation distance (r' «r) we can in Eq.
(30} replace R by r and ls by 1„=r/r except in the
exponential, where we make the sagittal approxi-
mation R =z- 1„~r'. Doing this, and inserting Eq.
(30) in (18), one obtains the diffracted electric field
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where C" with the abbreviation

I =
i exp[- ik„(1„w,) 1„.r']5P(r', ~k) dr'

& r'

is given by

u" (r, Q) = uo (Q, K")v"

x exp{[+iK" (Q) —I"(Q, K")]x ~ r j . (40)

is given by

(m=y, e) (34}

C" = e„" 1 —i[ImY, o(u&~)] ~

e=i.k 1 ks ks

x l„xe ks'(l„v, )C" (36)

Combining Eqs. (33) and (36) the time-averaged
poynting vector (S&= k Re[Ek(r, v~) x Hk (r, ~,)] is
found to beve

2ye'3 (p
I

(S)= Q c (ks ks Re[C4'(C4")*e'~ksk e i']
g 2 32% fox vd

X [1„(elk ~ en' ) —enk (elk 1„)]. (3V}

Making use of Eq. (22) and the biorthogonality re-
quirement [Eq. (23)], the power into a detector
at r with solid angle dQ can be written in the form

~4
(S) l„r dQ=

32 m foC

x 2 [n„"(I. ~.)]k I
c"I' dQ (38)

i' =ly 2

which contains no cross terms between the two
polarizations. Equation (38) is the starting point
for a calculation of the Brillouin scattering kine-
matics and cross section.

III. PHONON-INDUCED PERTURBATIONS OF THE
DIELECTRIC CONSTANT

As discussed in Sec. II an evaluation of the
scattered light intensity requires a determination
of the thermal or nonthermal time-space fluctua-
tions of the total dielectric constant of the crystal.
Assuming the fluctuations caused by the acoustic
disturbance to be describable by a plane, mono-
chromatic wave over the interaction volume, the
elastic displacement vector u" (r, t) may be written
as

u (r, t}=Re[u" (r, Q)e""'], (39)

where the complex time-independent displacement

[ 1 4(kn ks)r-I 8(1 k}-1] I y

(36)

Using Maxwell's equation vx Ek(r, ~~}= iur~H~(r,

&u~) and neglecting terms of order (ks'r} ', the dif-
fracted complex magnetic field amplitude Hk(r, w~)
becomes

e"j' ' [ks'(1„~~.)j'
Hk r (dg) =) 4„,

The index p, l.abels the different branches in the
phonon dispersion relation connecting the real
phonon wave vector K"(Q) = K"(Q)Pc and the angular
frequency Q. The spatial decay (or amplification)
of the phonon beam is governed by the frequency-
and direction-dependent damping (or amplification)
coefficient I"(Q, K"). The displacement amplitude
is uok(Q, K"), fr" denotes a unit vector in the di-
rection of polarization of the sound wave, and g

is a unit vector in the direction of the acoustic
wave vector. For shortness, we shall in the fol-
lowing usually omit the index p. on the wave vec-
tor and the damping coefficient.

In a piezoelectric semiconductor the phonon per-
turbation of the complex time-independent optical
dielectric constant can be decomposed into

&V(r, Q) = 5~a„+ 6k „'+ 5c~c . (41)

The first term, 5&~, arising from the fluctuations
in the strain tensor27 and the mean rotation tensor, 2'

gives the direct photoelastic effect. The second
term, 6&~, represents the screened indirect photo-
elastic effect, that is, the succession of the free-
carrier screened piezoelectric effect and the
electro-optic effect. ' ' The third term, 6e Fc,
gives the free-carrier contribution to the dielec-
tric fluctuations. '8'22

The constitutive equations relating the dielec-
tric and elastic properties of the medium com-
bine the change in the inverse dielectric tensor and
the elastic displacement. To link the constitutive
relations to Eq. (41) one utilizes the fact that the
derivative of the product of a matrix and its in-
verse is zero, deducing

5&,(r, Q)= —e„,(&o,) 5c„'(r, Q) ~ e„o(~,) . (42)

Note, that 5c„(r, Q) represents the change, caused
by the elastic wave, in the dielectric tensor at the
input optical frequency (d& or the output frequency
z„since (d, » n. '4

A. Direct photoelastic effect

For small strains, the contribution to the in-
verse dielectric tensor arising from the direct
photoelastic effect can be expressed as a linear
function of the symmetric and antisymmetric
combination of displacement gradients, i.e. ,

[&&~(r, Q)] '=p'(sr~) S(r, Q)+p (ur, ) R(r, Q),
(43)

where the first term gives P5ckels contribution27
to the direct photoelastic effect and the second term
gives the rotational contribution. 2 The infinitesi-
mal strain S and the mean rotation R are defined
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by S= k[Vu" + (Vu"} ] and R=k[Vu" —(Vu")r], where
(Vu )ff-—Safe(r, Q)/Srf, and (Vu} is the transpose
of the matrix Vu. The photoelastic tensor pl is
symmetric upon interchange of the acoustic (last
two) indices, whereas p is antisymmetric in these
indices. The antisymmetric tensor p can be cal-
culated simply from the optical dielectric tensor.
Hence in component form28

Pffkl k[(~t' ~ 0}fl kf+ (~e,O}lf fk

—(& .'O)f k 6 if
- (k .'0}kf 6f f] ~ (44)

Equation (43) may be written

[67/(r, Q)] '=p((uf) Vu'(r, Q),
where the single photoelastic tensor p(&uf) is de-
fined by

P(~f}=P'(~f)+P"(~f) .

(45)

(48)

lt is seen from Eq. (45) that the natural measure
of elastic deformation relevant to the photoelastic
effect is the displacement gradient. The tensor
p (&df) is neither symmetric nor antisymmetric in
the acoustic indices.

Combining Eqs. (40), (42}, and (45) one obtains
from the direct photoelastic effect the contribution

6&)(r, Q) = —ie„,D((e), ) p ((u, ) ~ ff"ff &„0((of)

&&[+K'(Q)+ iT(Q, K)]u"(r, Q) . (47)

B. Screened indirect photoelastic effect

where r(&uf) is the electro-optic-constant tensor.
Below, the self-consistent electric field is cal-
culated (in full tensor notation} from Maxwell's
equations, the continuity equation, the constitutive
equation for the ac current caused by the carriers,
plus the piezoelectric equations of state. '6'

Calculating the constitutive equation for the ac
current j "'" on basis of the Boltzmann equation
one obtains (see Appendix B)'4

joel-eh +e?-eh(Q K) Fet-eh (49)

An acoustic wave propagating through a piezo-
electric semiconductor will be accompanied by an
electrostatic field arising from the piezoelectric
polarization and an electromagnetic wave produced
by the displacement current. According to
Kyame ' and Hutson and White it is quite justifi-
able to neglect the latter in comparison with the
former. In the case of plane waves the only elec-
trostatic fields of importance will be longitudinal. 29

The s elf- consistent time-independent part
F„(r, Q), of the electric field calculated on the
basis of the longitudinal electrostatic field, causes,
via the linear electro-optic effect (small-strain
limit), a fluctuation in the inverse dielectric con-
stant given by

[6&~(r, Q)] '= r((u, ) F„(r, Q), (48)

where the effective ac conductivity tensor ff;f'fek

is given by

o"- "(Q K)=(l-R)-' &r" '"-(Q K) . (50)

The critical quantity in determining the free-
carrier screening of the interaction is the fre-
quency- and wave-vector-dependent conductivity
tensor o'" '"(Q, K). Explicit expressions for the
tensor R arising from the diffusion of the non-
uniformly distributed carriers and for o &~-&h are
given in Appendix B.

The effective field F,'ff'" acting on the free car-
riers in a piezoelectric semiconductor originates
from the piezoelectric coupling k'" and the de-
formation-potential coupling. ' ' ' At low acoustic
frequencies the first coupling mechanism tends to
dominate, whereas at high frequencies the second
is the more important, even in strong piezoelectric
materials. The net field F~ exerted on the free
electrons because of the deformation potential is
given by

F~(r, Q) = (1/q)VV:- u" (r, Q), (51)

where = is the deformation-potential tensor and q
is the numerical magnitude of the electron charge.
Using Eq. (40) the effective field may be written

F;ff "=F„—()f)f ~:" ~ ff"/q) (+ K+ i1') ue(r, Q) .
(52)

The adiabatic piezoelectric equation of state
takes the form

D = k07~"(Q) F„+e (Q) Vu",

where D is the electric displacement, k„"(Q) is
the low-frequency relative dielectric tensor, and
e is the piezoelectric tensor.

Combining the Maxwell equation V ~ D= p, the
continuity equation V j " '"=+ iQp, and Eqs. (40),
(49), and (53), one finds since the self-consistent
electric field is almost longitudinal'

(53)

F

~ ~~I h I K ~ ~

~
~w ~ ~

~ ~ 1Ieff (y A fT)k
+ iQEp

6~', (r, Q) = - &„o(~,.) r (~f) ~ .(„0(~;)

Sro

gel-ph -1
x )f . ". f —e~" ff u" (r, Q)tf . (54)

+iQko " J

Finally, inserting Eqs. (48) and (54) into Eq. (42),
one obtains from the free-carrier screened in-
direct photoelastic effect the contribution
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—' '," '"'[e)r(()), r(r), 8)])
$60

o" 8" Q K) ef
X K. "'. ' -~f, "(Q) ]( I"(r, Q),+ fQf()

(55)
to the phonon-induced fluctuation in the permitivity.

C. Free-carrier plasma

The. traveling elastic wave causes, in general,
a bunching of the free carriers due to piezo-
electric coupling and the deformation-potential
coupling. This bunching, in turn, gives rise to a
modulation of the complex frequency-independent
optical dielectric constant. For a nondegenerate
solid-state plasma one finds in the low-wave-

vector limit

5t~c(r, Q) = (iq/fp(d8)1(((r, Q) p(((,), (d8), (56)

where n, (r, Q) is the complex amplitude of the
carrier density modulation, and p, ((o, (88) is the
free-carrier mobility tensor at the diffracted-light
frequency. As indicated, p dependson the energy
w of the free carriers.

To derive the phonon-induced free-carrier-plas-
ma contribution to the fluctuation in the permittivity
we combine the Maxwell equation V ~ J" '"= + iAqnf,
the constitutive equation J" '"=o',f', '" ~ F,",,'", and

Eg. (40) to find the relation qn, = —(ff'w fl')K g,",(»
~ F,(8 /Q. Inserting this expression in Eq. (56)
and utilizing Eqs. (52) and (54) one obtains

—f[Z(Q) ~ fr(Q, K)]'6f„(re Q
fpQ.)g 0

K ' (r8/tp])(Q K) '
K

K . [o8( »(Qe -K)/(+ iQfp) —fze'(Q)] . K

x —[r((rr)e'r(rr, r«)]ir «, "(r)) «ir -. ir"+ —' ii. e(r)) ir"«)e(w, w)e («r,)) ". , (57)

IV. BRILLOUIN SCATTERING KINEMATICS

Assuming the incident light beam to be de-
scribable by a plane, monochromatic wave over
the interaction volume V one has

E8(r p) ) E8(p (d ) e((8(-)(&8(~

where k8= %8(s, is the (real) wave vector for the
incident light, and y, is the attenuation coeffi-
cient. The polarization state of the beam is de-
noted by 8. The last quantity ean be decomposed
into

(56)

y8 y8«P(~ k8)+ y8«sr (59)

where y8(' ((d, k8() gives the damping of a freely
propagating optical wave in an absorbing medium.
If one knows s, and f„p((d,), k8 and y8(' can be
calculated from Eq. (25). The weak absorption
implies that one can neglect the ellipticity of the
vibrations in almost all crystallographic direc-
tions. 49 The regions of appreciable ellipticity
are in general restricted to the neighborhood of
four special directions, close to the optic axes,
where the polarization is circular. In this approxi-
mation the directions of the electric displace-
ment eigenvectors belonging to a given s, are the
same as for a nonabsorbing crystal which has the
same real dielectric constant. An additional deple-
tion (or amplification) of the incident beam y(s'
arises from the Brillouin scattering process. In
the present work we shall omit giving the explicit
expression for y, ' and only notice that y, ' must
be taken into account when dealing with intense
scattering effects. '~ '6

Next, let us write the phonon-induced fluctuation
in the dielectric tensor on the form

(r Q) 5f (p Q)&(8(K-r)rr r (60)

Combining Eqs. (45), (47), (55), and (57) it is
easy to write down the explicit expression for the
space-independent factor 5f,(0, Q).

The most important contributions to the fre-
quency- and direction-dependent sound attenuation
coefficient I'(Q, R) arise from the electron-phonon
interaction (I'" »), from the elastic anharmonicity
(I"»»), from the Brillouin scattering process
(I' s' ), and from boundary scattering (I's). Thus,

I'(Q K) =I'" ' +I' ' +I' '+ I' (61)

In a piezoelectric semiconductor the main con-
tribution to I'" '" is due to the piezoelectric cou-
pling and the deformation-potential coupl. ing. It
is well known that a stimulated phonon emission
occurs, i.e. , I'" '"&0, for the acoustoelectrically
active modes if the component of the free-carrier
drift velocity in the direction g exceeds the phase
velocity of sound in this direction. In a certain
region of phonon frequencies this may lead to a
net gain of the acoustic wave, i.e. , I'&0. The
explicit expression for I'" '" is given in Sec. V.

Various theoretical expressions have been pro-
posed for the nonelectronic lattice loss constant

Here we shall only refer to the literature
on that subject. 6 Most of these theories pre-
dict a fP dependence of I"~». Unfortunately, this
frequency dependence is inconsistent with many
experiments performed with single-frequency
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waves~'7' or with a spectrum of acoustoelectrically
active or inactive waves amplified directly, or in-
directly via mode conversion, from the thermal
background. 4' ' ' '~ For many-frequency waves
several experiments indicate that I'~'" follows a
03~2 law over more than three decades at room
temperature. ~'~'3 A few experiments seem to
confirm the QP dependence. ~'~'

The depletion of the phonon beam caused by the

coupling to the photon beam can normally be ne-
glected when dealing with weak-scattering effects.
A simple phenomenological treatment of the
boundary scattering has been given by Ziman4'

and applied in a study of off-axis acoustoelectric
domain propagation in semiconducting Cds. '

Combining Eqs. (13}, (58), and (60} the integral
in Eq. (34) can be written on the form

I"=go5t'„(0) Q) ~ Ef(0, (()&)V4)" y= 1, 2 . (62)

If the scattering volume is a rectangular paral-
lelepiped (V =L, L2L, } the numerical magnitude of
4" can be found by straightforward calculations.
The result is [integration ranges (-2L&l —,L&)]

etry, since L~ is a function of the angle between the
Poynting vectors of the incident light and sound
waves. It can be shown that l4" I2, independent of
the vectorial attenuation coefficient P~, attains its
maximum value 14) } =sinh (2P&L&)j(gP&L&) for
hk" =0. This means that a significant s"-ttered
signal occurs only if the wave vector of the scat-
tered light, k,", satisfies the Bragg (or phase
matching) condition

k~~ =k~~+K~ . (64)

In a particle picture this relation represents the
conservation of pseudomomentum in an inelastic
first-order scattering event between the polariza-
tion states 6j and y. The plus sign corresponds
to a phonon absorption, the minus sign to a phonon
emission. Combined with the energy-conserva-
tion law

(65)

Eq. (64) forms the basis for a calculation of the
Brillouin scattering kinematics. '~

V. EQUATION OF MOTION FOR THE LATTICE
VIBRATIONS

exp[t(k~( + K —ks) —(y f s, + I'(t)] .r' dr
-v

In a piezoelectric crystal, the equation of mo-
tion for the lattice vibrations is given by

s'
( sSj Li) sisll (

—()—JLi))
(-,
'

t),k~ L~)'+ (rP,'L~)' (63)

2

po z
u" (r, t) =V c vu'(r, t)0 at2

In Eq. (63) we have introduced the abbreviation
A,k"=k~~+K-k„', and p =y, s, +Pre. For p =0,
Eq. (63) reduces to the corresponding equation for
nondecaying incident photon and phonon beams ob-
tained by Nelson et al. 23'~~ It should be noticed
that L~ (j= 1, 2, 3) depends on the scattering geom-

—V e ~ F.,(r, t), (66)

where c is the elastic stiffness tensor for con-
stant electric field, and po is the mass density of
the ions. Inserting Eqs. (39), (40) with F' re-
placed by 1""~ " '", and Eq. (54) in Eq. (66) one ob-
tains after a few straightforward calculations

() '.„-.„.. (-. - ii. s ir ii —((/S)ii s„','"((), K) i)( =. s ((s((+ s" ")/(s())l)
~ ~ ~

~

~

~

~

(67)

For any given direction of the acoustic wave vector, specified by w, the polarization vectors w can be
determined by solving the eigenvalue problem of Eq. (67). A detailed discussion of phonon propagation in
anisotropic piezoelectric semiconductors will be given elsewhere.

Approximate expressions for the acoustic phase velocity V~ (Q, K) = Q/K and the attenuation coefficient
I'" 'h(Q, K) can be obtained by solving the equation

po -er-yh = g ~ &" ~ c ~ Pc ~ m" + —n'" ~ g ~ e ~ g~ ~ ~ ~ ~ ~
Q 2 „„.-„1., - . &" ~ )t e (t —(I/q}(t. o'„','h (inc. " ~ &"[(+K+iT"'")j(+Q)]

+++ iT Eo s y z 0'el-yhj&o 0) ~ geff

(68)

with respect to Qj(+If'+ ll'), assuming that the
polarization vectors f~ have been evaluated from
the pure elastic eigenvalue problem

po(Q/ff) )i" = c

If the deformation-potential coupling can be neg-

(69)
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lected Etl. (68) gives directly the anisotropic
formulas

1/2
Vu(A K "=0)=

Po

(Pc ~ e ~ P 0)

&el-ph -1
xRe Pc ~ zL" +i e"

c 0 t
0

(70)
for the phase velocity, and

r""- "(A, K, =-=0)=+
Vq ~0 g ~ m" ~ C ~ g ~ W4

+el-yh q -1
X Im g gLesy z

eff ' KF &Q0

(71)

for the amplitude attenuation coefficient in the weak-
coupling approximation A/V~~ (A, K)» r" '"(A, K).
For K«1 (1 being the mean free path of the free
carriers) Eqs. (70) and (71) are reduced to the
equations obtained by Klein ' in his macroscopic
theory of anisotropic acoustic amplification.

Including the deformation-potential coupling
the general expressions for the amplitude at-
tenuation coefficient and the phase velocity take
the form

V"(G, K)=( j
1 (Ic'e'w K) ( a

26p K ~ 7T ~ C ~ K ~ 77 ( fpQ

Apo (2 ~ ™e w "Pc) (z ~ = ~ v") 9 ~ (o" /a„A) ~ 2
(72)

and

Apo (z ~ e ~ 9 "n) ~, . o,'ff A pg (K ~ e ~ 7f K)(K ~ " ~ w }
4fp ~K' lT 'C'K ~ 7 ) 2q (k ~ &" ~ c ~ If.'~ fr"

K (0' /f A) K
(7&)

in the w eak-coupling approximation.

VI. QUANTUM-MECHANICAL DESCRIPTION OF A
SPATIALLY DECAYING LATTICE NAVE

Describing the complex time-independent dis-
placement [Eq. (40)] by its spatial Fourier compo-
nents (denoted by j}, the Fourier amplitudes of the
displacement,

u," =m" up exp i aK" -q - l "2 ~ rdr, 74
r

are given by [integration ranges (- ~a, I ~a, )]

(75)
where nK" =K" + q. In the derivation of Eq. (75)
it has been assumed that the volume of the solid
occupied by the acoustic wave is a rectangular pa-
rallelepiped, i.e. , V, =a,a2a, . To obtain a quan-
tum-mechanical description of the lattice vibra-
tions one must make the following replacement for
the squared Fourier amplitude of the displacement'

(76)

where the plus sign corresponds to the Stokes com-
ponent (phonon creation) and the minus sign to the
anti-Stokes component (phonon annihilation). The

occupation number for phonons of wave vector q is¹,and N; is defined by N;"+ =N"; +1 and ¹

=E.".
The squared amplitude of the displacement iup" I

for the damped sound wave can be expressed in
terms of the occupation number N„"- by combining
Egs. (75) and (76). Thus,

1 IAN"„(2I'",a, )

VII. EFFECTIVE DIFFERENTIAL BRILLOUIN SCATTERING
CROSS SECTION

Combining the time-averaged Poynting vector

(S',&
=-,'Re([P, (r, &u, )] x H', (r, &u, )]

and the Maxwell equation

vx Et(r, (o,}=i(u, po He, (r, (u, ),
the spatial-dependent intensity of the incident light
beam, which polarization state is 8, can be written

~
(8,(r)) [

=-,' (eo/po)'
(
Re(n', (&u, , s, }(s,. )

E', (r, &u, ) )

—E', (r, (u, ) [s, E', (r, (u, )]/} ~

fo cn'„(&u„s,)
~

E', (r, &u, )
~

cos&'(&u„s, }
(76)
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where n, (&u„s,) is the complex refractive index of
the incident light, and 5'(&u„s, ) is the angle be-
tween the Poynting vector and the wave vector. In
the derivation of Eq. (78) we have neglected the de-
pletion of the beam arising from the Brillouin scat-
tering process.

It has been shown by Nelson et al. "that if dQ,
is an element of solid angle of Poynting vector di-
rections the corresponding element of solid angle
of the wave vectors dQ~ will be given by

cos5 (&de, se)
e ge[ke(M, s )]2 e

where X" is the Gaussian curvature in k„space of
the &u(ks) surface, for the y polarization at the
point where the surface normal is parallel to the
direction of observation. The normalization con-
dition in Eq. (23) requires 5" to be given by cos5"
=[n"Ie"I]-'

According to Eq. (79) the power per unit solid
angle of Poynting vectors, dP'/dQe, is related to
the power per unit solid angle of wave vectors
dP"/dQe, via

dr~' " dP" 1
dQ, dQ, I g', (r =0)) IA

(80)

i.e. , as the scattered power per unit solid angle
of Poynting vectors divided by the incident power
at the center of the interaction region (r=0). The
cross-sectional area of the incident beam has been
denoted by A.

Introducing the unit field vectors e', = E, (r, ~,}/
E, (r, &u, ) I and ee -=e„=en(&ue, se} =esne cos5", the
normalized fluctuation in the dielectric-constant
tensor 57, „(Q)= 57„(r,Q)/u'(r, Q), and the approxi-
mation u&=rue=a;, , Eqs. (35), (38), (62)-(64), and
(77)-(80) can be combined to give the following ex-
pression for the effective differential Brillouin-
scattering cross section between the polarization
states 8 and q in an anisotropic, piezoelectric
semiconductor:

dP'/dQe =(cos5'/[X'(ks)']] dP'/dQe

The effective differential Brillouin scattering
cross section between the polarization states 8 and

y, dos' "/dQe, is defined through the equation

dos'" ur lee ~ (1-[lm7„,(&u)] ~ Q,„ee"eZe"") [5e„,„(Q)+57„',„(Q)+57„.„(Q)] ~ e', I

de 4mc X'nes(u&, s,}ns(&u, se) cos5'(&e, s, ) cos5"(~, se)

P' L sinh(-,' I""a ) VQ 2p, Q

where

(81}

(83)

i —(4"/4 ")e x(pi(~/c)[n"„(&u, s,) n„"(&u,—s,)]r3 (82)cos'5" (&u, se) ng u, sq —n„' ~, s

Since usually (&o/c) In~+ —nz" I r» 1 for rl ey one cannot observe the spatial variation of the rapidly oscillating
factor exp[i(&u/c)(n~s -n„")r]. Thus, by averaging the cross section over the interval (r lr+ (2vc/&u)(nz" -n„'))
one obtains

dQe 4wc y"n n„'sesc5oc e5o"s, sinh'(-,' I'" a } VA 2poQ'

x
~ ~

C "~' ee ~ 1 ——,
'

&ur,"(Ime„o) ~ ee ee-i 1 — —"„(Ime„,o) ~ ee e,' ~ 5c„„~e',
ng

+~C"
~

1 — ""„~ee'~ (Ime„,,) ~ e,"'ee' ~ g, , „~ e,
~

where g, „=57~ + g„' „+5&pc„and v,"= (r/c) ng . The phase-matching condition requires that one must
insert nk" =0 and nk' = (nse -n„" )(&o/c)se in the explicit expressions for I

C" ls and I 4 ' ls. On a rough esti-
mate where the tensor notation is suppressed, the condition (&u/c) Inse n„' Ir»1-implies that terms contain-
ing the y polarization can be neglected. In this approximation the cross section takes the simple form'9

(" I',"'5' '' [;„,~-,;~;;.I. . .-, ] II "' "~( f'- -} vL ~~
( }

dQ 1,4sc y "nsns'cos5'cos5' ' " e e "' e ., P' L sinh( —,
' I'" a ) V, 2~QI

where L, is the length of the scattering volume in
the direction Se/ISe, I. From Eq. (83) one obtains
the interesting result that do ~' '/dQ, =0 for r, /r„=w.

In the limit of zero conductivity the present anal-

I

ysis is in agreement with that of Nelson et al. '
To compare the two results one must notice that the
final formula of Nelson et al. ' applies for a ther-
mal-equilibrium distribution of phonons whereas
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Eq. (84) of this work is valid for a decaying mode.
By combining Eqs. (2.15) and (2. 30) in Ref. 23 and
by utilizing the fact that ~e =e /(ns cos5 ), m = 8, y,
and deos" /dA, = i8o lyo/(ISo, lA), the agreement be-
tween the two papers is obvious.

A recent paper by the author o treats Brillouin
scattering from nondecaying modes in hexagonal,
insulating crystals. In this paper the scattering
cross sections were defined on basis of the com-
ponents of the incident and scattered photon intensi-
ties along R, and ho. A comparison of the aniso-
tropic dipole approximation method used in Ref.
22 and the Green's-function formalism used in
this work is given elsewhere. For the calcula-
tion of relative scattering cross sections in CdS
the difference between R and k» is of no impor-
tance.

It should be recalled that the effective differ-
ential scattering cross section calculated in this
section refers to the cross section per unit fre-
quency range integrated over the line shape of the
considered Stokes or anti-Stokes component.
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APPENDIX A: FAR-FIELD DYADIC GREEN'S FUNCTION
IN A SEMICONDUCTOR

By means of the residue theorem the following
relations (z real) can easily be verified:

lim x'- (o+ iq)'2
= $7Te (Al)

and

lim ~

y~o ~ woo

xe dx me efea[x'- (o+ iq)']' 2o

xe""dx
II ~,[x —(co+ iso) ]

, (e"&'- e"o') .Vg- C2
(A3)

In order to obtain the usual outgoing Green's func-
tion a small imaginary part p &0, limiting zero
after the contour integration, has been added to the
above denominators.

By combining Eqs. (24), (28), (29), and (Al)-
(A3) the far-field Green's function becomes in a
first-order approximation

fkgB
G(r, r')= g (ks') es" es' ~ { —oik„'R[lm7„o(&oo)] e„'elf

e~ie2

2 2 ejy~B fk ~R
+ (kaid ko}z 4 {esca [Im7„o(Mu)] e'se'a+e'se's [Im7„o(&a)l'eB R)4~R

A Al„l„[1m' o(&oo)] esca+esse ~ [Im7, o(vo)] ~ isla
~
(, o e' ~

gi ~io2 s ' IR«, o(~o)] ' s i " 4vit (A4)

mode Eq. (A4} is reduced to

ga"s &a zeeet —es
1 q, ~,o —i ~ es es ~ [Im7, o(s)o)] es es

t), e i.2 4'
Neglecting the nonpropagating

ei A~R

G(r, r')= P eeoc„'
y~io2 4' 1

1/(k')' —1/(k ')'
(A5)

where kent
= (&uo/c)ns'(ls, &oo) and es'= ceo(is, Ido). In Eq. (A5) the first term represents the Green's function

obtained by Nelson et al,.53 for nonabsorbing crystals.

APPENDIX B: SEMICLASSICAL CALCULATION OF THE
EFFECTIVE CONDUCITVITY TENSOR bazoo(Q g) IN A

SEMICONDUCIOR

electrons in the presence of the acoustic wave,
F,P", may be written

The Boltzmann equation for electrons interacting
with a nondecaying acoustic wave of frequency 0
and wave vector K in the presence of a dc electric
field Fo is"'~

—+ v f ~(F Fellah) f f fa (Bl)st 'sr m* ' "' 'sv ~(S)

where the effective electric field acting on the free

ufo(II)„(r t II) (B2)

The electronic charge has been denoted —q, the
effective mass of the electron assumed isotropic
m*, the energy-dependent electron relaxation time
v(E},oo and the distribution function to which the
electrons relax in the presence of the wave f„ In
a semiconductor one obtains~~
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f,(v) =f,(v)+n, —'
0

(B3)

t
m* 'i& -m+~~

f'~)="'IS u, r '~ an, r (B4)

where n0 is the equilibrium electron density, k~ is
Boltzmann's constant, and T is the temperature.
The second term on the right-hand side of Eq.
(B3) arises from the fact that the scattering is
local. The fluctuating part of the electron concen-
tration is n, .

To determine the electron distribution function,

f(r, v, f) is decomposed as follows:
(( ot&-

where fo(v) is the equilibrium distribution of the
electrons. Treating the electrons as obeying Boltz-
mann statistics one has

v~ = —[qr(E}/m~] F, (Bv)

is the drift velocity of the electrons in the dc field.
Neglecting the nonlinear term (q/m") F,P"

~ sg(v )/ev, and taking the direction of the dc elec-
tric field to be along the z axis of our coordinate
system, the ac part of Eq. (Bl) turns into a simple
inhomogeneous first-order differential equation
with the solution

The first term in Eq. (Bs) represents the electron
distribution function in the presence of the dc elec-
tric field but in the absence of the acoustic wave.
Solving the dc part of Eq. (Bl) one finds, ezpanding
fo(v —vd) to first order in v~,

f~(v) =f,(v- v,), (as)

where

g(v) =
i F,",P" ~ + ' ' ezp —

] [i(K ~ v-0)+r '(E)] dv, dv,

where now the amplitude of the electron density fluctuation has been denoted by n, .
The phonon-induced current is given by

(BS)

=-g vg v v=0' ~ Q K el~h (B9)

Using the continuity equation —qn, P~'(0, K}=~ ~ J" 'h, the effective ac conductivity tensor can be written on
the form

g ~ & ](h(fl K) —(1 R) & ~ g +& Dh(fl K)

with

Vgv" "(rr, R)= —J( ir J( „ex(r —j [((K ~ v-(() ~ v'(d)] dv,
"

dv,
'

dv

(Blo)

(Bll)

(al2)
V 1a(((, K]= J vir ]I i(

'e px(-f [i(((.v-(() ~ '(E)] d,")d.'. dv
Vd & i &0 V'd Vg

Ezplicit ezpression for o "~"and R have been given by Spector for the case where the electron relazation
time is energy-independent. 7~ Writing the oscillating part of the distribution function on the form
g(v) e ""'~"",the effective ac conductivity tensor in Eq. (B10) must be replaced by [o;,', '"(0, K)] .
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