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The temperature dependence of the "Cl nuclear quadrupole resonance (NQR) for the two chemically
inequivalent chlorine sites in the perovskitic layer-structure compound (CH, NH, ),MnC1, has been measured
around the second-order phase transition at 393.7 K. A value of the critical exponent P of the order
parameter was determined to be P = 0.250 + 0.005, which is intermediate between the corresponding values for
the three- and the two-dimensional Ising model. A microscopic model of the phase transition is proposed,
involving an order-disorder transition of the CH3NH3 groups. Above T, these groups move on a conical
surface between four equivalent potential wells which become inequivalent below T, . The mechanism of this

phase transition has been computer simulated in a point-charge model from which a quadratic dependence of
the "Cl NQR frequencies on the order parameter is derived. Quantitative agreement between theory and

experimental data is obtained by choosing appropriate values for the lattice parameters and by defining how

the probability amplitudes for the four potential wells vary with the order parameter.

I. INTRODUCTION

The compound (CH,NH, )2MnC14 crystalizes in a
perovskite-type layer structure exhibibng several
interesting structural phase transitions in the
paramagnetic phase. ' The space group in the
orthorhombic room-temperature phase is Cmca,
D,"„.' At present the atomic positions are pub-
lished only for the isotype compound
(CH, CH, CH,NH, ),MnCI, .' The structure consists
of infinite sheets of MnC1, octahedra sharing cor-
ners. Such an arrangement closely resembles a
plane of the perovskite structure, with Mn oc-
cupying the B sites (Fig. 1). There are two chem-
ically inequivalent chlorine sites, the bonding

Cl&» sites in the manganese plane and the non-
bonding Cl&» sites above and below the manganese
plane. The A sites in the cavities between the
octahedra are occupied by the NH, groups of the
methylammonium with an averaged C-N direction
perpendicular to the plane and pointing to next
MnCl, octahedra in adjacent planes. Interlayer
bonding is achieved only by van der Waals forces
acting between the CH, groups. On raising the
temperature the crystal undergoes a second-order
phase transition at 393.7 K leading to the tetrag-
onal space group f4/mmm, D'4~~. 2' ' For symme-
try reasons this transition must be related to an
order-disorder transition (change in the asym-
metry of the motion) of the CH, NH, groups.

Because of the analogy of the crystal structure
with smectic liquid crystals and membrane struc-
tures, the motion of these CH, NH, groups is of
great interest. Among all the perovskite-type
layer structures of the type (C+2„+,NH, }2MC14
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FIG. 1. Schematic representation of perovskite-type
layer in (C„H2„+fNH3) 2MnC14.

(n =1, . . . , 10, M =Mn, Fe, Cu) for which the te-
tragonal high-temperature phase can be reached
before decomposition only two (n = 1, M = Mn, Fe)
show a second-order phase transition. ' 7~th in-
creasing n the transition temperature moves to
higher values and at the same time the number
of structural phase transitions occurring between
room temperature and this highest transition tem-
perature before decomposition is increased. This
is certainly due to the increasing degree of free-
dom in the alkyl groups. In order to learn some-
thing about the nature of the complex motion of
the alkyl groups we directed our nuclear-quadru-
pole-resonance (NQR) studies to the simplest
system (CH, NH, ),MnCl„and to the mechanism of
the second-order phase transition at 393.'7 K.

In Sec. II the NQR measurements are presented.
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It is shown how the two observed resonance lines
were identified and assigned to the two chemically
inequivalent lattice sites of the chlorine nuclei.
From the temperature dependence of one of the
two lines a critical exponent is determined. In
Sec. 111 a microscopic model of the phase transi-
tion is presented which is based on all experimen-
tal data known up to now. Section IV is devoted to
a comparison of the NQR results with model cal-
culations based on our microscopic model. It is
divided into three parts: In the first part the elec-
tric-field-gradient (efg) tensors of the two chlo-
rine sites are calculated for the tetragonal phase.
In the second part an analytical calculation of the
NQR line shift due to the phase transition is per-
formed for the Cl&» site by using a two-dimen-
sional model. A numerical calculation with a
three-dimensional point-charge model and the
comparison with the experimental data are given
in the last part. In Sec. V the results are sum-
marized and discussed.

II. NQR MEASUREMENTS

Since measurements of the quadrupole coupling
constants are known to be a sensitive tool for the
study of structural phase transitions, we started
by looking for the pure nuclear quadrupole res-
onances (NQR) of "Cl at room temperature with
a self -quenched super -regenerative detector. The
resonance condition for the strong electron-spin
transition of Mn'+ was fulfilled periodically by
the magnetic field modulation over the whole
scanned frequency range (3-30 MHz). This
caused a strong frequency-dependent offset volt-
age at the lock-in detector, which hindered the
measurements considerably. Two resonance
lines of 'Cl were found at 7.711 and 4.564 MHz

corresponding to the two chemically inequivalent
lattice sites of the chlorine atoms. The signals
were identified by comparing the frequencies and
amplitudes with those of the corresponding sig-
nals of "Cl. As in the case of the ABCl, perov-
skite family the "Cl NQR frequencies are rather
low (e.g. , in CspbC1, vo-7. 7 MHz, ' in RbCdCl,
v+-11.2 MHz ') compared with known transition
frequencies in most solids.

The temperature dependence of the two "Cl
transition frequencies has been measured with a
Bruker NMR pulse spectrometer in the phase-
sensitive mode. The lock-in frequency was ad-
justed well above or below the resonance fre-
quency in order to obtain an undistorted line shape
from the Fourier transform of the signal decay.
The signals were extremely weak, i.e., 10' sum-
mations in the multichannel analyzer were neces-
sary to get an accuracy of +1 kHz in the resonance
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FIG. 2. Temperature dependence of the two S~C1 NQR
frequencies in (CHBNH&) &MnC14.

frequency. The linewidth for both lines was ap-
proximately 15-20 kHz. Above room temperature
the probe head was kept in a thermostatic bath
filled with silicon oil. The temperature was con-
tolled and monitored by two separate platinum re-
sistors. The temperature stability was better than
+ 0.01'. Below room temperature the probe head
was inserted into a gas-flow cryostat controlled
by a platinum resistor.

The measurements were carried out with bvo
crystals originating from different growth runs.
Both were grown from solutions saturated at
50 C by slow cooling. They contained as main
imperfections small. amounts of mother liquid in
the order of 0.1% by weight 'A. lthough the crys-
tals were stored in a desiccator containiag P205,
they contained enough free water in the bulk to
induce line shifts of the "Cl NQR in the order of
30 kHz. After keeping the crystals for several
hours at 400 K they showed reproducible results
with identical temperature behavior.

The results are shown in Fig. 2. The first-order
phase transition at 256.5 K causes a jump in both
NQR frequencies. Within the accuracy of the tem-
perature measurements (+0.05') no hysteresis has
been observed. The second-order phase transi-
tion at 393.7 K gives rise to a critical behavior
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FIG. 3. Frequency shift Av~2~ vs T~ -T on a square-
root scale. 6v~ 2~ is the difference between the ÃQR
frequency vp~2~ in the orthorhombic phase and the ex-
trapolated one from the tetragonal phase.

of the electrical field gradient (efg) at one chlorine
site, whereas the efg tensor of the other site is
almost unaffected. The critical exponent of
b, v+&» was found to be 0.5 from a plot of log
(Ave&») vs log(T, —T), where Ave &» is the dif-
ference between the resonance frequency and the
extrapolated frequency from the tetragonal phase.
In log-log plots, however, the weights of the data
points are not taken into account in a correct way
and small shifts in T, may lead to considerable
errors in the critical exponents. In Fig. 3, there-
fore, &vs&, ~

is plotted vs (T, —T)'~'. In addition
the function y =a(T, —T+ aT)~ was fitted to
hve&»(T, —T) by a least-squares fit for which

only data points with T, —T&15'K were taken into
account. The fitted value of d T =0.04'K indicates
that the measured value of T, is in good agree-
ment with the fitted value of T, . The calculated
critical exponent & is equal to 0.50+ 0.01.

In order to assign the two resonance frequencies
to the corresponding chlorine sites in the lattice,
rotation patterns in a small magnetic field of
40 Oe with a rotation axis parallel to the layers of
the crystal were measured for the tetragonal
phase at 400 K. From the rotation pattern the
direction of the principal axes of the electric-
field-gradient tensor 82 V/8x, 8x& and its asym-
metry parameter' w=—(V„-V„,}/V„may be de-
duced. The efg tensor belonging to the lower
frequency (4.5 MHz) was found to be axially sym-
metric (v= 0) with the principal axis z perpen-

dicular to the layers. This allows an unambiguous
assignment to the lattice site e of the space group
14/mmm (D~7) with the point symmetry 4mm, i.e.,

the lower-frequency line which shows that the
critical behavior belongs to the "nonbonding chlo-
rine" sites above and below the manganese plane
(Cl&, ~). The efg tensor belonging to the higher-
frequency line (7.63 MHz) showed a complicated
rotation pattern with two sets of extremely weak
lines. It did not allow a complete determination
of all the efg-tensor elements. All one can say
is that an asymmetry parameter N of the order
0.7 exists and that the two efg tensors are con-
nected by a rotation of 90' around the tetragonal
axis. This is in agreement with the point sym-
metry mme of the lattice site c which is occupied
by the "bonding chlorines" in the manganese
plane (Cl&, ~).

III. MICROSCOPIC MODEL AND MECHANISM OF THE
PHASE TRANSITION

The question of the dependence of vz on the order
parameter g can only be answered if a complete
model of the phase transition is constructed which
agrees with all experimental data known. Since
the space group in the orthorhombic phase is the
same as for (CH, CH, CH, NH, ),MnC1, one can adapt
the structural data of Ref. 3. The crystal axes
we use refer to the space group Cmca (D28~), where
the b axis is perpendicular to the layers and where
the mirror plane is perpendicular to the a axis
(Fig. 1). According to the literature the ortho-
rhombic phase differs from the tetragonal phase
by a shortened a axis, an elongated c axis, ' and
a washboardlike tilting of the MnCl, octahedra by
the angle s' around the a axes, as well as a fro-
zen-in position of the alkylammonium groups. '

The NH, protons form hydrogen bonds to the
chlorine atoms. The formation of N-H 'Cl
bonds is proved in two ways: (a} The thermal
decomposition of (CH, NH, ),MnC1, leads to
2(CH, NH, CI}+MnC1, ." (b) The infrared spectra
of aqueous solutions' of CH, NH, C1 and

(CH, NH, ) MnCl and of single crystals of the
latter substance show two absorption bands at
approximately 2400 and 2600 cm '. These bands
must arise from N-H Cl bonds since if Cl is
replaced by OH groups they are absent. "

One of the hydrogen bonds is approximately
parallel to the c axis and leads to a nonbonding

Cl~» site, whereas the other two lead to bonding

C1&» in the manganese plane. The three bonds
have approximately the same length with bonding
angles corresponding to an almost regular tetra-
hedral arrangement. The N-C bond is, there-
fore, tilted approximately about 20 with respect
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FIG. 4. Motion of the molecular axis N-C of a CHSNH&

group above and below T, in a schematic representation.
The probability amplitudes of the four possible carbon
positions (W& ~ ~ W4) are indicated by the black areas in
the corresponding open circles. The time-averaged
position are given by the full circles.

to the b axis. The CH, NH, groups having a tri-
gonal symmetry themselves are certainly rotating
around the molecular axis, i.e., for the NH, pro-
tons a jumpwise rotation between the bonds, and
for the CH, protons a free rotation. These rota-
tions are expected to freeze in at temperatures
well below 200 K as is well known for NH3 and

CH, rotations in all such compounds.
In the tetragonal phase an additional rotation

of the CH, NH, groups around the fourfold axis
must exist in order to fulfill the symmetry condi-
tions. Since the nitrogen position is more or less
fixed by the hydrogen bonds, the N-C bonds are
moving on a conical surface with a cone angle of
40'. The motion on the cone is not continuous,
but a jumpwise rotation for +90' around the C4
axis between four equivalent potential wells (Fig.
4}.

So far we have considered only structural argu-
ments. Experiments show that the assumed mo-
tion exists as described above

(a) The axially symmetric efg tensor (m=0) at
the nonbonding chlorine sites indicates that the
Cl &» sees a tetragonal charge distribution. There
are four possible Cl&»'' 'H-N bridges to the four
neighboring N atoms. At any time one of these
bridges will be occupied by a proton, and the prob-
ability of occupation must thus be equal for each
of the four. This proves the jumpwise rotation

of the NH, group around the C4 axis. The jump
rate ao must be much higher than the linewidth,
i.e., (d &10 sec

(b) The tilting of the N-C bonds about 20' can-
not be proved by these arguments, but if the mo-
lecular axes of the CH, NH, groups were parallel
to the C4 axes as it is drawn in Fig. 1 of Ref. 2,
the ordering would occur at much lower tempera-
tures (T, &200 K) for energetic reasons.

(c) Very recent NMR measurements on par-
tially deuterated crystals (CH, ND, },MnCl, prove
the tilting of the N-C bonds in the tetragonal
phase and the four potential wells as well as the
fast rotation of the NH, and CH, groups around the
molecular axis."

From the above picture of the tetragonal phase
one can try to derive the mechanism of the phase
transition. On lowering the temperature, the
tumbling motion of the CH,NH, groups becomes
more and more coherent because there is an en-
ergetically favored number of proton bridges
leading to a single Cl site (one bridge for non-
bonding Cl&» sites, two bridges for bonding Cl(y)
sites). With increasing coherence length the
response amplitude of the MnC1, matrix especially
the amplitude of the soft mode is increased. The
group-theoretical analysis of the phase transition'
DII,-D,"~ shows that the soft mode transforms ac-
cording to a r, representation in the X point of the
tetragonal Brillouin-zone boundary, so that the
order parameter g has two components g, and g, .
The eigenvectors of the soft mode represent a
linear combination of the 7, -symmetry vectors
and can be reasonably approximated by a rotation
of the MnCl, octahedra and the CH, NH, groups
around the a (q, = 0) or c (g, = 0) axes. g, and g,
are two components of the order parameter, and
it is shown4 that only the simple special cases
occur in the orthorhombic phase, where either
q, =0, q, w0, or@,=0, q, 0. The "rotation" of
the CH, NH, groups around the a axis must be
seen as a tilting of the time-averaged N-C direc-
tions caused by a biasing of the tumbling mode,
i.e., one of the four potential wells becomes fa-
vored. Figure 4 shows the projection of the mo-
tion of one N-C bond on planes perpendicular to
the b and a axes for T& T, and T& T, . For sim-
plification the position of the nitrogen is assumed
to be stable. The probability W, of finding the
carbon atom in the position 1 is illustrated by the
black area in the corresponding circle. Above T,
all four positions have equal probabilities,

~3 @4 + The time-averaged carbon
position is the center of gravity of the probabili-
ties. Thus the time-averaged direction of the
N-C bond coincides with the fourfold axis above
T, . Below T, the probability Wg increases with
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decreasing temperature and hence the center of
gravity moves out of the cone axis by a distance
b, x. Since the bc plane is a mirror plane of the
orthorhombic phase, &, is equal to W4 and bx
is parallel to the c axis. The deviation 4x is
given by

~x=(w, -w, )r,
where & denotes the radius of carbon-atom motion.
For small ~x the tilting angle y is proportional
to ~.

A definition of the order parameter g, couM be

linear dependence of the birefringence on the or-
der parameter was observed" and such a behav-
ior must be expected for all cases with nonvan-
ishing piezoelectric constants. The dependence
of Av+&;& on the order parameter is thus not triv-
ial and will be evaluated in Sec. IV for the above
model of the phase transition.

IV. CALCULATION OF Cl NQR FREQUENCY
DEPENDENCE ON THE ORDER PARAMETER

A. Point-charge model

n, = (W~ —.-')f, (2)
The "Cl NQR frequency is given by

where f is a normalization factor. From the pro-
portionality of 4x and g, (see Ref. 4) we get

e'qg(1-y~}
1

w'

3 (6)

w, w, =c(w, — ),
W, = W, (1 —c) + 4c.

The normalization factor f becomes

f =4(c —1),
if complete order (g, = 1) for W, =0 is assumed.
The system has physically significant solutions
for &- c ~2. The two limiting cases are

W, =W =W = —'(1 —W, }

and

(3)

(4)

For c& ~~ the system reaches with increasing W',

a state where W, =0 and W, =W, e0 if Eq. (3) still
holds so far away from the phase transition. Any

further increase of W, probably results in a new

phase tr ansition.
A complete freezing in of the tumbling motion

in the favored potential well at the phase transi-
tion would cause a flip in the time-averaged N-C
directions about 20' and does not agree with a
second-order phase transition. The transition
entropy of" 0.03 cal/molK is in fact too small
for a complete freezing in of the tumbling mode.
The NMR-NQR investigations of the deuteron
sites in (CH, ND, ),MnC1, indicate that the tumbling
mode exists down to the first-order phase transi-
tion at 256 K where y is approximately 14'." If
the same is true for (CH, CH, CH,NH, )2MnC1, the
N and C positions of Ref. 3 must be the time av-
erage of the tumbling mode.

It follows from the group-theoretical analysis
of Ref. 4 that the deformation and the birefrin-
gence vary as the square of the order parameter.
In contradiction to a statement made in Ref. 2

this is not generally true for order-disorder
transitions with a change in crystal symmetry.
For the order-disorder transition in KH, PO4 a

where eQ is the nuclear quadrupole moment,
eq = 82V/Bz is the largest component of the efg
tensor at the site of the nucleus in the principal-
axes representation, w = (V„—V, ,)/V~, is the
asymmetry parameter, and y~ is the antishield-
ing factor. " The efg tensor is a traceless se-
cond rank tensor caused by the charges surround-
ing the nucleus. The usual attempts at calculating
efg tensors start with a point-charge model of
the crystal lattice by assuming that the influence
of the electrons belonging to the investigated nu-
cleus can be taken into account by an antishielding
factor. The second step is then to introduce ef-
fective charges and their effective distances to the
investigated nucleus in order to fit theory to ex-
perimental data. Usually such attempts do not
lead to satisfying results, but there are situations
where the application of a point-charge model is
useful for qualitative arguments as in the case of
the phase transition under study. With the simu-
lation of the phase transition in a point-charge
model we tried to obtain answers to the following
questions: (a) What is the relation between order
parameter and v&, ~

for the nonbonding Cl~»
sites? (b) Why is vs&» of the bonding Cl&» sites
not affected by the phase transition?

The simulation was started by constructing the
tetragonal phase with the coordinates of the ortho-
rhombic space group Cmca, i.e., a= c, Q =0, and

y =0. The tumbling mode was simulated by plac-
ing positive charges on all possible proton sites.
The probability of finding a proton at a given site
was expressed by weighting the charges (+-,'e for
the bonds to the off-plane Cl&» sites and + ~e for
the bonds to the inplane Cl&» sites). Figure 5
shows the situation in a plane parallel to the lay-
ers cutting the N and the nonbonding C) &» sites.

For the charges of the other atoms the following
assumptions were made: CH, is neutral, N is
-2e, H is +e, Mn is +2e and Cl is -e. Since only
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(CH, CH, NH, ),CuCt, we obtained similar results
(measured: vo(, ) ——11.50V MHz, ve(s)

——11.094
MHz, v()(» /vo(» =1.04, calculated ratio based
on the structure determination" vs(2) /vp(s)
= 1.24).

The efg tensors being calculated with respect
to the orthorhombic axes are in general not diag-
onal. Since the poor signal-to-noise ratio of the
"Cl NQR signals did not allow a complete deter-
mination of the efg tensors (w and the orienta-
tion of the principal axes are not known in the
orthorhombic phase), the comparison between
theory and experiment is limited to the frequency
vQ. This has a serious disadvantage because ~Q
does not depend linearly on changes in the ele-
ments of the efg tensor.

FIG. 5. Positions of the atoms in a plane parallel to
the layers cutting the N and the nonbonding Cl(t) sites in
the tetragonal phase.

van der Waals forces are acting between the CH,
groups of adjacent layers their charge can be
neglected. Thus a CH, NH, group has the charge
+e and the Mn" has the charge +2e. The other
charges are chosen to give a neutral system.

The lattice sum for the efg tensors of the two
Cl sites gives eq =+0.150 A ', m=0 for the off-
plane site, and e(f =+0.241 A ', w =0.85 for the
in-plane site. The ratio of the measured NQR
frequencies differs only by 5% from the calcu-
lated ratio. This surprisingly good agreement
might be an accident but in the case of

B. Analytical calculation of the NQR line shift for the

Cl&» site in a two-dimensional model

To get a physical feeling for the relative im-
portance of the various contributions to the line
shift we first solve a simplified two-dimensional
model shown in Fig. 5. Here only changes in the
efg tensor occurring from the neighboring proton
are taken into account. In the tetragonal phase
above 1; there is a strong positive efg tensor
A„with w =0 and z()b resulting from the lattice
without protons The .influence of the neighboring
proton is given by two tensors Bf» and Cf» with
w =0, zI~a and zinc which differ only in orienta-
tion. The probability of finding the proton in one
of the four CI(» -N directions is given by +'„&„
~„and~4 as used for carbon positions in Sec. DL
The total efg tensor T;» becomes

T(), =A(l + (W, +W2)C(s +(Ws+W0)B(s .

(-0 0 0) (-0 0 0) (20 0 0)
T,~ = 0 +2a 0 +(W, +W, )~ 0 b0 +(W, +W-0) 0 b0-

(0 0 I (—0 0 20) (0 0 -I)
so that

-a+-,'b 0 0 -t 0 0

0 = 0 2t 0, w=0, z)b.
-a+'5 0 0 -t

(8)

By using the order parameter q, of Eq. (2) in the
limiting case c = &4, the transition from the tetra-
gonal to the orthorhombic phase is obtained

Equation (7) now reads

T,'s =A, )2+(w+srls)C(s +(~s —sr4)B(), 2

3W'~ = 4t)2+4,

W, 02 Ws =W3= W0 = —,'(1 -)4).
(8)

(10)

so that

I l 1
f» f» a~2 i» (12)
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The asymmetry parameter n becomes

s =3qob/2t,

whereas eq =2t remains unchanged as long as the
condition [~ri,b( & j t [ is fulfilled. By putting this
result into Eq. (6}we get

Since neq = ', (b—/ r)6, d ve&» is ProPortional to -6,
i.e., MQ&» is proportional to -g2.

For the tipping the change in the efg tensor is
given by

e 2qQ(1 yoo) 3bo

4t 2~2 (15)

12—b.
and with a linear expansion for small w we find a
quadratic dependence on the order parameter g2

e 'qQ(1 -y~ } 3b'
Q(2)

=
2h 8t 292 (16)

By neglecting higher-order terms we get

(3-5
aa„= 0

(3

0
35——b2r
0

o )
0 (18)

Equation (16}shows that a complete freezing in of
the tumbling mode at the phase transition would
cause a jump in vQ(2) which was not observed. It
can be seen immediately from Eqs. (5) and (7) that
the efg tensor T,» and hence also vQ&» are not
affected by the ordering of the neighboring pro-
tons in the limiting case c =2. As mentioned in
Sec. III the ordering is accompanied by a tipping
of the MnCl, octahedra about the angle ~ALII) and by
a deformation g = (c —a)/c of the lattice. These
two effects have an additional influence on vQ&»,
which has to be taken into account. The calcula-
tion based on the two-dimensional model of Fig.
5 is easy to perform. The tipping of the octahedra
leads in a first approximation to a displacement
e of the Cl&» into the direction of the proton site
1. Because of the symmetry properties of efg
tensors the effect of the deformation can be simply
described by a single positive charge at the proton
site 2 approaching the Cl&» site by the distance 6

along the a direction. The change in the efg ten-
sor is given for the latter case by

1 1
(r 6)3 r

53
3 —+6—+10—+ b .rs

In this case the odd terms in the expansion vanish
and AvQ&» becomes proportional to -&'. Since &

is proportional to Q and to g„~vQ&» is propor-
tional to -$22.

The deformation and the tilting of the octahedra
are almost orthogonal to each other so that cou-
pling terms between them are expected to vary
with g2'. This is not the case for the tilting and
the ordering where a bilinear term hvQ(g)(obq2)
has to be taken into account. If the proton motion
is neglected (q, = const) as in our first approach"
this term depends only on Q and leads to a wrong
result.

( =)Pg2, (21)

C. Numerical calculations of the Cl NQR line shifts by

simulating the phase transition in a three-dimensional

point-charge model

To get an idea of the magnitude of all contribu-
tions to ~Q«& the phase transition was computer
simulated for the whole lattice by varying the
lattice constants and the atom coordinates. The
various proton charges were expressed by the
corresponding probability amplitudes S'~. The
effects on vQ«& were derived from the lattice
sums of the point-charge model. This procedure
was necessary especially for the C1«& site, be-
cause this case cannot be treated with a two-di-
mensional model. The atom coordinates used in
the point-charge model were calculated by using
the layer configuration and the Mn-Cl distances
of Ref. 3 and the lattice constants of Ref. 2.

In order to obtain realistic results the relation
between the three parameters g, p, and q2 and
the value of c had to be estimated. From the
group-theoretical analysis of Ref. 4 we know

and hence and hence
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y =(k,/k, ) I'" (22) v&»k, +w&»k2+s&»k2 —0. (27)

With the assumption q2=1and W, =Oat 256 K, k,
can be obtained using the deformation g from Ref.
2 k,' =9.1~10 '. Since the tilting angle Q is known
only for (CH, CKCH, NH, ),MnC1„ the ratio k, /k,
=46.V' was taken from there and one gets k,
= 4.45'. The extent of the critical region down to
256 K, where T, —T = 138 K, is justified by the
measurements of Ref. 2. The measured devia-
tions of duo(»(T} from the (T, —T)( law, how-
ever, already become significant for T, —T&15 'K
owing to higher-order effects. At T, —T =15'K
the values of the parameters are @2=0.56, $ =2.85
x10 ', and III} =2.49'. From Fig. 2 one gets
Li~ekv Q(y) 0 and 4u'Q&» =43 kHz for this temperature.
The constant c denoting how the increase in W,
is shared between S', and @'2 =W4 may be estimated
by using the fact that the tilting angle y of the
time-averaged N-C direction reaches only VOQ

of the cone angle for complete order. " Introduc-
ing this into Eqs. (1}and (3) one obtains c=1.55.

The calculated efg tensors of the point-charge
model were diagonalized and the vQ«) were cal-
culated using Eq. (6) with e'Q(1 -y")/2k =1. The
frequency differences hvQ«) were taken between
the values of the orthorhombic and those of the
tetragonal phase.

'vo(() = vq(()('92~ I~ 4) o(()( '

The computer simulation of the phase transition
in the point-charge model yielded the following
relation:

2
"Q«) «)~2+ «)~+ «)~ +

=(u(,)+v(, ) k, +w(,.) k2+s(, )k, )pm=a(()res,2=

1/2

(u(s =Or/ v(g) &0/ w(y) (0, s(g) (0)

(u(2) &Ore v(2) &0, w(y) &0, s( ) (0) (25)

We assume that for Cl&y) the various contributions
compensate each other by accident. Some evidence
for this was obtained from "Cl NQR measurements
for the equivalent phase transition D4~ —D,", in
(CH, CH, NH, ),CuCt, where the Mn ions are replaced
by Cu ions. Figure 6 shows the temperature de-
pendence of vQ(y) and vQ&». Although the phase
transition is of first order one can see that q(y) 0 0
for this case.

According to the measurements (Fig. 2) the con-
stant q(» in (CHSNH, ) MnC1 is positive. From Eq.
(25) we know that only the ordering of the protons
&~» & 0 gives a positive contribution to the NQR
line shift of the Cl~» sites. With the two-dimen-
sional model we have shown that the ordering of
the neighboring protons increases the asymmetry
parameter w of the efg tensor resulting in an in-
crease of vo(» [see Eqs. (15) and (16)]. The in-
crease of n is significant only if the constant c
is smaller than the upper limiting value, i.e.,
c &2. In the computer simulation a positive value
of q&» was obtained only for c&1.57. This proves
that not only the probability amplitude W, but also
&2 and W4 decrease with increasing @',.

So far the calculated values of L3vQ«) were ex-
0

pressed in units of A '. As soon as one needs

4v«) in frequency units, in order to compare
them with measurements, one has to make as-
sumptions which do not generally hold. In our
case we made the assumption that the relative
change in the measured resonance frequency is
equal to the relative change in the calculated res-

I I I I I I I I I I I I I I

P = —,'& =0.250+ 0.005. (26)

where u«), v«), w&,.), s«), and q«) denote the co-
efficients for proton ordering, deformation, tilt-
ing, bilinear coupling between proton ordering and

tilting, and total contribution, respectively. The
dependence of b,vQ«) on the parameters were
tested up to the limits given by the parameter
values at T, —T=15 'K and the accuracy of Eq.
(25) was found to be better than +0.1% within these
limits. Equation (25) also holds for both limiting
cases of the constant c (c=~4and 2).

The critical exponent g of 4vQ&» determined in
Sec. II is therefore twice the critical exponent P
of the order parameter.

11.4-

11.0-

I I I I I I I I I I I I I I I

300 350 ~(K) 400

Since q(y) was measured to be zero, we have
FIG. 6. Temperature dependence of the two Cl NQH,

frequencies in (CH&CH2NH3)2CuC14.
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TABLE I. Computed values of the various contributions to the shifts in the NQR frequencies
according to Eq. (25) in kHE for the parameters F2=0.56, )=2.85 X10, and p =2.29 deter-
mined at & —T =15 K. The results are shown for the two limiting cases of the constant
c (c=2, c=$}as well as for the intermediate value c=1.50, which gives the best fit with the
experiment.

(f)?)2 g ( g) $ ?N(g) lent) s(i) fpdd lit) ~( f) ~ 2 +(2) 772 y (2)~ gP(2) @ g(2) g24 +(2)
2 ) 2 2 2 2 2

1.50

+ 38 -25

0 + 38 -25 -18
+ 38 -25 -13

+ 10 -12 -12
+ 293 -12 -12
+ 83 -12 -12

-11 -25

-21 + 248

-16 + 43

Measured MQ(; ) at T —T= 15 'K

onance frequency:

6v
(calc) = oi'l (meas) .6v

vo «) Q(&)

This implies that the antishielding factor 1 -y~
of the Cl ion is the same for the whole calculated
external efg tensor as well as for small changes
in it. This is certainly not true if covalent bond-
ing is present. A fit of the theory to the experi-
ment [qi» (calc) =qf» (meas)] has therefore to be
interpreted with some caution. Our point-charge
model, however, allows values of q(» to be fitted
within a large range [0 &qi, l &6qi»(mess) with qt, l

=0]. Since t}, is given by definition, and since
the deformation $ is measured (i.e. , k, is known),
only 0, and c were used to fit theory and experi-
mental data. The fit yielded ih, =4.1' and c=1.50,
a result which agrees very well with the estimated
values. Table I gives an idea of the magnitudes
of the different contributions to 4vQ«) according
to Eq. (25).

The success of the point-charge model in the
case of (CH,NH, )aMnCI, is probably due to the
following facts. The efg tensor at the origin of a
coordinate system caused by a single point charge
at the site r decreases with & '. On the other
hand, the number of charges in a sphere of a crys-
tal with radius ~ increases with r'. Although an
r ' dependence of the contributions to the lattice
sum results, the lattice sum converges within a
few lattice constants because of the neutrality of
the system. This was tested for our model by
using different ways of summation. " ' There-
fore, the contribution of next neighbors is dom-
inant, in our case the contributions of the Mn
and the protons &=2.5 A. If one takes a single
Cl(» site with its neighboring Mn atom and pro-
ton one gets

eqM„„(Clt,i) =eqM„+eq„=0.26 —0.07=0.19 A ',

whereas the whole lattice sum for all charges
yields eq=0. 15]i . Similar results are obtained

for the Cl(» site. The main contributions to
lkv«) at the chlorine sites are therefore due to
changes in the Cl-Mn and Cl-H distances as well
as to the ordering of the protons.

Y. CONCLUSIONS

We have constructed a microscopic model for
the structural second-order phase transition in
the layer structure (CH,NH, ),MnCI, . The experi-
mental results show that the phase transition is
governed by the motion of the CH, NH3 groups.
We have analyzed this motion to be a jumpwise
rotation of the molecular axis on a conical sur-
face connected with the four distinguishable ori-
entations of the NH, groups. These orientations
are due to the formation of N-H ' Cl bonds
which are responsible for the four potential wells
of the jumpwise rotation. In the tetragonal phase
the probability amplitudes of the different ori-
entations are equal in time. Below the phase
transition the motion of the CH, NH, group becomes
biased, i.e., one of the orientations becomes en-
ergetically favored. In a system with four poten-
tial wells it is not possible without additional in-
formation to predict how the probability ampli-
tudes of the less favored orientations will de-
crease. For symmetry reasons it was possible
to describe this decrease with a single constant
c. Together with the order parameter g and the
related lattice deformation the constant c deter-
mines the mechanism of the phase transition.

In order to explain the temperature dependence
of the two "Cl NQR lines the phase transition
was computer simulated in a point-charge model
based on the microscopic model described above.
The calculated shift of the resonance frequencies
hvQ«) was found to vary exactly with the square
of the order parameter g. The critical exponent

P of the order parameter q [t}~(T, —T)s] was
found to be somewhat lower (P=0.25) than in Ref.
2 (P =0.315). The theoretical value of P for a
three-dimensional Ising model (cubic fcc, bcc)
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is P=0.312, whereas for the two-dimensional
Ising model a much lower value is calculated
(P =0.125)." Although no theoretical value of P
for an orthorhombic three-dimensional Ising mod-
el has been calculated up to now, one can say
that the coupling between adjacent layers should
not be neglected in a theoretical treatment of the
phase transition, and thus the layer structures
cannot be considered as two-dimensional perov-
skites.

The computer simulation of the phase transition
in the point-charge model allowed not only the
temperature dependence of 4vz«& to be explained
but also gave a self-consistent proof of our micro-
scopic model.

Recently, Heger" has finished detailed structure
analyses of the orthorhombic and the tetragonal
high-temperature phases of (CH,NH, ),MnCI, . In

the tetragonal phase each of the four potential
wells is split into two close minima owing to the
fact that the N-H Cl bonds are not perfectly
straight. This additional splitting is absent in
the orthorhombic phase. In reality the motion of
the N atoms is also larger than assumed in this
paper. Accordingly the C-N motion corresponds
to a double cone with the summit between C and
N. The proposed mechanism of the phase transi-
tion is, however, not altered by these structural
adjustments.
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