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Energy loss of MeV a particles in the palladium-hydrogen system in planar channeling
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The energy loss of MeV a particles moving between (111) planar channels of the palladium-hydrogen system
has been calculated for the case when the hydrogen-atom concentration is only a few at.% (o phase). The
contribution due to additional electrons of hydrogen atoms is estimated by assuming that these go to the 4d
band, and that due to protons is obtained by considering a-particle-proton scattering. The proton
contribution is found to be very small compared to that due to additional electrons for well-channeled
particles, which itself is about 0.001x of the electronic stopping power in the (111) planar channel for pure Pd, x

being the atomic percentage of H in Pd.

Recent experiments! on dechanneling of a parti-
cles by a low concentration of hydrogen atoms in
palladium have suggested that it is reasonable to
describe the dechanneling in this system as “ob-
struction” type, 2 and that this obstruction can be
described by a Rutherford-type interaction in
which an a particle is scattered by the proton sit-
ting in the channel. We calculate here the effect
of these hydrogen atoms on the energy loss of
those a particles which are not dechanneled but
suffer an additional energy loss due to electrons
and protons of hydrogen atoms.

To calculate the energy loss due to additional
electrons of hydrogen atoms, we assume that these
go to the d band of palladium. While for higher
concentration of I atoms (in B phase), photoemis-
sion studies® show that the additional electrons go
to H-induced low-lying states* as well as to the 44
band, for low H concentration (@ phase) all of the
additional electrons can be assumed to fill the holes
of the d band.*

Next, we simplify the situation and avoid the use
of complicated band structure by saying that in
these calculations of channel stopping power it is
enough to use the atomic wave functions. This ap-
proximation is implicit in most of the channel-
stopping-power calculations to date and in any case
it is not bad for nearly filled d-band transition
metals. In fact the use of hydrogenlike wave func-
tions has given very good quantitative agreements
with experimental results on channel stopping
power in semiconductors® for energetic protons.
For low-velocity heavy ions also, the atomic wave
functions have been used with reasonably good suc-
cess in connection with Z, and Z, variations,” and
recently for calculating the position dependence of
the stopping power in planar channels of gold.®

The electronic stopping power in the high-veloc-
ity region is given by®1°
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where e and m are electronic charge and mass, re-
spectively, and Z,; and v, are the charge and veloc-
ity of the incident particle. The first term in Eq.
(2) is the conduction-electron contribution, p .4
and w, being the corresponding density and plasma
frequency. The last term includes contribution of
inner shells, p, and I; being corresponding densi-
ties and binding energies. The second and third
terms in Eq. (2) represent the valence electron
(d-shell) contribution. The second term corre-
sponds to the contribution of collective excitations
which use the total density of valence electrons,
while the third term gives the contribution of the
local electron density in the channel to single-
particle excitations; v is the Fermi velocity, and
I the binding energy of the d shell. This separa-
tion of valence-electron contribution in two parts,
as suggested by Appleton et al.,° has been found to
give good quantitative agreement with experiment
for the well-channeled energetic a-particle stop-
ping power in (111) planar channels of gold, as
well as for the variation of channel stopping power
with the distance from the channel wall.!? In fact,
one can easily see from Egs. (1) and (2) that, when
P1oc becomes equal to p,,, i.e., when the incoming
particle encounters all the valence electrons, one
gets the formula of Dettman and Robinson' for the
valence shell.

For Pd, it is now well established, both experi-
mentally" and theoretically, !? that Z ,4=0. 36
electrons per atom and Z,,, =9. 64 electrons per
atom. Thus p.qe=0.36N and p,,, = 9. 64N, where
N is the atomic concentration per unit volume.

The contribution p,,. and that due to other inner
shells p; is obtained by making a planar average
of the corresponding shells, ®!° and using the one-
term Slater orbitals with optimized orbital ex-
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ponents given by Clementi et al.'® Thus we get
the electron density due to one plane at a distance
y from the plane as:

(1) _N__dz (251)2"’ =285y
P (y)— D) 21’1] w;e i

2n =1 yan!-l-k
2 @E)En—1-P1’

X

(3)

so that the total electron density due to both planes
becomes

pi(9) =p () +piP(d, - y) . (@)

Here N is the atomic concentration per unit vol-
ume, d, the interplanar distance (so that Nd, is
atomic density per unit area of the plane); »;, w;,
and &; are the principal quantum number, the oc-
cupation number, and the orbital exponent of jth
shell, respectively.

If x is the atomic percentage of H in Pd, we get
0. 01x electrons per additional atom in the d shell.
This means that p,,, changes from 0. 097 (in a.u.)
to (0.097+0.0001x). Using Egs. (3) and (4) to cal-
culate p,,, at a point halfway between (111) planar
channels, one gets p,,.=0.008 57 without H atoms
and p, .=0.00857+9%x10°%, with H atoms. Using
Egs. (1) and (2) to calculate the correspond-
ing stopping powers we get for 4-MeV a parti-
cles:

—Z—-f =1.331 (conduction electrons)

+ 14, 59 (valence electrons)

+0.015x (from x% H atoms)
+0.112 (4p electrons)

+0.015 (4s electrons)
=(16.048 + 0. 015x) eV/A. (5)

The contribution due to protons, which are
known to take octahedral positions in Pd and hence
to be situated halfway between (111) planes, can be
obtained by considering the scattering of protons
from the incoming ion (a particle in this case).

As expected this contribution will be shown to be
about three orders of magnitude smaller than the
contribution from the additional electrons (see the
Appendix).

Thus we see from Eq. (5) that the energy-loss
contribution from the additional H atoms is ex-
tremely small and can not be detected for low con-
centration. This also shows that it is quite safe to
neglect effects of additional energy loss due to H

atoms in the calculations for dechanneling. How-
ever, if by suitably adjusting temperature and
pressure one introduces a high concentration of H
atoms within the o phase, the additional stopping
power of well-channeled particles could be mea-
sured. Such an experiment would consist in mea-
suring the minimum energy loss of well-channeled
particles [Pd (111) planar channels in the present
case] without and with H atoms. It should be equal
ly interesting to study the more complicated B
phase with higher H concentration, in which case
the theory will also have to be extended, because
the electrons of these H atoms will start filling the
new H-induced bonding states, * the number depend-
ing upon the H/Pd ratio and approaching 0.5
electron state per Pd at the H/Pd ratio of 1.

In addition, the interaction between the protons
themselves will also have to be taken into ac-
count.

APPENDIX

Let us consider the scattering of protons from
the incoming a particle. Assuming that any pro-
ton velocity due to its jumping around in palladium
is negligible compared to the velocity of the in-
coming a particle and that protons do not interact
with each other (for the o phase), the energy lost
to the protons (mass m,) by the incoming « par-
ticles (mass m,) is given by'*
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where 7, is the density of protons (i.e., H concen-
tration), @, is the momentum-transfer cross sec-
tion for scattering of protons from the « particle,

and is given by

T
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For fast a particles, the scattering is essentially
from the bare charge Z,(=2 for the a particle) so
that
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and one finally gets
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where the term in the logarithm is obtained by re-
calling that 6 =7 in the expression for Q4 corre-
sponds to maximum energy transfer from a par-
ticle to proton, T3**=2mim,v¢/(m,+m,)? and the
minimum 6 is determined by T9!®=],, where I, is
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minimum energy that the proton can take during
the scattering process (equalto the diffusion energy,
0.23 eV, for the Pd-H system). For x at.% H in
Pd, one gets from the above expression for 4-MeV
a particles:

dE

-%2-1.84xx10% eV/A ,
dx

which is about three orders of magnitude smaller
than the corresponding electronic contribution giv-
en in Eq. (5).
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