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Extended states ia a one-dimensional system with off-diagonal disorder*
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We prove for a onedimensional tight-binding Hamiltonian with only off-diagonal randomness that the state at
the middle of the band is extended, regardless of the probability distribution of the hopping matrix elements

and also derive a sum rule for the density of states. In particular, for the case where the probability
distribution of the hopping matrix elements is a generalized Poisson distribution, we derive an expression for
the localization length near the middle of the band. We also calculate the localization length for a chain of
potential wells with randomly fluctuating depths, separated by regions of zero potential, the length of the
latter being also random.

One of the points of interest in the study of one-
dimensional. disordered systems is the nature of
the eigenstates, i. e. , localized or extended. Mott
and Twose' were the first to suggest that all the
electronic eigenstates in one-dimensional (1-D)
disordered systems are localized. Borland was
the first to give a rather general proof of this
statement. His proof was done for the case in
which electrons are moving in the field of a 1-D
infinite chain of identical potentials separated by
regions of zero potential, the length of these re-
gions being a random variable. Borland's proof
breaks down only at certain isolated energies,
for certain special potentials. This can be under-
stood as follows: The transmission coefficient,
for some particular forms of the central potential
in Borland's model and for certain values of en-
ergy, can be equal to unity (Ramsauer effect).
In that case an electron will propagate freely
throughout the chain, and these particular states
are extended.

Economou and Cohen examined the problem
of l.ocalization in the 1-D tight-binding model.
Their method was based on the convergence of a
perturbation expansion of the self-energy, and

they also concluded that all states are localized
in the case where only nearest-neighbor inter-
action is considered. However for the case where
only off-diagonal disorder is present their per-
turbation expansion of the self-energy is not valid
for the energy at the middle of the band because
the denominators of the unrenormalized expansion
become zero. Therefore the character of the
state (i. e. , extended or localized) at the middle
of the band remains unresolved for off-diagonal
disorder only. In this paper we present proof
that this state is an extended one, independent of
the probability distribution of off-diagonal dis-
order, and give the energy dependence of the local-
ization length for a special class of distributions
of off-diagonal randomness for which the density
of states can be evaluated analytically.

We consider a tight-binding Hamiltonian with
nearest-neighbor interaction only and with con-
stant diagonal and random off-diagonal matrix
elements. Shifting the origin of energy we can
eliminate the diagonal matrix elements so that
the Hamiltonian of the system is given by

H =g V„„,, (
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with the (V„,„,,j statistically independent and having
the same probability distribution. The Schroding-
er equation of the system can be written

Un n+ lan+ 1 + Un e n-1n 1

with a„ the amplitudes for the eigenstate with en-
ergy E. For zero energy Eq. (2) gives the re-
currence relation a„,, = —(V„„,/V„„„)a„,. Suc-
cessive applications of this relation give

2n+ 1 2n. 2n-1 2n-2~2n-3 ~ ~ ~ 2 ~ 1

1 U2n, 2ng U2n-2, 2n-l U2, 3

Defining the localization length by the expression

L(E= 0) „.„2n ag
(4)

and applying the central-limit theorem we obtain

1/L(E = 0) = 0. (5)

Therefore the state with zero energy is extended
regardless of the probability distribution of

(V„„„),except when the total probability for V= 0
is finite [P(V) = c5(V) + P, (V)], in which case the
chain is broken. A similar conclusion was reached
for more restricted classes of distributions by
Herbert and Jones and by Bush. ' Equation (5. 10)
of Ref. 6 on which the conclusion of Herbert and
Jones was based is, however, incorrect. Bush
restricted his considerations to distributions of
V limited to positive values only. However, his
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argument remains correct when extended to ar-
bitrary distributions.

Dyson in a pioneering work studied the problem
of a disordered linear chain of harmonic oscil-
lators. Smith pointed out that Dyson's model for
the case where the chain consists of identical.
atoms and random XF model. Because the ran-
dom XF model is equivalent to that of spinless
fermions'0 described by Eq. (1), we can apply
Dyson's solution to our problem. We shall con-
centrate on the special case for which the prob-
ability distribution of the hopping matrix elements
is a generalized Poisson distribution given by

y 2Q y 2n & gy2

( 1)l p p y2
(6)

because for this case Dyson's model has an analyt-
ic solution for the frequency spectrum, which
in our case represents the electronic density of
states. Thus the symmetric density of states for
Hamiltonian (1) is given by

with e = E/Vo and M„(e2), the integrated density
of states, given by

2 1 1 G (& ) jm(& )Qm(& )& "6 + Lp (& ) —g (e )+ (ev fn-1)+0(~ )]&
2

+
2 (G (e ) + (~ (e2) [ln(se 2) + & + y ]p (e 2) ]

erne

8)2 + Pp 2 (e2) e-2n6 z

with

f
sj-Q f ', t~=P l, sp=tp= 0,

and y Euler's constant. The analytic expressions
for Fo, Fg Fp Gg Gp can be found in Dyson's
paper [Eqs. (64)-(69}]. The density of states is
shown for n = 1, 3, 5 in Fig. 1. For I e ( «1 D„
has the asymptotic behavior

(9)

That is, the density of states has a singularity at
the middle of the band.

There is an indication that the presence of a
singularity in the middle of the band is character-
istic of the 1-D tight-binding Hamiltonian with off-
diagonal disorder only and not of the special form
of the probability distribution used here, Numer-
ical calculations done by Weissman and Cohan"
for a square probability distribution indicate the
presence of a peak at the middle of the band.
However, since their numerical method does not
work for E -0 they did not manage to give any
conclusive evidence of the existence of the sin-
gularity. It is interesting to note that calcula-
tions' ' done for the 1-D tight-binding Hamilto-
nianwithdiagonaldisorder only do not reveal the
existence of any singularity in the density of states.
In the general case, where both diagonal and off-
diagonal disorder are present, all states are local-
ized as proven by Economou and Cohen, ' and thus
the density of states, which is proportional to the
volume accessible to an electron, is finite. From
the above argument we conclude that the introduc-
tion into Eq. (1} of even a small amount of diagonal
disorder destroys the singularity in the density
of states.

Since, as we proved before, the state at E = 0

is extended, our model has a singularity in the
density of states at the point of transition from
localized to extended states. On the other hand
Lloyd's model, ' the only exactly soluble model
in three dimensions with diagonal disorder only,
gives no singularity in the density of states at
the transition point. Edwards and Thouless"
tried to extend this result to the case of a square
probability distribution of width W. They proved
that for W& g ZV, with Z the coordination num-

ber, the density of states is analytic at the middle
of the band. However, the latest estimates'
of the critical disorder required for an Anderson
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FIG. 1. Density of states for off-diagonal randomness

with generalized Poisson distribution, Eq. (6), with n

=1, 3, 5 and for diagonal randomness with Gaussian dis-
tribution and rms 0=0.571 v I (dotted line).
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transition give 8,' & mZV for square, diamond aad
simple cubic lattices. Therefore Edward's and
Theuless's result does not give any information
as to what happens at the transition point.

The localization length for a one-dimensional
random system expressed in terms of the density
of states is given by'"

I I I I I I I I

'(E) =.fD(E (l ~(' —8'
~

dE (I Ivl—), (10)

where V is the hopping matrix element. The lo-
calization length is shown in Fig. 2 for the case
where D(E) is given by Eq. (7). Combining Eqs.
(10) and (5) we conclude that the density of states
for a tight-binding Hamiltonian with off-diagonal
randomness only and arbitrary distribution sat-
isfies the sum rule

81
I I I I I I I

DE)ln E dE= ln V

We can prove that the singularity of ln I E —E I at
E in the integrand of Eq. (10) does not give an
important contribution to the integral. Therefore
separating the integral into two parts, one for
the integration in region IE I IEI and the other
for integration in region IE'

I
& IE I, and making

the approximation ln IE —E'
I
= ln IE I in the first

region and lnI E —E'
I
= ln IE' I in the second one

we obtain with the use of Eq. (11) that for a sym-
metric density of states the localization length is
given by

I El
L '(E) = (lnE a —InE'a)D(E') dE'.

p

The behavior of the localization length near the

(12)
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FIG. 2. Localization length for off-diagonal randomness
with generalized Poisson distribution, Eq. (6), with n
=1, 3, 5 and for diagonal randomness with Gaussian dis-
tribution and rms a = 0.57 I V I (dotted line).

FIG. 3. Localization length for n= 1 as given by Eq.
(10) (solid line), and by Eq. (13) (broken line).

middle of the band in the case where the probabil-
ity distribution of hopping matrix elements is
given by (6) can be found by utilizing the asymp-
totic form for the density of states given by Eq.
(9). We found that in that case the localization
length near the middle of the band is given by the
expression

L„(E/Vo) ~ —21n(nE /Vo)/(t-v —t, ). (13)

In Fig. 3 we compare Eq. (13) to our numerical
results and show that Eq. (13) gives an asymp-
totic representation of L(E) for n 1. =

We consider now the case of a 1-D chain of
potential. wells separated by regions of zero po-
tential. The width of the wells is equal to a, while
the depth U fluctuates from site to site according
to the relation U= Up+5, with Up constant and 5

a random variable with probability distribution
given by

I/6 for [5 [
- &,

0 otherwise.

The length of the regions of zero potential is a
random variable. The fluctuations in U corre-
spond to diagonal disorder in the tight-binding
Hamiltonian, while fluctuations in the length of
zero potential regions correspond to off-diagonal
disorder.

Let T(E, 5) be the transmission coefficient of
the potential well for given 5 at E & 0. As a zero-
order approximation to the transmission coeffi-
cierft of the chain, we could compute the transmis-
sion coefficient of each well and multiply them
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together. ' This approximation ignores all mul-

tiple reflections and interference effects. This
is a good approximation only if the following con-
ditions are met: (a) The potential wells have
resonance energies E„[T(E„) = 1] and we take into
consideration only energies cl.ose to the resonance
energies so that the reflection coefficient is small,
and (b) off-diagonal randomness is present so
that the contributions from multiple reflections
and transmissions add randomly and are expected
to give a small contribution. In this approximation
we have

(16)

where g„ is the wave function at site N, corre-
sponding to a plane wave incident on site 0 with
amplitude 1)1)o I. The localization length is given
by

1/L = (I/N) ln
I q. /)I)0

I

Combining Eqs. (15) and (16) we obtain

L = —2 /(ln T(E, 5)),

(16)

(1V)

where ( ) denotes an average over 5. The trans-
mission coefficient for the square wells is given
by the expression

?(z, II) = () ~ s)n ().a))
(U, +5)'

4E E+ Uo+5

where k= [2m(E+ Uo+5)]' 2/K. The resonance
energies are given by

@2~2~2
E = —U -e=E0-e

2ma 0 n

(18)

(19)

and they too are random variables. We consider
the case for which E„ is cl.ose to E„, so that &
«hawm/2ma. For E=EO, ln T(E, 5) can be ap-
proximated by

U2ma2

Calculating (ln T(E, 5)) and inserting it in (1V) we
obtain

( ~)
SS' E„(E„+U()) /Uoma
(E —E„')'+ (~/~3' (20)

Therefore the localization length for E=E„has a
Lorentzian form with width d /W3. For 4 = 0,
which corresponds to the absence of diagonal dis-
order, Eq. (20) reduces to

L(E) ~ 1/(E —E„)'. (21)

In that case L(E„)= ~, and the state at this energy
is extended. Equation (20) implies that the in-
troduction of an infinitesimal amount of diagonal
disorder has the effect of localizing all states. '

We note that numerical calculations by Tong

and Wong'9 of ln I g~/$0 I for identical square wells
indicated that lnI $„/$0 I ()(: (E —E„), in agreement
with Eq. (21). Also from (13)and (21) it is apparent
that the energy dependence of the localization
length near an isolated extended state will depend
on the detailed form of the Hamiltonian.

It is well known that introduction of disorder
with rms o in the matrix elements of the tight-
binding Hamiltonian will have as an effect the
broadening of the band by 2o, if the introduction
takes place in the diagonal elements, and by 4o
if it takes place in the off-diagonal ones. For
the sake of comparison we included in Fig. 1
the density of states for the tight-binding Hamil-
tonian with diagonal disorder o = 0. 57 l Vl and
Gaussian distribution of the single site energies.
Thus from Fig. 1 it can be seen that an amount
a =0. 294 I(V) I (n=3 case) of off-diagonal dis-
order has the same effect as that of o = 0. 57 ( Vt
of diagonal disorder. A similar conclusion can
be drawn from Fig, 2 as regards the localization
length.

Finally let us examine the case in which the off-
diagonal disorder has the probability distribution

P(V) =cs(V- Vo)+(1 —c)5(V+ Vo), (22)

with 0&c&1 and 5(x) the 5 function. Making a
transformation of phases we can prove that this
problem has the same density of states as the
periodic case. Therefore, using (10) we get that
the localization length is the same as that for the
periodic potentials P(V) = 5 (V+ Vo), L(E) = ~,
where n(E) e 0. Consequently we have a form of
off-diagonal randomness for which all states are
extended.

In applying these considerations to real quasi-
one-dimensional materials one must be careful
to examine cases in which the presence of off-
diagonal disorder does not automatically imply
substantial diagonal disorder as well. One pos-
sible case is that of dilute substitutional alloys
which possess a well separated impurity band.
A related case is that of Frenkel excitons in di-
lute substitutional alloys. Finally, in considering
the response of electrons to time-varying external
fields of frequencies higher thanphononfrequencies,
the electron-phonon interaction can be regarded
as producing static disorder. ' ' When intra-
molecular modes can be ignored or are absent,
we have a case of pure off-diagonal disorder. It
would thus be of considerable interest to extend
the considerations of the present paper to the fre-
qu ency-dependent conductivity.

Economou and Antoniou have generalized the
contents of the present paper to two and three
dimensions. They have shown that instead of
having one extended state at the center of the band
for off-diagonal randomness, there is a finite
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range of states which remain extended. Thus no
Anderson transition occurs in the absence of di-
agonal randomness. Such results are of primary
importance for the interpretation of data such as
that reported on excitation propagation by Koo et
al. for ruby.
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