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Dielectric continuum theory of the electronic structure of interfaces
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General expressions for the density-density and potential-potential response functions, ground-state (i.e.,
surface) energy, and one-electron optical potential are derived for a model of planar interfaces between two

media, each of which is describxl by a local frequencyMependent dielectric function. These expressions are
utilized to evaluate the surface energies characteristic of interfaces between semiconductors (insulators)
described by the uniform dielectic function as(eo) = 1+ cop(h,

' —co' —ico/v) ', metals described by

KM(co) = 1 —cop'/eo(co + i/r), and the vacuum [c~(ao)= 1]. Plasmon damping (i.e., nonzero v ') is shown to Omit

the range of nonlocality of the one-electron optical potential to X - (2h v/m)'" and to decrease the surface

energy. The surface energy of semiconductor interfaces is found to diminish monotonically with increases in

the band-gap parameter Eg = h h, . The conventional expressions for the surface energy of metals as a function

of their density, n = mcop'/4ee', are recovered in the 7 ~ oa limit, although errors in some previous derivations

of these expressions are displayed. Finally, the structure and limitations of local models of surface properties
are examined critically, and the well-known hydrodynamic and step-density random-phase-approximation
models of metal-vacuum interfaces are shown to be elementary consequences of classical electrostatics in the
limit that aM(co) = 1 —cop/M'.

I. INTRODUCTION

In this paper we construct a dielectric model of
the electronic structure of interfaces between two
continuous media each of which is described by a
simple frequency-dependent dielectric function
e, (ur). Planar interfaces are examined for con-
venience, although the extension to other geome-
tries is a routine, if tedious, exercise in classical
electrostatics, ' as is the generalization~ to nonuni-
form but local, dielectric media described by e, (r,
&o). Our most significant result is the demonstra-
tion that within the confines of this model, quantum-
theoretical properties like the surface energy and
optical potential can be derived from classical elec-
trostatics in an elementary, almost trivial, fash-
ion. While attempts to construct such derivations
have been made before' (especially within the con-
text of studies of inhomogeneous dielectrics in the
derivation of expressions for the van der Waals
force in the three-medium case), they proved less
successful because they failed to obtain closed-
form expressions for the ground-state energy like
that utilized herein. Moreover, we find unex-
pected errors in and limitations on~' earlier
model calculations of the surface energy of metals.

The main thrust of the work reported herein is
the demonstration of the simple, transparent
structure of a dielectric continuum model of inter-
face properties and the application of the resulting
expressions for the surface energy and optical po-
tential to examine general features of and trends
in surface properties as functionals of specific
materials parameters (e. g. , the energy gap of

semiconductors and plasmon lifetime). Our ex-
pressions for the surface energy and optical po-
tential reduce to those obtained earlier by many
others in the special case of metal-vacuum inter-
faces, as will be noted as appropriate in the text
of the paper.

Although the dielectric continuum model does
not lead to a quantitative description of surface
properties, as has been demonstrated explicitly
for the vacuum-"jellium" interface, " consid-
erable insight into the structure of dielectric mod-
els of surface properties can be obtained because
of the simple structure of its predictions. As an
illustration of this fact, the consequences of vari-
ous model dielectrj. c functions which have been
proposed for insulators, ' ' are displayed explicit-
ly within the context of refining Phillips' considera-
tions" of the energetics of metal-semiconductor
contacts. We expect, however, the model to be
of most use because of its analytical simplicity and
elegance, rather tl~an as a reliable indicator of the
properties of "real" solids.

We proceed by displaying in Sec. II the deriva-
tion, via classical electrostatics, of the retarded
correlation functions, the surface energy, and the
one-electron optical potential obtained from the di-
electric continuum model. Comparison of these
model predictions with those obtained by other
authors also is presented in this section. Section
III contains a discussion of the surface energies of
metal- vacuum, semiconductor- vacuum, metal-
metal, and metal-semiconductor interfaces. Fi.-
nally, we present a synopsis of our results, and
their consequences for models of electron-solid
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Z& 0, e =e~(m)

|)q( Z=Zo, p =0)

Hermanson' and Inkson' both reduce to the same
form in the local limit, i. e. ,

e, ((u) = I+ (u,'/(a'- uP) .
Moreover, Eq. (Sa) evidently satisfies the f-sum
rule, and reduces to e„(~) in the limit that 6-0.

A common practice in the study of semiconductor
structures is the parameterization of the static di-
electric function e(0) by variables of chemical sig-
nificance. For example, in the Phillips-Van
Vechten model, we would write

E =KB=(E+C)' (Sb)

Z&0: e=e&(m)

FIG. 1. Schematic diagram of the interface which
shows the choice of the coordinate system and the loca-
tion of the charge q.

scattering and metal-semiconductor interfaces~' 2

in Sec. IV.

II. PLANAR INTERFACE BETWEEN TWO DIELECTRIC
CONTINUA' GENERAL ANALYSIS

f( ((d) = 1+ (dp Q
r r

ur,
' = 4vne'/m,

(la)

(lb)

(1c)

in which n is the electron density in the solid, the
&u„are resonance frequencies, and Eq. (1c) is the
well-known" "f-sum rule. " In the case of metals,
it is conventional to select all of the co„equal to
zero in which case Eq. (1) yields

fe ((d) = 1 —(d&/(d

In the case of insulators, several diverse models
of e(&u) have been proposed. '~" Those due to

A. Model

Our initial task is the evaluation of the electro-
static fields of a point charge in the vicinity of a
planar boundary between two dissimilar dielectric
media provided that each medium is characterized
by a local dielectric function e(r, u&) dependent on
position r and angular frequency ~. This computa-
tion is a routine exercise in classical electrosta-
tics' once the dielectric functions of the adjoining
media have been specified. A schematic diagram
of the interface is shown in Fig. 1. We consider
the special case that both media are dielectric con-
tinua characterized by e, (&u) (z & 0) and e, (ar) (z & 0),
respectively.

Since we are concerned with loca/ media, the
most general form for e,(~) is '

in which E„ is the homopolar band gap (obtained
from diamond, silicon, and a bond-length scaling
formula) and C is the ionic band gap obtained from
the measured value of e(0). It is important to
stress that such models will prove appropriate for
surface energy calculations only if the f-sum rule
is satisfied [i.e. , Eq. (Sa) contains only one free
parameter 6]. Thus models like that of Wemple
and DiDomenico, " in which Eq. (la) is fit to ex-
perimental data using a single oscillator for which

fr+1, cannot be utilized in our analysis even though
they might provide an adequate description of ee(&u)

over the range &u & h (see Sec. IIC).
In Eqs. (1), the imaginary part of e(ru)= e'+ie'

is obtained by setting (d- (d+ H and taking 5-0+
following integrations over v. An important point,
established by plasmon spectroscopy via inelastic
low-energy electron diffraction' '" is that surface
collective excitations (plasmons), defined via

e,(n, )+ e,(n, ) = 0 (4a)

in our local two-medium model, occur at complex
frequencies KQ, =K~, +il;, I;/K~, -0.2. A similar
result is well known' to hold for bulk collective
excitations (plasmons) defined by

e(A, )=0 (4b)

in the local model. Although the observed magni-
tude of the plasmon lifetimes is not well under-
stood, 5 their existance is readily incorporated into
our model by use of the dielectric functions

e„(&u) = 1 —(o,'/(o((u+ i/7), (5a)

e, ((o) = I+ ~p'/(n'- (o'- i(u/7) . (5b)

Equations (5) provide a three-parameter (&o&, n, v)

description of each of two dielectric media com-
prising an interface. Since all of these parameters
may be obtained directly from bulk optical-absorp-
tion and electron energy-loss spectra, the dielec-
tric continuum model constitutes the simplest
uniquely specified model of interface properties as
functionals of known bulk spectra which we could
construct. While our study of this model was un-
dertaken merely as a prelude to that of a more
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adequate nonlocal dielectric model [i.e. , e = z(q,
(d)], the elegant simplicity of our final results and
the insight which they afford into the structure of
dielectric models of interface properties seemed
to us to merit separate presentation. Moreover,
they afford the opportunity to examine the general
consequences of the large values of ~ implied by
electron scattering experiments.

B. Electrostatic potential-potential propagator

The electrostatic field, E(r, t)=E(r, (d)e'"', as-
sociated with a charge q(r, t) = e5(r —ro)e'"' in the
vicinity of a planar interface between the two local
dielectric media indicated schematically in Fig. 1,
may be obtained from any electrostatics text to be
given by' E(r, (d) = —V(t) (r, (d), with

e, ((d),[p'+ (z —z,)z]"'+ z, ((d)+ e,((d) [p'+ (z+ z,)']"'
y (r, r„. (d) =

28

[e,((d) + e, ((d)] [p'+ (z - Z,P]"' '

]Lf zo&0, and

(6a)

y(r, r, ; (d)=

2g 1

[e,((d)+ e,((d)] [p'+ (z —z())']"' '

e l z, ((d) —z, ((d) l
fz((d) ) [P + (z zo) ] zz((d) + fg((d) [P + (z+ z()) ]

x&0,
(6b)

if so& 0. In this subsection we demonstrate how
this result alone leads immediately to the zero-
wave-vector plasmon propagators predicted by
random-phase approximation (RPA) and hydrody-
namic models2~ and to a formula for the surface
energy originally derived by Craig to within a fac-
tor of 2 (and subsequently rederived in a different
formalism by Barrera and Gerlach4).

The quantity used in quantum field theories of
electron-solid interactions to describe the propa-
gation of the electrostatic interaction through an
inhomogeneous dielectric from position r to r' is
the retarded particle-hole spectral-density propa-
gator A(r, r, (d). ~7'zz ln classical models, this
propagator is simply the electrostatic energy of
an electron at r' associated with the polarization
of the dielectric medium created by an electronic

I

charge oscillating with frequency co at position r.
Moreover, for the planar geometry indicated in
Fig. 1, the complete propagator may be Fourier
analyzed for motion parallel to the surface, i. e. ,

d2
A(r r (d)= e"'"' "A(z' z q (d) (7)t t (2v)R t t t

where q is a two-dimensional vector on a plane
parallel to the interface. Use of the spectral rep-
resentation

1 1 3
fk r

dk (6)

and subtraction of the field of the electron in the ab-
sence of the dielectric (i. e. , e/[p'+ (z- z„) ]'~z) in
Eqs. (6) to obtain the induced fields transmitted by
the medium, leads to

~i m2
q(*', *;q, )-=e'e'e""(et(e' ~ *'e, e; ) —,„,, „„„=-,, —()e

[p +gz —z~ ~ q

2( e( ) —e( } n, i.i,q) e()e(, )
t, 2

)&g((d) &g((d) + &z((d) q eg((d) + &z((d)

e ""'""[e(*)e(- ') e(-*)e(*')(+ —))q e,((d)

1
Z( ) 1( ) -q(lelele'I) g( z)G( zt)

ez((d) zg((d) + et((d)
(9)

The exp(-q lz —z I ) terms in Eq. (9) arise from the transmission of bulk polarization fields through one
component of the interface shown in Fig. l, whereas the exp[- q(l z I + Iz'

I )] terms arise from the surface
charge induced at the interface. The symbol 8(z) designates the step function
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1, z)0,
e(r)= —,', z=o,

0, z(0.
Equation (9) is not yet in the form used by Duke et al. "'8 because the surface-charge terms exhibit

poles at the frequencies of bulk collective oscillations, Eq. (4b), as well as at those of the surface collec-
tive oscillations, Eq. (4a). In order to obtain the bulk and surface plasmnn propagators in the form used
by Duke et al. , these two sets of singularities are readily separated to give

2r 2 2 2r2
p( i . ) I (I I+) ')) I - I - 'I - (I I+I ')) e( )e( )

2' 2

+
' -1 e""-"- "'i']'i"' e -z e -z'

Q' f2 (d

1 (io,/&o)'

f~((o) 1 —(io&/(o)
(12a)

The results given in Refs. 27 and 28 for the
metal-vacuum interface are obtained by inserting
into Eq. (11) the metal dielectric function given by
Eq. (2) and ei(io) —= 1 for the vacuum. We obtain

the direct use of electrostatics plus a model dielec-
tric function may prove a more convenient and
transparent approach to the computation of the elec-
trostatic propagator associated with multilayer
media.

C. Density4ensity propagator and surface energy

2 1- ea((o) &op/2(d, (12b)
ei(io)+ e, ((o) 1+ e,((o) 1- io~/2(o'

which upon utilization in Eq. (11) yields directly
the surface-plasmon propagator indicated in Eqs.
(64) and (94)-(96) of Ref. 2'i. In this reference,
the form of Eq. (11)was derived by demonstrating
that the surface and bulk plasmons correspond to
orthogonal eigenfunctions of a Hermitian operator.
The analysis presented above reveals that from the
perspective of a classical dielectric function for-
malism, however, Eq. (11) is the elementary con-
sequence of a partial-fraction expansion of the
classical induced surface-charge field into com-
ponents associated with the bulk and surface spec-
tral densities, i. e. , I/c, (&o) —1 and 2/[ei(&o)
+ ez(io)]- 1, respectively. Moreover, it is evident
from our treatment that in the only case for which
the RPA orthonormalcy relations for bulk and sur-
face plasmons can be worked out explicitly (i. e. ,
the high-frequency step-density model ) they
amount to a complicated restatement of the con-
sequences of classical electrostatics. It is also
clear that the RPA orthonormalcy relations can-
not be extended immediately to include the effects
of plasmon damping.

A discussion of the difficulties inherent in at-
tempting to extend the RPA analysis to more com-
plicated surface charge densities may be found
both in Ref. 27 and in a host of more recent works
on this topic. " '3' 3 Our analysis reveals that
in the local limit the RPA may be obtained simply
from Eq. (2) plus classical electrostatics. It also
suggests that even in the nonlocal case" ' '

The quantities needed to calculate the surface
energy are the diagonal matrix elements of the re-
tarded density-density (i. e. , polarization) propa-
gator. Consequently, in the subsection we first
review the definition of this propagator and its re-
lationship to the electrostatic propagator evaluated
in Sec. GB. Then we give explicit forms for the
polarization propagator and the surface energy ob-
tained in our dielectric continuum model. We con-
clude the subsection by comparing our expression
for the surface energy with those obtained by other
authors.

The electrostatic polarization propagator is
defined by

A(r', r; t'- t) = —fe(f'- f)([e$(r', t'), 8j(r, f)]) .
(IS)

The quantity P(r, t) is the electrostatic field opera-
tor. The propagator or interest in surface energy
calculations, i. e. , a(r, r; t'- t), is defined via

n(r, r; t'- t) = t)p(r', t')/5p, ~(r, t), (14)

where 5p and 5p,~ are the induced and external
electron densities respectively. Alternatively, e
is defined by

(p, r; (- )) )e)) ofa=-'-
x &[pCr', t'), p(r", t)])V(r"- r),

(16)
where p(r, t) is the electron density operator and
V(r —r') is the bare Coulomb potential. Using
Eqs. (7), (13), and (15) it is straightforward to
show that
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2 (o

A(z', z; q, (d) =- dz" la..(z', z";q, (d)

xe(z')e(z)+ a (z', z";q, ~)e(-z')e(-z)
+ a. (z', z";q, (d }[e(z)e(-z')

+ e(- z)e(z')]] e (ie)

Inserting Eq. (16) into Eq. (11) to obtain the po-
larization propagator yields

a (z', z; q, (d)

( )
„, 1 e, ((d)- e, ((d)

e, ((d) 6,((d) + ez((d)

.c(* -*) )- ),I 1

a (z', z;q, (d)

( ) qgc I zy((d) —ez((d)
e2((d) zg((d) + e2((d)

, c(.—.)C)- ',
,),

(17a)

(17b)

&(z) I I z,((d) —z, ((d)
2 z(((d) zz((d) z2((d)+ e(((d)

(18)

noting that e (z)=e(z} and e(z-0)= —,'. At zero
temperature the surface energy y may be written
in terms of a, (z, z;q, (d) via'

l dg ~ cq
l

c. (c', c;q, )=C(*)c'"', , -)) . ()')c)
f(((d + 6z((d

The terms containing 5(z) emanate from charge
induced on the surface. Thus, we can define the
surface contributions to the diagonal density-
density response function a(z, z;q, (d) via collecting
these terms in Eqs. (17a)-(17c) to yield

a, (z, z; q, (d )

we have written it in terms of the retarded di-
electric functions e( (d+f5; 5-0') rather than the
Matsubara frequency sums used by Craig.

In the special case of a metal-vacuum interface
[e. g. , that specified by Eqs. (12)], Eq. (20) may
be compared with the results of several au-
thors. ~ While differing f rom Craig's general
formula, Eq. (3.12) in Ref. 5, by the factor of 2
noted above, it is identical to the zero-point en-
ergy utilized by Schmit and Lucas' and by Fei-
belman. Indeed, we now see that these authors'
expressions for the surface energy differ from
that of Craig' both by the factor of 2 inherent in
Eq. (19) and by an additional factor of three
caused by introducing an e2-dependent cutoff on
the q integration prior to (rather than after) per-
forming the coupling constant (g) integral. This
conclusion is contrary to Craig's claim that the
inversion of the order of the q and g integrations
gives the entire factor of 6. We note, moreover,
that in a proper theory the coupling constant in-
tegral must be performed first& giving the surface
energy as a difference of particle-hole excitation
energies at g= e' and g= 0. ' ' '9 Not only does
the occurrence of this difference have the tech-
nical consequence that the collective mode con-
tribution to the surface energy is reduced' "but
more important it introduces the large wave-vec-
tor (q) cutoff into the expression for the surface
energy. ' Therefore the use of a wave-vec-
tor cutoff which depends on e2 prior to the cou-
pling constant (g) integration in Eqs. (19) or (20)
is conceptually incorrect as well as technically
inaccurate.

A further interesting consequence of Eq. (20)
is its apparent independence of the shape of the
electron density profile in the vicinity of the in-
terface. This surprising result may be proved
explicitly for the metal-vacuum interface by use
of Barrera and Gerlach's form' for the a, (z, z;q, (d}
i. e. ,

x dz Ime z, z,'q, w (19}
((d(2/(d')(dn/dz ) (d~z/2(d'

2[1 — '
( )/ ']' I — '/2 '

which in our case of a planar interface becomes (21)

2
tf ' dg d'q I'" d(d

2 () g (2z)' „, 2z

[ei(~) —zz(~)]'
c,( )c,( )(c,( ) ~ c,t ))) ' (20)

to evaluate the integral over z in Eq. (19). In
Eq. (21) the symbol n(z) designates a normalized
density profile, n(- ~) = 1 and n(~) = 0. The in-
tegral over z in Eq. (21) is performed easily giv-
ing

In Eqs. (19) and (20) the square of the electronic
charge e2 is replaced by g in the expressions for
e,((d) and ez((d) under the integral. The (d integral
is taken over the cut of the bracketed expression
which extends from ~ = 0 to infinity.

Equation (19) is precisely twice the correspond-
ing result given in Eq. (3.12) of Ref. 5 although

1 —CO (d (d 2 4)

2 6~ M 1+/A )
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which is precisely the result given by Eq. (20)
for the planar, semiclassical interface between
a metal and a vacuum.

In conclusion, it is noteworthy that the polar-
izationpropagator e and hence the surface energy
can be calculated directly via classical electro-
statics. Equation (14) indicates that &r(r, r; &d) is
simply the induced electron density at r, pro-
duced by an external point charge at r oscillating
with frequency (d. In the case of a planar geom-
etry the e)ectron-density induced, which corre-
sponds to a, can be calculated electrostatically
from Eqs. (16) to give Eqs. (17), which lead to
Eq. (20) for the surface energy.

D. One-electron optical potential

In this subsection we apply our simple local di-
electric formalism to calculate the electron-solid
optical potential for high-energy electrons. The one-
electron optical potential recently has been used to
describe the electron-solid scattering in model cal-
culations of low-energy electrondiffraction (LEED)
intensities and photoemission studies. ' He re
we calculate that part of the optical potential which
accounts for the absorption and emission of bulk
and surface plasmons following the procedure of
Ref. 27. For simplicity, we confine our atten-
tion to the solid-vacuum interface because our im-
portant conclusions will result from the large val-
ue of r in Eqs. (5), independent of the value of A.

Z(z, z; q, &I&) = —— dh
0

xG(z', z; q+q, &d -x) ImA(z, z';q', x). (24)

For the purpose of estimating the optical potential
for high-energy electrons one can use 7 (a plane-
wave basis for G)

r p" dk~ &i%~(»'-»)G(''"")=,t. 2'g. (g)2 )(, ,P, )
(25)

in which k, is the component of the wave vector
in the direction perpendicular to the interface.

In order to calculate Z from Eq. (24) we use for
G the expression given by Eq. (25) and for A the
expression given by Eq. (11)with the model di-
electric function of Eq. (5b). We obtain

The optical potential can be described ' by
the coordinate representation of the retarded prop-
er self-energy Z(r, r; (d}. In the case of high-en-
ergy electrons (E&100 eV), used, e. g. , in LEED,
the relevant contribution to Z(r, r; &u), in the zero-
temperature limit, is given by [see Eq. (114b) of
Ref. 27].

Z (r, r; &I&) = —— Ck G(r, r; &2& —x) Im A(r, r '; x),
0

(23)
in which G(r, r; &I&) is the retarded electron propa-
gator. In our model of planar interfaces Eq. (23)
can be Fourier analyzed along the surface to give

Z(z z q &I&)=-—~, (d F(z z q) ~e'I"'"p 0 ~ cPq 271'8 g I p dk p», »)
&&&~p, (2»)' q' ' ' ' ' „2»

IO -1
x dx 5 ~-x —— q+q +k, Im x +——+6

0
(26a)

where

F,(z, z;q ) =

(e-0 (0'-0& —e ' & "('&' (&) g(-z)8(-z ); i =f, ,

(26b)
~-a' (I» t pt»' I ) S=S

The subindex p and s refer to the bulk and the surface contributions to the optical potential. , respectively.

The x integral can be performed analytically to give

R(,z;2, &=—Z, R, (z, z;2'& e ' Re .
/2 }

&a (g'-»)
2m,.~, 2m q A, ~oO x() —0]+t 2T

1 1 1 1 1-Re — . + . tan' +Im—0 /2T * ~ 0 I/2T 20 T z —II + /2 * +0(+ I/2T)

x0iw (xQ) —In&0, z z &/z, (27a)
((d&+ n )

0'& = ~'&+ b,' —(I//2r)',

ho=~ —(»//2m) (~q+q'~'+u, '} .
(27b)

(27c)

Before analyzing the effects of plasmon damping on the optical potential, we note that one can obtain



DIE LECTRIC CONTINUUM THEORY OF THE ELECTRONIC. . . 4483

the classical image potential as a limiting case provided we take the semiclassical limit (m -~) of Eq. (27)
at zero frequency and impose a cutoff wave vector q, in the evaluation of the q integral. We find that in
the limit q, « ls t, Iz') the self-energy becomes

(28)

Hence, we recover the classical local image potential as expected. Here e(0) = 1+&o&2 /h2 is the static di-
electric constant corresponding to our model dielectric function of Eq. (5b). In the metallic limit (b, -0)
we recover the results of Ref. 27.

Since &a~a+ h~ » 1/27, the dominant terms in the k~ integral of Eq. (27a) are

' e"~" " wRe . , — +inc(x )Iml
7l xo- 0]+t]'2t xo- Q)+ t( 2t

which can be approximated by

dkg fQ (gs g ) 7Tl
2z xo- n, +i/27

(29}

(30)

This integral can be performed in the complex k~ plane yielding

d~q' 2we~ ~&a~, i »exp[- p(y, +f5,)lz'-zl]
Q(z, z;q, (d — ~

( p
r ~E((z,z;g )

I*'p, s v q i p)+t (31a)

p = (2m/)f)~~3

y&
——(I/f2) f- (&u —v, )+[(u —v, ) + (I/2r) ] ~~)~~

(31c)

(31b)

5, = (I/v"2) {((o—v, )+ [((o —v, )'+ (1/2r} ]'
(3ld)

(31e)

It can now easily be seen that due to the finite
plasmon lifetime the range of nonlocality of the
optical potential is always finite at all frequen-
cies. The shortest range of nonlocality is when
w-0. The range increases as ~ increases being
limited by a length X-[p/(2v)'~ ] '=(Kr/m)' as
(d P&.

If we now take the v- ~ limit in Eq. (31) it can
easily be shown that for ~ & (uP, + A2)' ~2 the range
of the nonlocality is not well defined owing to the
appearance of the factors e '"'& in the q integral
recovering, in this way, the metallic-limit (b - 0)
results discussed in Ref. 27. Thus, we obtain
the important result that the approximate validity
of local models of the optical potential, whose use
is essentially universal in the theory of LEED 0

and photoemission, ~ is a direct consequence of
plasmon damping which itself is most probably a
result of imperfections in the samples being stud-
ied.

III. SURFACE ENERGY OF INTERFACES

In this section we analyze the effects of plasmon
damping on the surface energy y and evaluate the

I

surface energy of various interfaces using Eq.
(20) derived in Sec. IIC. We proceed by recall-
ing from Sec. IIC that the coupling constant (g)
integration in Eq. (20) must be performed prior
to the co and q integrations. For any model local
dielectric function which satisfies the f-sum rule
[e.g. , Eq. (1c)] the g integration can be performed
in closed form leaving a general expression for
y as an integral over ~ and q. Using this expres-
sion we first analyze the effects of plasmon damp-
ing on the surface energy y examining, for sim-
plicity, the metal-vacuum (MV} and the semicon-
ductor-vacuum (SV) interfaces. In particular,
we show that plasmon lifetime has a strong effect
in decreasing the surface energy, the effect being
stronger for metals than for semiconductors.
Next, we calculate the surface energy of a two-
dielectric interface as a function of the material
parameters co~, and 6, , in order to establish the
general features of the behavior of y as a func-
tion of these parameters. Thus, in this calcu-
lation we utilize the model dielectric functions
given by Eq. (3a) in which plasmon damping is
neglected. Specifically, we analyze the behavior
of y for semiconductor-semiconductor (SS), semi-
conductor-metal (SM), and metal-metal (MM) in-
terfaces in turn, and conclude with some general
observations about the energetics of interfaces.

Starting from Eq. (20) we perform first the
coupling constant (g) integration. From Eqs. (1}
we see that the g dependence of any model local
dielectric function which obeys the f-sum rule is
given by
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f,{;El—{ {'
( 4)„-4)

(32)

f(~) = 9[«(~)+e2(~)P/«(~)e3(~) (33b)

in Eqs. (33) e, (~) -=e, ({;g=1) and the analytic
properties of f(v) were exploited in order to con-
vert the ~ integral along the real axis into an in-
tegral along the imaginary axis.

Since our model local dielectric functions given

Insertion of Eq. (32) into Eq. (20) and integration
over g from 0 to 1 yields

t d q d(d
y=2 (2v)2 2v ln[f(iu))],

by Eqs. (5) satisfy the f-sum rule we are able to
analyze the effects of a finite plasmon lifetime on
the surface energy by computing y for the $V in-
terface via use of

e, ({{])= 1,

e,((u) = 1+&v~~ /(a' —(u' —i(u/v)

(34a)

(34b)

While such an analysis is not directly applicable
to real solids because of the nonlocality (i.e. ,

q dependence) of the dielectric function, never-
theless it reveals the structure of a local dielec-
tric theory. Inserting Eqs. (34) into Eqs. (33) and
considering that e,v»1 (for the plasmons to be
well-defined excitations) yields

For 6 &I/27 «ur, ,

)fq2 / 2 &
1

&
1 1 1

" /2 1/2r [(I/2v)2 +2]1/2

16v It20, —0]{—
v

2A, tan'
20 v

Q]{t n 20 +2 2
~

1/2 [(1/2 )3-n']"'

1 +2+ ~~
+ 2r g[~8 g3]1/2 )~

Pbrl/2v & A and I/2r«~, ,

qc I1 ~a- iia
1 -1

y = 2Q-Q- b, ——
p

--2Atan -Q tan 2

16g s ~ 2g) ~ s 20,7 ~ 20 y 27

(35a)

where

III ~3 ~2 (I/2v)3

1 1 &, +b,
2r{a' —{{/2r)']"' +Br s{w' ]]')"') (35b)

(27b)

and q, is the familiar cutoff wave vector introduced in the otherwise divergent q integral which assumes
the existence of dispersionless plasmons only for wave numbers less than q,. A better description of
the dispersion of the plasmon frequency or the inclusion of particle-hole excitation modes lie beyond any
local treatment.

When 4-0 in Eq. (35a) the surface energy of the MV interface is obtained to be

2cop7- 2(op7 1- 1 2&p7- 2&~7 2
(36)

Furthermore, as ~- ~ we obtain

y~~= (qP{{]~/16w) (&2- 1) (37)

which is simply the Schmit and Lucas resultv for
the M V interface derived from the changes in the
number of modes and the corresponding change in
the zero-point energies of longitudinal and trans-
verse undamped plasma oscillations.

To examine the influence of finite 7 ' on the sur-
face energy in Fig, 2 we plot Eq. (36) for p«as
a function of the plasmon lifetime I/~~r. It is

I

evident from this figure that the strong plasmon
damping observed in metals reduces the sur-
face energy by a considerable amount with re-
spect to its undamped (v- ~) value given by Eq.
(37). For example, in the case of aluminum, for
which I/&v~v=0. 1, 24 2' y is reduced by about 20%.
This significant decrease in the surface energy
due to plasmon damping negates the validity of the
quantitative claims of Ref. 7 even though these
claims have already been criticized" "for dif-
ferent reasons, mainly the effects of nonlocality
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h/u&~ = 0.05 (39a)

I/&u~v = 0.1, (39b)

the decrease on the surface energy is of about
18% while for large-gap insulators, i.e. , n/~~
= 0. 8 and 1/to~7. = 0. 1, the corresponding reduction
of y~„ is of only 1%.

Given Eqs. (33), we can cast our results into a,

form which relates y to changes in plasmon zero-

0.5
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FIG. 2. Surface energy y of a metal-vacuum inter-
face as a function of 1/cu&7.

on the dielectric function in the jellium-vacuum
interface.

For semiconductors (6 finite) the conse-
quences of plasmon damping on the surface energy
in turn depend strongly on the value of the band-

gap parameter h. First we take in Eq. (35b) the
~limit to obtain

ye v = (q'P~&/18&) {[2+(2&/~, )']"'

[1+(g/~ )2]~&~ ~) (38)

This result reveals, as illustrated in Fig. 3, that
the surface energy drops markedly, with respect
to its metallic limit (6-0), as the band gap in-
creases. For a semiconductor with A/u&~ = 0. 5

the surface energy decreases by 70% with respect
to the corresponding one of a metal with the same
plasma frequency &~.

To examine the effect of plasmon lifetime on

y~~ we also show in Fig. 3 the surface energy
y~~ as a function of the semiconductor band gap
a/or~ for different values of the plasmon lifetime
z=-I/&u~v as given by Eqs. (35). Evidently, the
decrease in the surface energy with increasing
w

' becomes less important as the value of the
band gap increases. For small-gap semicon-
ductors, i.e. ,

Q, 5 I l I &

)
I I I I

Z=
Q.4

~ 0.3h 3

~~~~ 0.2

Q. l

0.0
0.0

I

0.5

Ofp

I

I.Q

FIG. 3. Surface energy y of the semiconductor-va-
cuum interface as a function of the semiconductor band

gap 6/o)& for different values z= 1/~&v of the plasmon
lifetime. The curve z=0 is the surface energy of the
metal-vacumm interface corresponding to undamped
plasmons.

point energies for the special case in which e, (ru)
is a meromorphic function of ~ with poles and
zeros only on the real axis. In this case the func-
tion f(&u) which appears in Eq. (33) is also mero-
morphic in& and withpoles and zeros only on the real
axis. Therefore an integration by parts of the ~
integral of Eq. (33) is possible and with an appro-
priate change of integration contour Eq. (33) be-
comes

y = ——,—.(u —ln [f((a&)]
dq d& 8

2 (2v)2 c2vf s(o
(40)

where the contour C is a half circle in the right-
half u& plane, and it has been assumed that f(&u)

-1/uP, when ur —~. Integration of Eq. (40)
through a well-known integration theorem4' shows
that the surface energy can be written

d2q
y 2 2 S b1 b2 T1 T24 (2w)

{41)
i.e. , as a sum of plasmon normal modes. Here
e, (&u~)+ez(~z) =0 defines the surface-plasmon
mode, e, (u&„) = 0 defines the bulk-plasmon mode,
and e, '(&ur, ) = 0 defines the bulk-transverse-exci-
tation mode.

Equation (41) admits the obvious interpretation
that in a local dielectric theory the surface ener-
gy is simply the change in plasmon zero-point
energy upon the formation of an interface. There-
fore in the case of the M V interface with &„=1
—~$2~~, Eq. (41) evidently reduces to the Schmit
and Lucas~ surface energy formula derived from
changes in the number of normal modes of the
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system when the surface is introduced. In the
case of nonlocal dielectric models, the zero-point
energy formulas are more complex because of
particle-hole states, but the general structure of
the theory probably also can be cast into a form
analogous to Eq. (41), as shown in a special case
by Griffin et aE s.

Next, it is instructive to calculate the surface
energy y» of the SS interface using Eq. (41) di-
rectly and the model dielectric function of Eq.

(3a) in which plasmon damping is neglected. The
surface energies of the SM and MM interfaces
are obtained directly from y» as limiting cases.
The SS interface is characterized by

&,((u) =1+(o~t/(at —co ), (42a)

ss(&u) = 1 + &o& s/()PE —ra ) ~ (42b)

Substituting Eqs. (42) into Eq. (41), and intro-
ducing a cutoff wave vector q, on the q integration,
we obtain after some algebra

(16m/q, ) (yss/Iu&s) = [((1+x +2yt+2ys)+((1+x +2yt+2ys) —8[(1+ys)yt+(x +yt)ys]P~ )

+ {(1+xs+ 2yst+ 2yss) —((I +xs+ 2yst + 2yst)s —8[(1+yas) y, + (xs+yt)ysP ~ s )' ~s]s —[(x +yts)t~ s

+ (I+y2) ]b (y1+ys)Ti (43a)

x = ~pt/~ps ~

yi = ~t/&ps&

ys = ~s/&sss

(43b)

(43c)

(43d)

and the subindices S, 5, and T, refer to the con-
tributions of the surface, bulk, and transverse-ex-
citation modes, respectively. From Eqs. {43)we
canobtain the surface energy, y~~ for the SM inter-
face by setting y, =n, /&u~s=0 in Eqs. (43). In Fig.
4 wedisplaya graphof y» as a functionof the semi-
conductor band gap &s/&ops for different ratios x

(opt/Q)pt of the plasma frequencies. The curve x
= 0 is a limiting case which corresponds to the
surface energy y~„of the SV interface given al-
ready in Eq. (38) while the value of the curves at
g~/~& = 0 gives the surface energy y„„ofthe MM
interface for metals with plasma frequencies &
and ~~~. The general behavior of y» as a func-
tion of x=&o~t/&& is obtained by setting yi =ys=0
in Eq. (43) and is displayed in Flg. 5. The value
of y» at x=0 corresponds to the surface energy
y„v at the metal-vacuum interface [see Eq. (37)]
and from there it decreases to zero at @=1 where
the two metals are identical and consequently no
surface exists.

In order to illustrate the behavior of y& z as a
function of the material parameters we show in
Fig. 6 its functional dependence with ys = hs/&ass
and different x=&o»/~~a plasma frequency ratios
choosing, aS an example, y, = &t/a& =0.5. In this
case for x=1.0 the surface energy goes to zero
at hs/~& = 0.5 which is the point at which both
semiconductors are identical. Evidently, y is a
monotonically decreasing function of the gap param-
eter only of thehigher density semiconductor.

Our final topic in this section is a brief inter-
pretation of the results derived using Eqs. (5) and
(33) and illustrated in Figs. 2-6. First, the re-
duction in surface energy caused by increasing

0.5 ~ ~ ~ )
)
» ~ )
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I

4) =0

0.4

0.3
hJ
CL

0.23

0 cu
cg

O. l

0.0
0.0 0.5

happ

I.O

FIG. 4. Surface energy y of the semiconductor-met-
al interface as a function of the semiconductor band gap
h2/&o&t for different ratios x = &a&t/&u&t of the plasma fre-
quencies. The curve x=0 corresponds to the semicon-
ductor-vacuum interface.

plasmon damping has the obvious origin of simulat-

ing, as best one can in a local dielectric model,
the reduction of the zero-point energy associated
with collective branches of the excitation spec-
trum. ~~'3~'~ It is noteworthy that this transfer
at q = 0 occurs in addition to that obtained for q4 0
plasmons by Griffin et aE. Second, the general
reduction in 'Y with increasing 4 for semiconductor-
vacuum contacts also exhibits the obvious inter-
pretation, stressed earlier within the context of
local-density models, ss that it is a result of de-
creasing the difference in the valence-electron
surface charge density between the solid and the
vacuum. A similar comment obviously describes
the behavior of surface energies in bimetallic con-
tacts (Fig. 5). Thus, the only really "novel" re-
sults of our analyses are those obtained for metal-
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critical value 4, of 4 will exist such that &y(&,)a&
= —,'Ifrh, and for 4 & 4, inequality (45b) is satisfied,
whereas for 4 «, (45a) is satisfied. Thus, the
model does predict qualitatively that small-gap
semiconductors should exhibit Fermi-level pinning
but large-gap semiconductors should not, although
this qualitative prediction is not unique to the di-
electric continuum model. ~ Unfortunately, how-

ever, Phillips' numerics~ are incorrect because
he failed to note that ys„&y„„, neglected to sub-
tract out y~, and implicitly presumed that az q 2/

16m =- 1. In fact, all of these approximations con-
spire to render his calculated values of 4yas sub-
stantially larger than we would expect to be rea-
sonable, so that in fact the model predicts a crit-
ical value of c(0) well above ten, in disagreement
with the data presented in Ref. 19.

FIG. 5. Surface energy y of the metal-metal inter-
face for metals with plasma frequencies co&& and ~&2 as
a function of a function of the ratio x= copf/~~2. The
values at @=0 corresponds to the metal-vacuum inter-
face.

~V =~s+&~ -vs~ (44)

is the source of energy for this transition. Thus
if

&y as &2K&, (45a)

a charge transfer excitation occurs and the Fermi
level is pinned at the interface ("covalent semicon-
ductors") whereas if

semiconductor (Fig. 4) and semiconductor-semi-
conductor (Fig. 6) interfaces.

Since Phillips has invoked a qualitative version
of our analysis to describe the energetics of metal-
semiconductor contacts, let us conclude by re1.at-
ing our results to his. He argues that to obtain
a charge transfer excitation leading to the forma-
tion of a dipole charge layer capable of "pinning"
the Fermi-level at a metal-semiconductor con-
tact, an energy of —,'E~ = —,'M per surface atom is re-
quired, where E, is related to c(& = 0) via Eqs.
(3). He then argues that the gain in surface energy,
in our notation

IV. SYNOPSIS

The ob]ective of the work reported xn thxs paper
is the explicit demonstration of how far toward
the computation of quantum-theory surface proper-
ties, in particular surface energies and optical
potentials, one can go solely on the basis of clas-
sical electrostatic models of local dielectric me-
dia. Our main analytical results are the deriva-
tion of explicit, closed-form expressions for the
surface energy [Eqs. (19) and (20)] and one-elec-
tron optical potential [Eq. (27)] as functionals of
the parameters occurring in dielectric-continuum
models of the frequency-dependent dielectric func-
tions of metals and insulators [Eqs, (5)]. The ex-
tension of our results to dielectric functions local-
ly varying in space as well as frequency are pos-
sible, but are rather messy algebraically and un-

05 I I I I
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I I I &

)
I

=0.5
6,)

P2Q4
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y as~&~y (45b) Q. l

such a transfer cannot occur and the barrier height
at the metal-semiconductor interface scales as
the difference in electron affinity of the semicon-
ductor and work function of the metal ("ionic semi-
conductors"). In Eqs. (45) ae designates the sur-
face area per surface atom. In the case that he
considers, i.e. , &&=&&, q,z=q, we see im-
mediately from Figs. 3 and 4 that 4yas is a mon-
atonically decreasing function of 4. Therefore a

0.0
0.0 0.5

QJP2

).0

FIG. 6. Surface energy p of the semiconductor-semi-
conductor interface as a function of the band gap 42/{d&2
of one of them for different x = ~»/~&2 plasma frequency
ratios.
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illuminating. ~ Their extension to nonlocal dielec-
tric media has been considered inpartby numerous
authors, ~~'44 5~ with the result that the detailed
predictions of the various models depend on (im-
perfectly known) boundary conditions in the vicinity
of the interfaces of such dielectrics.

The motion of a charged particle in the presence
of a local dielectric medium has, of course, been
examined several times over the years. "" Our
analysis differs from these earlier ones by virtue
of evaluating not only the electrostatic fields
(Sec. IIB), but also the surface energies (Sec.
II C) and one-electron optical potential (Sec. II D).
Thus, as emphasized earlier, the major new fea-
ture of our approach lies in the use of the well-
known electrostatic results presented in Sec. IIB
to derive the quantum-field-theoretic results pre-
sented in Secs. IIC and IID. Some of these re-
sults had been obtained earlier in special
cases' ~'~~'~' ' '6 (most particularly that of the
metal-vacuum interface), but only by the use of
far more complicated analytical methodologies
than the simple application of classical electro-
statics described herein. Thus, we view our
main contribution as being the explicit demonstra-
tion that for local dielectric media classical elec-
trostatics leads in a simple and transparent fash-

ion directly to the host of quantum-field-theoretic
expressions for the optical potential
and surface energy 3 which have appeared in the
literature.

While it is presumptuous to regard so simple a
model as appropriate for the description of actual
interfaces, the dielectric continuum formulas
derived herein nevertheless lead to two further
ancillary conclusions about the surface electronic
properties of solids. First, they display how
surface-plasmon damping dramatically reduces
the range of the nonlocality in the high-energy,
one-electron optical potential of relevance in the
models of low ener-gy electron diffraction (LEED)
from solids: a result which underlies a modern
surface-structure determination via LEED inten-
sity analysis. Second, an immediate consequence
of this model is the demonstration that even for
local media, charge transfer excitations' do not
afford a natural interpretation of the different be-
havior of metal contacts on "covalent" and "ionic"
tetrahedrally coordinated semiconductors.

ACKNOWLEDGMENTS

The authors are indebted to Professor G. D.
Mahan for bringing Ref. 44 to their attention and
to Ms. L. Kennedy for assistance.

J. D. Jackson, Classical Electrodynamics (Wiley, New

York, 1962), Chaps. 2 and 3.
C. B. Duke and P. N. Sen (unpublished).

3A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyalo-
shinskii, Methods of Qggntgm Field Theory in Statisti-
cal Physics (Prentice-Hall, Englewood Cliffs, N. J.,
1963), Chap. 6.

4R. G. Barrera and E. Gerlach, Solid State Commun.
14, 979 (1974).

R. A. Craig, Phys. Rev. B 6, 1134 (1972).
R. A. Craig, Solid State Commun. 13, 1517 (1973).

~J. Schmit and A. A. Lucas, Solid State Commun. 11,
415 (1972).
P. J. Feibelman, Solid State Commun. 13, 319 (1973).

~M. Johnson and G. Srinivasan, Phys. Lett. A ~43 427
(1973).
J. Heinrichs, Solid State Commun. 13, 1599 (1973).
J. Harris and R. O. Jones, J. Phys. F 4, 1170 (1974).
A. Griffin, H. Kranz, and J. Harris, J. Phys. F 4,
1744 (1974).
E. Wikborg and J. E. Inglesfield, Solid State Commun.
16 335 (1975).

14D. R. Penn, Phys. Rev. 128, 2093 (1962).
~S. H. Wemple and M. DiDomenico, Jr. , Phys. Rev.
Lett. ~23 1156 (1969).
J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).
J. Hermanson, Phys. Rev. B 6, 2427 (1972).
J C. Inkson, J. Phys. C 5, 2599 (1972)~

J. C. Phillips, Solid State Commun. 12, 861 (1973).
C. B. Duke, Adv. Chem. Phys. 27, 1 (1974).
J. M. Ziman, Principles in the Theory of Solids (Cam-
bridge U. P. , Cambridge, 1965), pp. 219-229.

C. B. Duke, J. Vac. Sci. Technol. 6, 152 (1969).
23P. W. Anderson in Elementary Excitations in Solids,

Molecgles, and Atoms, edited by J. T. Devresese, A.
B. Kunz, and T. C. Collins (Plenum, London, 1974),
Part A, pp. 1-30.
C. B. Duke and U. Landman, Phys. Rev. B 8, 505
(1973).
C. B. Duke, L. Pietronero, J. O. Porteus, and J.
Wendelken, Phys. Rev. B 12, 4059 (1975).
P. Zacharias, Z. Phys. 256, 92 (1972).

YP. J. Feibelman, C. B. Duke, and A. Bagchi, Phys.
Rev. B 5, 2436 (1972).
C. B. Duke and G. E. Laramore, Phys. Rev. B 3,
3183 (1971).

2~D. E. Beck and V. Celli, Phys. Rev. Lett. 28, 1124
(1973).
P. J. Feibelman, Phys. Rev. B 3, 220 (1971).
P. J. Feibelman, Phys. Rev. B 3, 2974 (1971).
P. J. Feibelman, Phys. Rev. Lett. 30, 975 (1973).
P. J. Feibelman, Surf. Sci. 40, 102 (1973).

34P. J. Feibelman, (unpublished).
5J. Harris, J. Phys. C 5, 1757 (1972).
A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyalo-
shinskii, Qgantgm Field Theoretical iViethods in Statis-
tical Physics (Pergamon, London, 1965), p. 252.

VG. Wentzel, Helv. Phys. Acta. 15, 111 (1942).
K. Sawada, K. A. Brueckner, N. Fukuda, and R.
Brout, Phys. Rev. 108, 507 (1957).

3~V. Peuckert, Z. Phys. 241, 191 (1971).
A. Liebseh, Phys. Rev. Lett. ~32 1203 (1974).

4 J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96
(1959).



13 DIELECTRIC CONTINUUM THEORY OF THE ELECTRONIC. . . 4489

~ P. J. Feibelman, Surf. Sci. 27, 438 (1971).
4~E. C. Titchmash, 7.'Joe Theo~ of Functions (Oxford

University, Oxford, 1950), p. 115.
44J. S. Helman and W. Baltensperger, Phys. Kondens.

Mater. 8, 194 (1968).
45D. M. Newns, Phys. Rev. B 1, 3304 (1970).
46A. V. Sidyakin, Zh. Eksp. Teor. Fix. 58, 573 (1970)

[Sov. Phys. -JETP 31, 308 (1970)).
47D. E. Beck and V. Celli, Phys. Rev. B ~2 2955 (1970).

N. D. Lang and W. Kohn, Phys. Rev. B 7, 3541 (1973).

9J. Heinrichs, Phys. Rev. B 8, 1346 (1973).
+J. C. Inkson, J. Phys. F 3, 2143 (1973); Surf. Sci.

28, 69 (1971).
~ R. G. Sachs and D. L. Dexter, J. Appl. Phys. 21, 1304

(1950).
~2N. Takimoto, Phys. Rev. 146, 336 (1966).

A. Modinos, Brit. J. Appl. Phys. 18, 531 (1967).
+D. M. Newns, J. Chem. Phys. 50, 4572 (1969).

D. Chan and P. Richmond, Surf. Sci. 39, 437 (1973).
J. Harris and R. O. Jones, J. Phys. C 6, 3585 (1973).


