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The effect of impurity scattering on plasmon-assisted optical absorption in semiconductors is studied using
Green's-function techniques. The interaction H,~ of the electrons with the electric field of the photon, the
interaction H,„ofelectrons and plasmons, and the change H,„~ in H,„caused by the electric field are all

considered. For momentum-conserving final states the amplitudes for processes linear in the electric field E
exactly cancel just as they do in the absence of collisions. For final states that are not momentum conserving,
this cancellation no longer occurs, and a finite absorption is obtained.

I. INTRODUCTION

Experimental studies of the infrared magneto-
optical properties of InSb have revealed interesting
structure near harmonics of the cyclotron reso-
nance frequency for both the cyclotron-resonance-
active and inactive circular polarizations in the
Faraday configuration. ' ' The origin of these
cyclotron "harmonics" has been attributed to
plasmon-assisted magneto-optical transitions. ' '
Diagrams depicting these transitions are shown
in Figs. 2(b) and 2(c). The absorption of the in-
cident photon (wavy line) is accompanied by the
creation of an electron-hole pair (solid line). One
of the single-particle excitations then emits a
plasmon and scatters to its final state. The posi-
tion of the fundamental cyclotron-resonance-in-
active absorption peak as a function of carrier
concentration and magnetic field strength has been
studied carefully, ' and it agrees well with the
model of plasmon-assisted transitions. The ampli-
tude of the "harmonics" has been estimated by

applying second-order perturbation theory to a
plasma of free carriers in a perfect crystal, '
and order-of-magnitude agreement with experi-
ment seemed to further justify the model.

The interpretation of these experiments in terms
of plasmon-assisted absorption has been questioned
in a recent paper of Blinowski and Mycielski' (BM).
The fundamental point raised by these authors is
that for an unbounded plasma of carriers with
energy-independent effective mass in a perfect
crystal, the center-of-mass degrees of freedom
are completely independent of and separable from
the internal degrees of freedom of the plasma.
Furthermore, only center -of -mass degrees of
freedom can be excited by a, uniform electric field.
Since plasmons are associated with internal degrees
of freedom, they cannot affect the absorption of

long-wavelength radiation which couples only to
the center of mass of the plasma. Blinowski and
Mycielski demonstrate explicitly that, in the ab-
sence of a dc magnetic field, the modification of
the electron-plasmon interaction due to the pre-
sence of a spatially uniform electric field contri-
butes a term to the transition amplitude which ex-
actly cancels the contribution from plasmon-as-
sisted processes considered by previous authors. "
The argument in no way depends on the presence
or absence of a dc magnetic field, so it should be
equally applicable to the case of magnetoplasmon-
assisted cyclotron "harmonics. " These con-
clusions rest on a rather general argument which
has previously been invoked in connection with
cyclotron resonance" and spin resonance" in con-
ducting materials.

In spite of the point raised by BM, the inter-
pretation of the infrared absorption at "harmonics"
of the cyclotron frequency appears to be plaus-
ible, " though the amplitude of the effect may be
reduced somewhat from the initial estimates.
The reason for this is that the complete separa-
bility of the center of mass and internal degrees
of freedom does not hold in the actual experimental
situation. The separability depends upon there
being no preferred frame of reference for the
plasma of free carriers. In an actual InSb sample
the effect of nonparabolicity of the conduction band
and the presence of a random array of fixed im-
purities make the lattice frame of reference a
preferred frame, and the separability no longer
occurs. In a previous paper" it was pointed out
that the modification of the electron-plasmon in-
teraction due to the electric field is reduced in
the presence of impurity by a factor (1+ijuT„) ',
where 7;, is a transport collision time. It was
suggested that even when momentum-relaxing
collisions of the single-quasiparticle states with
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impurities were included, the exact cancellation
found by BM would not hold. The object of the
present paper is to include the effects of impurity
scattering on both the single-quasiparticle states
and on the center-of-mass motion, and to demon-
strate that the exact cancellation of BM does not
occur unless (dT —~. Since the validity of the BM
argument is unrelated to the strength of the applied
magnetic field, we consider for simplicity, only
the ease where no dc magnetic field is present.

In Sec. II we introduce the model Hamiltonian
used to describe the electrons, their interaction
with the spatially uniform ac electric field (the
photon field), and their interaction with the
plasmon degrees of freedom. The modification of
the electron-plasmon interaction caused by the
uniform electric field E is evaluated to first order
in E.

In Sec. III we consider the well-studied problem
of free-carrier absorption due to particle-hole
excitations (i.e. , plasmon effects are ignored}.
In the absence of impurity scattering there is no

absorption due to this process. When impurity
scattering is included, the imaginary part of the
susceptibility is found to be

Imp = Ne'[me'Tt, (1 + e '7 „']

where N is the carrier concentration, v;, is trans-
port relaxation time. This result agrees with the
classical Drude formula for free-carrier ab-
sorption. This section is intended as an intro-
duction to the notation and methods used later in
the paper for less familiar problems. The ques-
tion of plasmon-assisted free-carrier absorption
is treated in See. IV. Here we find that if only
momentum-conserving final states of the electro-
nic system are considered, the BM cancellation
still holds. However, when non-momentum-con-
serving states are included, the resulting plasmon-
assisted absorption no longer vanishes. In Sec. V
we consider the excitation of a single plasmon as
a source of optical absorption. We find that the
absorption due to a single-plasmon excitation is
much smaller than plasmon-assisted free-carrier
absorption. The processes discussed in both
Secs. IV and V will have a more complicated fre-
quency dependence than the simple Drude formula.
However, the main objective of the paper is not to
obtain numerical estimates of the strength of the
plasmon processes, but to demonstrate that the
BM cancellation holds only if eT-~. Section VI
contains a summary and discussion of our results.

II. INTERACTION HAMILTONIAN

We use the model of BM and describe the free
electrons in first quantization. The Hamiltonian

H, e= -(e/mar)E ~ V . (2)

Plasmons are described in second quantization.
The free-plasmon Hamiltonian is given by
Hp =~~qm 4) qbqbqp where b, is the annihilation op-
erator for a plasmon of wave vector q and fre-
quency ~,. The electron-plasmon interaction is
given by

H„= A(q)e' '" " b-+H. c.

Here r is the electron coordinate and R, is the
position of the center of mass of the unbounded
carriers. In the absence of an electric field R,
may be chosen to be zero, but in the presence of
a spatially uniform electric field E exp(iu&t), R„„
oscillates as R. = eE exp(i&st)/m(&u +i/T&, ), where
~t, is the transport scattering time due to electron-
impurity scattering. It should be noted, however,
that the electron-plasmon interaction H,~ is modi-
fied in the presence of an electric field. This
modification' (absent in the electron-phonon in-
teraction} results from the fact that the plasma
as a whole is not at rest but oscillates with R,
By expanding H, & in powers of E or R, and ne-
glecting all the nonlinear terms in E (dipole ap-
proximation), we can write ff,~

= H~+H», ' here
H,»is the modification interaction term due to the
external electric field. In second-quantization
notation Eqs. (2) and (3) can be rewritten

186 p
HeE ~ apap+H. c.,m~

P

iee ~ qA (q)
Hept I ~ / % ap+qap&q +H. c.,~~(~+ ~Z'7„&

p q

H,&
=g A (q) a &+ z a z

b
q

+ H. c.
p, q

(4)

Here e is a unit vector parallel to E. The photon
operators are deliberately excluded from H, ~
and H,». a~ and ap are, respectively, the elec-

Ptron creation and annihilation operators. In

for a single electron in the presence of an ac
electric field can be written

H = (1/2m)[p —(e/c )A] ',
where p is the momentum operator for the electron
of mass m and charge e, and X is the vector po-
tential of the ac electric field. We have chosen a
gauge in which the scalar potential Q is equal to
zero; therefore the electric field E is given by
E = (t~/c)A, where e is the angular frequency of
the ae field. This Hamiltonian can be divided into
two parts: the free-electron Hamiltonian H, = P'/2m,
and the interaction (only the linear term in E is
retained) of the electron with the ac electric field
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order to study the effect of impurities, we ne-
glect the plasmon-impurity interaction and only
consider the electron- impurity scattering II„.
H, &

has the form

H„=g g e' &' ''o U(p-q)a&r, a, ,

where r, labels the position of the impurity and

U(p) is the coupling between electrons and im-
purity atoms. In the next few sections we shall
investigate the dissipative part of the following
frequency-dependent dielectric function

where H'=H e+H,» and T( ——) is the T ordering
defined in Ref. (13). In the following calculation
we shall always put the volume of the system
V=1.

III. ABSORPTION DUE TO PARTICLE-HOLE
EXCITATION S

The response function whose dissipative part
yields a particle-hole final state is shown in Fig.
1(a}, where the single wavy line represents the
incoming or the outgoing photon, the solid line
represents the electron Green's function. The
shaded triangle appearing in Fig. 1(a} is the
photon-electron vertex H» in Eq. (4), renor-
malized by electron-impurity scattering. In
treating the electron-impurity scattering we shall

adopt the method described in Ref. (13). The
"average" electron Green's function is defined as"

G(p, u&) =[&@ —
$&, +(i/2r)(u&/(&u()] ',

where

(6)

( U(8)i'dn .

The energy $~ is defined by (~=P'/2m-P, '/2m; P,
is the Fermi momentum, and n is the number of
impurities per unit volume. The renormalized
photon-electron vertex is shown in Fig. 1(b}. Its
evaluation is explicitly given at p. 328 of Ref. 13.
We need to write only the result and denote it by
V(p„&u, &()')

i U(8) i
'(1- cos8) dQ,(2v}'

(6)

Then it is straightforward to show that after av-
eraging over the positions of the randomly distri-
buted impurities the response function in Fig. 1(a)
can be written

where p, =P~/~P ), p, &()' and &() are the momenta
and frequencies appearing in Figs. 1(a) and 1(b).
8(&()) =1 for &(()&0 and 6(u) =0 for «)&0. In terms of
the electron-impurity coupling U(P), the transport
time w„and 7; are defined, respectively, as

Ca) P

x G(p, &a' +au) G(p, (u'} .

Replacing the summation over p by an integration,

(0)

and we integrate first over g~ and then v'. We
obtain the imaginary part of g, (&())

C(&l

FIG. 1. (a) Diagram showing one of the dielectric
response functions. The final state of the dissipative
part of the response function is a particle-hole pair.
(b) Photon-electron vertex renormalized by electron-
impurity scattering. The cross means electron-impurity
atom interaction and the dotted line between two crosses
means electrons scattering from the same impurity
atom.

(10}

where N is the total number of electrons. In the
clean limit 1/r„-0, Imp, (&u) =0. This fact, that
the free carriers cannot absorb light in the ab-
sence of impurities, is well known. In other
words, the final state, in the absence of im-
purities, does not simultaneously satisfy both the
momentum and the energy conservation laws.
However, by including the lifetime effect for the
electrons, the conservation law is relaxed and
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therefore a nonzero absorption is obtained. It
should be noted Eq. (10) agrees completely with
the classical Drude formula.

IV. ABSORPTION DUE TO PARTICLE-HOLE AND

PLASMON EXCITATION S

In this section we shall discuss the optical ab-
sorption process in which the final state is made
of particle-hole and a single plasmon. We shall
show that unless the final states do not conserve
momentum, the absorption coefficient will vanish.

A. Momentum-conserving final states

The calculation of the response function from
Eq. (5) involving the excitation of a particle-hole
plus a plasmon is rather cumbersome, because
nine diagrams must be evaluated. Another way to
calculate the imaginary part of the response
function is to use the open-diagram method. This
method seems to be much simpler and is going to
be applied below. The imaginary part of the re-
sponse function in the present case can be writ-
ten

lmX, (~) =g I
T(~, p, q) I'S (~, p, q),

ps q

where T(u, p, q) is the T matrix which is the
matrix element between the initial state and the
final state. The initial state is a photon and the
final state is a plasmon plus a particle-hole pair.
S(&v, p, q) is the spectrum density of the final state.
p and q are the momenta associated with electron
and plasmon, respectively. Diagrams which re-
present the T matrix are shown in Fig. 2, where
the double wavy line is the plasmon propagator.
Its expression is given in Appendix A. The shaded
circle in Fig. 2(a) comes from H,~x of Eq. (4). It
represents a process in which a photon is ab-
sorbed, and at the same point in space and time a
single plasmon and a particle-hole pair are cre-
ated. The contribution from Fig. 2(a) is of the form

FIG. 3. Diagram showing one of the dielectric response
functions. The final state of its dissipative part is a
particle-hole pair plus a single plasmon. Momentum is
conserved in the final state. The vertical dashed line
indicates where the imaginary part should be taken.

The spectrum density is not so easy to determine
in the present case, since the lifetime effect of the
electrons has to be included. However, we note
that the contribution of Fig. 2(a) to Immit, (&o) is
simply the imaginary part of the diagram as
shown in Fig. 3. The evaluation of Fig. 3 should
provide the explicit form for S(&o, p, q). Let us
use Eq. (9) and integrate over $~ first in Eq. (11).
Then Imp, (&u} can be rewritten"

xmx. ( x=~x I' f &xx; I, lx'(, xx. , tx)l*&(,xx., i).

The graph in Fig. 3 has been evaluated in Appen-
dix A. It yields

~(~, p. , q) =5~(q)I~- ~(q)]8(~- ~(q)}

1 1
[(u- (o(q} —e(p„q)]'+1/r' r '

(14)

where e(p„q) = po q/m —q '/2m, and ~(q) is the
plasmon frequency. The matrix element repre-
sented in Fig. 2(b) represents a process in which

T ((u ) =-A( )'q m(o((a+i/r„)
' (12)

+ w-w(q)

(o) (b)

(b) (c)

FIG. 2. Diagrams showing the transition matrix
amplitudes with an electron-hole pair and a single plas-
mon as final state. The momentum is conserved in the
final state of these processes.

(e)

FIG. 4. Lowest-order corrections to graphs in Fig. 2
due to electron-impurity scattering.
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a photon is absorbed and an electron-hole pair is
created (by H,e); subsequently a plasmon is emitt-
ed by the electron (by H,o). Its contribution to the
T matrix is given by

T, ((d, p„q) = -A (q) 1+—ie& pp i 1
» y p& m(d r, (d+i/r„

(
1

X —! + '/2T)(
4~ = co'-f

functions. The lowest-order corrections to dia-
grams in Fig. 2 caused by electron-impurity scat-
tering are shown in Fig. 4. It is rather straight-
forward to show that, after averaging over the
positions of the randomly disttributed impurities,
the contribution of Fig. 4(a) to the T matrix ap-
pearing in Eq. (13) is given by

T.((d P q)=n g T"((d Po q)IU(P —Po)I'
Z8& o pp

m (d((d + i/Tt )
(15) x Gg" +q (d'+(d (d(q))G(p (d )

Similarly the contribution from Fig. 2(c) is given
by

iee (po+q)T.,(~, p. , q) =/t (q) („,./ )
~

tr
(16)

It is easy to see that the sum T„+T»+ T„=O.
This means that the system cannot absorb light
even though the scattering effect due to impurities
is included in the Green s function and the vertex

Integrating over $~„we obtain

SmPp WyT,.(&,~, p„q) =
(

„dQs„T,.((d, p, , q)
271'J p

I U(p. —P.")I'
~- ~(q) —e(p.",q)+i/T '

(17)

The contribution of Fig. 4(b} is of the form

T44((d Po q) =s g &(q)i'(Po ~(d((d')
I U(po- Po) I

G(p", (d'+(d)G(p" +q, (d'+(d-(d(q))G(p" (d'),
P/I

where V(po', (d, (d') is defined in Eq. (7). The inte-
gration over (~„yields

('.,(,i., t((=(2,(' f «q, r.,(,ol, t((

I U(po- po') I'
(d (d(q) —r(P-o, q) +i /r

(18)
Similarly we find the contribution from Fig. 4(c)
to be

T4,((d, P„q) =
(

„' dn~„T„((d, Po', q)
217) p

I U(Po —Po'
I

(d —(d(q) —e(p(&, q) +i/T

(19)
Since T„+T»+ T„=O, we see immediately from
Eqs. (17}, (18), and (19) that T„+T„+T„=O.The
last two graphs in Fig. 4 come from the electron-
plasmon interaction renormalized by electron-
impurity scattering. The renormalized interaction
in Fig. 4(d) can be written

A(e( 2,(. f «s.-l(((P.-Pl'(I*

x d$ „G(p",(d+(d')
w co

x G(p" +q, (d+(d' —(d(q)).

Since the final state requires (d+(d' —(d(q) &0

I

((d+(d' & 0) and (d' &0, the pole associated with each
of the Green's functions in the above expression is
in the lower half-plane. The integration over (~„
is thus equal to zero. The same conclusion is also
true for Fig. 4(e).

The basic conclusion of this section has already
been obtained previously in the absence of impurity
scattering. ' What we have demonstrated here is
that, by including the effect of impurity scattering
in a well-defined approximation, the system can-
not absorb energy from external field so long as
only optical processes which conserve the momen-
tum in the final states have been taken into ac-
count.

B. Final states that do not conserve momentum

Up to the present moment the type of response
function shown in Fig. 5 has not been considered.
The matrix element between the initial state and
the final state can be represented by the part of
the diagram which is on the left-hand side of the
dashed vertical line in Fig. 5. This part of the
diagram has been resketched as graph (a) of Fig.
6. From this graph it is quite clear that the pho-
ton is the initial state and the final state is made
of a particle-hole pair and a single plasmon. The
momentum of the final state is not conserved be-
cause the impurity can absorb momentum from the
final state in the particular absorption process
under consideration. There are, all together,
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Therefore the inclusion of the lifetime effect, par-
ticularly in the Green's function, is essential. It
is noted that the external frequency ar&~(q), the
plasmon frequency of the free carrier. Therefore
the condition mv -coo.„»1is always satisfied; thus
the vertex corrections due to the impurity scat-
terings can be neglected [see Eqs. (4} and (7)].
In order to simplify the arithmetic, let us use the
approximate Green's function to evaluate Figs.
6(a) and 6(b),

G(k, ar) = &u- t' +—
2& I(„l

(20)

FIG. 5. Diagram showing one of the dielectric response
functions. The final state of its dissipative part is a
particle-hole pair plus a single plasmon. The momentum
of the electron system is not conserved in the final state.

eight different T matrices and these matrices are
shown by graphs in Fig. 6. By using similar an-
alysis to that described in Sec. IV A, it can be
shown that contributions from graphs 6(c)+6(d)
+6(e) and 6(f)+6(g)+6(h) are separately equal to
zero. The only contribution of Fig. 6 is from
graphs 6(a) and 6(b). We have examined the con-
tribution from these two graphs by neglecting the
impurity-scattering effects in the Green's func-
tion (r = ~) and also in the vertex function (r„=~).
Unfortunately, the result does not converge.

Compare it with the Green's function defined in
Eq. (6); it is easy to see that they are identical in
the limit r ~.-Therefore we expect Eq. (20) to be
a good approximation to the Green's function in the
low impurity-concentration limit. It is easy to
show that Figs. 6(a) and 6(b) have the following
form:

Imp, ((u)

1 1
q [u- ~(q) - t', , + t' ]'+1/r' 7

'

(21)

P P -q, ~( q )

cu + ru - u( q ) ur' + to - cu ( q)

where T = T„+T„,T„comes from Fig. 6(a), and
T„comes from Fig. 6(b}. They are, respective-
ly, given by

„T=- A(q)(i eep/m)[G(p, (o'+(u)G(p', (o'+(u)]„,

with &u'= )~+i/2r

P - P -q, au(q)

(b)

(22)

(c) (e)

If we make the variable change p'+q-p' and as-
sume that spectrum density appearing in Eq. (21)
behaves approximately like the 5 function in the
low impurity-concentration limit, then Eq. (21) can
be written more explicitly like

Imye(w) =(1/r)(e eric/2m&v )

&& [T,((u) + T,((u) — ((Tu) ], (24)

(g)

FIG. 6. Diagrams showing the transition matrix ampli-
tudes with an electron-hole pair and a single plasmon as
final state. The electronic momentum is not conserved
in the final state of these processes.

where T„T„and T, depend upon (d and N through
the Fermi energy a~ and are dimensionless quan-
tities. Their explicit expressions are given in
Appendix B. In obtaining Eq. (24), we have neg-
lected the momentum dependence of the impurity
potential U(p), or we have assumed the impurity
potential is a 5(r) like function. It is easy to see
that T, (~) and T, (&u) are not convergent if r= ~.
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The purpose of introducing the approximate Green's
function in Eq. (20) is to remove this divergence
and carrying out the momentum summation in Eq.
(21) exactly. Equation (24) is the leading contri-
bution to the plasmon-assisted free-carrier ab-
sorption coefficient. Comparing with Eq. (10},
Im}i,(sr) is the same order of magnitude as the
classical Drude formula.

ice qA((I)
2)'i J) m(d(&(p+ i/v~, ) ~

where q is the momentum associated with the in-
cident light, and z &q or e q= 0. Thus we have
T,~= 0.

B. Final states that do not conserve momentum

V. ABSORPTION DUE TO A SINGLE PLASMON

A. Momentum-conserving final states

It is easy to show that light cannot excite a single
plasmon in the system under consideration if the
final state conserves momentum. The optical pro-
cesses which yield a single plasmon in the final
state are shown in the first two graphs of Fig. 7.
The T matrix for each of these processes is zero.
The contribution from Fig. 7(a) is

The single-plasmon processes shown in the last
three graphs of Fig. 7 do not conserve the final-
state momentum. This is due to the ability of the
impurity to take away momentum from the final
state. After averaging over the positions of im-
purity atoms. The contribution from these pro-
cesses to the absorption coefficient is of the form

1m', (~)=ng
I
T(~ p' p) I'

$86' p
2K' J ~ m&

x lU(
-,)l2

(()(P -P')
2

x s6((d —(o(p -p'}). (25)
i e(-a')e(~'+~)}

7'~ (d + I/Tt~

x G(P (()'+(())G(P) (()')

Integrating over the angle between & and p yields
T„=O. The contribution from Fig. V(b) is

Since the external frequency ~ has to be larger
than the plasmon frequency &o(p -p'), the condition
~v „&&1canbe satisfied. We thus may neglect the
impurity scatterings in the vertex function. The
lifetime effect of the free carrier is taken into
account only approximately through Eq. (20) in or-
der to remove any divergence that may occur in
Eq. (25). The expression for Fig V(c) is given by

p, la& + QJ T, = —A(p —p') ~ee p
m(g) 27fz

x d(d'G p, co' G p, (o'+(d G p', (d'+(o.

~ P P

II
I

I
p

I

(c)

-P P

p-p ~ cu

(b)

', P-P

After integrating over (d' we have

&„=-A(p p')(ieZ—p/m(d')H(p, p', ur),

where

H (p, p', ~) = n(&,)[l -n((, )]

1 1
X

(u ~ (, —(,.+i/ (, —(,.+i/r}

-(( — ((,)In((,. ) (
1

1

i, —(,. -(/~) '

(26}

(e) Here n($) is the Fermi function. Similarly, we
have the contribution from Fig. V(d):

FIG. 7. Diagrams showing the transition matrix ampli-
tudes with a single plasmon as final state. (a) and (b)
are momentum-conserving final states. (c), (d), and (e)
are final states which do not conserve electron momen-
tum.

~,&=A(p -p'), &(p, p', ~).mv'

The contribution from Fig. 7(e) is given by

(27)



13 FREE-CARRIER ABSORPTION DUE TO EL ECTRON-PLASMON. . . 4501

~ ieZ (p'-p) (-1}
m~ 2si

d(A) G P3(0 P P 47 ~

Due to the occurrence of a closed loop in Fig. 7(e)
an extra minus sign appears as a factor in the
above expression. Integration over co' is straight-
forward and yields

From Eqs. (26}, (2"I), and (28) we obtain

~ W +)
(

«~ «) A(««i) 18('(P —P)

n (h, )[l -n($, )] n(h, )[I -n(h, )]
0)+ $p —)pe + i/T (0+ $p —(pe —i/T

(, ~ ice (p' -p) n((,)[l -n(&,.)]
m&a' $~ —$~. + i/~

n(4 )[1-n(5 )]
$~ —g~. -i/& (28)

(28)

Substituting Eq. (29) into Eq. (25) and carrying
out the angular integrations gives

ImX, ((o) =—, , d(~ d$~. e ~ — ~ —~~ —
~ (P'+ P") e(q, —[2m*(&u &,)]' '}2m*

n($, )[1—n((; )]+n((, , )[1 —n((, )]
(or+ $~ —(p )'+ I/7' (30)

where p= [2m(ez+ $&)]'~, and ez is the Fermi
energy. In obtaining Eq. (30) we have neglected
the momentum dependence of U(p -p') in Eq. (25)
and approximated the plasmon dispersion relation
as (o(q}= &o~+ q'/2m* for q ( q, (cut-off momentum).
We also use the fact A(q) = (4ve'/q')'~' and re~

=4ve'N/m for a free-electron gas. Compare Eq.
(30) with Eq. (24). It is easy to see that ImX, (&o)

is 1/N smaller than ImX, (~). Therefore compar-
ing with the plasma-assisted free-carrier absorp-
tion processes the single-plasmon absorption can
be neglected.

VI. CONCLUSION

In this paper we have studied the effect of im-
purity scattering on plasmon-assisted optical ab-
sorption in semiconductors by using Green's-func-
tion methods. The interaction H,~ of the electrons
with the electric field of the photon, the interaction
H,~ of electrons and plasmons, and the change
H,» in H,~ caused by the electric field are all
considered. If we identify the transport lifetime
v„appearing in H~x of Eq. (4) to be given by Eq.
(8) for all external frequency, then the method
described in Ref. 13 is applied. Within this well-
defined approximation, " for momentum-conserv-
ing final states the amplitudes for processes linear
in the electric field E exactly cancel just as they

do in the absence of collisions. ' For final states
which are not momentum conserving, this cancel-
lation no longer occurs and a final absorption is
obtained. The strength of the absorption due to
plasmon-assisted free-carrier processes (Sec. IV)
is in the same order of magnitude as the classical
Drude formula, but is larger than that from a
single-plasmon excitation (Sec. V) by a factor N.
Although we have written down our results [Eqs.
(24) and (30)] explicitly in terms of simple double
integrations, we have not attempted to numerical-
ly evaluate the integrals because the experimental
situation is not sufficiently clear to warrant de-
tailed numerical work. Our method should be eas-
ily extended to include a dc magnetic field. The
plasmon-assisted free-carrier absorption in the
presence of a magnetic field is a more interesting
problem and is subjected to future investigation.

It has been pointed out to us that a paper by Du-
Bois and Kivelson" addressed the problem of the
effect of electron-plasmon interaction on free-car-
rier absorption and was the first work that demon-
strated that this contribution vanished in the dipole
approximation if lattice and impurity effects are
ignored. In addition, the modification of the elec-
tron-plasmon interaction by the ac field was trea-
ted first by DuBois, Gilinsky, and Kivelson. "
These authors also made extensive use of the open-
diagram method used throughout the present paper.

APPENDIX A: EVALUATION OF THE DIAGRAM IN FIG. 3

The corresponding expression for the diagram in Fig. 3 can be written

2 2

X,(~) = . dry' d~~ g G(p, &o') G(p+q, &o'+ ~ —&u")D(~, &o") A(q)2m m&o(&o+ i/&„)
(A.I)
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where the electron Green's function is defined in Eq. (7), and the plasmon propagator is given by

)
(o(q) 1

2 (o -(d(q}+id (o+ {d(q) i-e
'

Here &o(q} is the plasmon energy with momentum q.
It is rather straightforward to show that

(
2 Oo

d{d" d{d' p G (p, &o') G(p+ q, ru'+ {d —(d")D(-q, aP ) = I, +I„2ri

(A2)

(As)

where

1 mp, (" „((o—(u")e((u —(d")
2vi (2s)' ~ J' — "- ( ) /

and

I,=2 —. (2), dA- d" „( )
.
/

D(-q, ).

After integrating over co, I, can be written

mp, (u(q) {d -(d(q), [{d- {d(q)]' . , a(p„q) w

{4 )' 4 i — {4)— {ti„r3+il *
) {tr„e)*+t) ' ' t/ '4 ' 4) )

~+ ~(q) { [(d+ (d(q)]', e(p„q) zw
—,ln) +), {, tan' ~' ——;8{raw {4)))

and I, can be written

(0+ (0(q) ( & [(o+ (u(q)]' . , c(p„q) im

( ) { )
.{)--,)n) ~ ~), {. -itan' {' ~ —~ 'we(- {4)- ))

By substituting I,+I, into (A3) and then into (A1), it is easy to show that the imaginary part of y, ({d)
is given by

(
mp, „~ ( )

ieZ q ' (0(q} [(o -(o(q)]e((o -(o(q))
(2r)' '0~ m(d((d+ i/r„) 2 [(o (o(q) —~(-p„g)]'+ I/v' l. (A4)

APPENDIX B: EXPRESSIONS FOR T1 (cd) T2 ((a)) Red T3 (M) IN EQ. (24)

T,((0) is the term due to the absolute squared value of Eq. (22). It is given by

T, ((d) =—
t dq, q, q d&((el, + $) [Sr+ (o —(o(q)+ &]'}'I' e((o —(o(q)+ $) Ptq

x [tan T
I
{d-(q}+p'q/m

I

-tan-''r
I
(4)-(q} -p'q/m I]

where zr is the Fermi energy, &o (q)=(d(q) -q'/2m, and p'=(2m[el, +{d—ur(q)+$]]' '. A'(q)=HA'(q), and
the plasmon-electron interaction A(q) = (4ve'/q')'~' for a free-electron gas. q, is a cutoff momentum for
the plasmon. T,((d) is the term due to the absolute squared value of Eq. (23). It is given by

T, (~) = — 'dq . . A((~&+ k}s [fr+ (0 —&d(q)+ &]]"2 e(~ —~(q)+ &)
'c q'A'(q }(u(q) X/2 1 mT'

8 0 k~Ey Kp Pe

x [tan T
I
{d.(q)+ pq/'m

I
—tan-'r

I
(4).(q}—pq/m I]

where (d, (q) = {d(q)+q'/2m, and p = [2m(el, + 5}]'~'. T,({d) is due to the cross product of Eq. (22) and
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(23) and is given by

3 " c A (q)(d(q) $ {(eg+g)[e~+ hl —(d(q)])
~O F~P Eg

i m &o.(q}+pq/m —i/&

pq (u, (q}-pq/m i/—v

i m &u (q)+ p'q/m+i/&
p'q (u (q) -p'q/m+ i/&
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