
PH YSICAL REVIEW B VOLU ME 13, NUMB ER 10 15 MAY 1976

Many-body effects in n t-ype Si inversion layers. I. Effects in the lowest subband
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Some many-body efFects on the electrons in the n inversion layer on the Si (100) surface of the metal-oxide-
semiconductor structure have been calculated. Screening was treated in the Lundqvist-Overhauser
approximation. In this paper we report calculations on the exchange and correlation energies and efFective
mass of the electrons in the lowest subband both in the limit of a twoMimensional interacting electron gas and
for a finite thickness of the layer. Corrections due to finite oxide thickness and dispersion in the insulator have
been investigated and found to have a very small influence on the efFective mass. Finally, contributions from
the electron-phonon interaction are estimated by defermation-potential theory and found to be negligible.

I. INTRODUCTION

Near the semiconductor surface in a metal-
insulator- semiconductor structure the bands are
bent. The amount of bending can be controlled by
the gate voltage, and on P-type substrate an in-
version layer of electrons can be formed. The
potential well which confines the electrons in the
direction perpendicular to the interface is so
narrow that quantum effects occur. The properties
of the inversion layer have been studied extensively
both theoretically and experimentally. '

In this work we are concerned with the effects of
electron-electron interactions in the inversion
layer on a Si (100) surface The m.etal-insulator-
semiconductor (MIS) system is particularly inte-
resting for such a study since the density of elec-
trons can be varied continuously and in a control-
led manner by simply changing the gate voltage.
This paper treats many-body effects in the lowest
subband both in the limit of an infinitely thin layer,
in which case the system is a two-dimensional
electron gas, and when the finite thickness of the
layer is taken into account. Our results give the
correlation energy and effective mass of an elec-
tron in the lowest subband. Apart from the direct
electron-electron interaction, contributions to
those quantities from the finite thickness and the
dispersion of the insulator and the electron-phonon
interaction are investigated but found to be quite
small. In a later article we shall study effects
which involve the higher subbands.

The basis of the calculations is the self-consis-
tent results in the Hartree approximation obtained
by Stern and Howard' and Stern. ' They showed
that within the effective-mass approximation the
six valleys of Si in the bulk give rise to two ladders
of subbands. The two valleys, which have their
longitudinal mass perpendicular to the interface,
lead to a set of subbands in which the wave func-
tions are given by

f„q(r) = g„(z)exp(fk R), (1)
where k and R are two-dimensional vectors paral-
lel to the interface and z is the coordinate pex"pen-
dicular to the interface. n labels the subbands.
The one-electron energy corresponding to the
wave function (1) is

z„(k)=E„+k'/2m,

where m is the transverse mass of Si. E„and
g„(z) are determined by a self-consistent solution
of a one-dimensional SchrMinger equation and
Poisson's equation.

The other four valleys give rise to another lad-
der of subbands with a structure similar to (1)
and (2) but with different energies and a heavier
mass for motion parallel to the surface. The low-
est subbanQ of that ladder has higher energy than
the lowest subband of the doubly degenerate ladder.
Throughout this work we shall work at absolute
temperature T = 0 and assume that the number of
electrons in the inversion layer is so small that
only the lowest subband is occupied in the ground
state.

II. TWO-DIMENSIONAL LIMIT

As the wave function (1) shows, the electrons
move freely parallel to the interface. The thick-
ness of the inversion layer when only the lowest
subband is occupied is of the order of 30 A. For
a first approximation we study the limit of zero
thickness, i.e. , f,(z) =- 5(z). In that limit we have
a completely two-dimensional electron gas and
the methods vhich have been developed for a
three-dimensional gas can be directly applied with
proper changes. In particular we introduce the
one-particle Green's function G(%, E),' where k is
a two-dimensional wave vector parallel to the
interface.

The one-particle Green's function satisfies the
Dyson equation
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G(%, E)= Go(%, E)+ GO(%, E) M(%, E) G(%, E), (3)

where C, is the Green's function for the noninter-
acting electron gas

8(1%1-k, ) 8{k,—1{(1)
E &-(%).f6'E ~{K) f-6

with t'(fc) = (k' —k~r) /2m, where m is the bulk
effective mass for motion parallel to the surface,
and 5=0+.

In the random-phase approximation (RPA) the
self-energy M(R, E) is given by

d /de) e
M(%, E)=t

( )3 ( )
GQ(% —q, E -(d)),

The latter term is replaced by coupling to one
effective plasmon

Im " —1 =(x5((d) —(d) ),
&(q, ~)

where the energy of the plasmon co, and the coup-
ling e are determined by the requirement that the
f sum rule'

dim " —1)d = —d '(d),
e(q, (d)

and the zero-frequency Kramers-Kronig relation

where e'/2e„q is the bare Coulomb interaction and
e„ is the effective permittivity of the surrounding
medium. Its value and dependence on q are dis-
cussed later in this paper. The permittivity func-
tion e(q, ~) given by

—Im " -1 d~= — " —1 11

be fulfilled, where aP) (q}=T qXe'/e„m. We then
have

—~——1= — g(q, (d))
e{q (o} e'

E~ 2E~ig
(dP

e„/e(q, 0) —1 ' (12)

d~k dE2'„f 3
—GO(%+ q, E+ (d))

2e„q (2v) '

x Go(ft, E} (6)

was evaluated by Stern. ' n is the number of de-
generate valleys in the bulk to which the lowest
subband corresponds. For the (100) surface of
Si, n„=2.

The quasiparticle energy E(k) can then be found
as the pole of the Green's function G(k, E):

E+ u, = ((k)+ M(k, E),
where E is measured relative to the chemical
potential p, , which is determined by setting E = 0
and k=k~ in the above equation. '

One further simplification is introduced. Instead
of the RPA dielectric function [Eq. (6)] we use the
plasmon-pole approximation suggested by Lund-
qvist' and Overhauser. ' To this end we separate
the screened interaction into an unscreened term
which gives rise to the exchange part of the self-
energy and a term which involves the coupling to
density fluctuations:

E„1 +P 2m~

e(q, (d)) 2&a, (d)'-(d),'+i() '

For e(q, 0) we use the RPA result of Stern'

e(q, 0)/e„= 1+s(q)/q

s(q) = (2n„e'm /4ve„) (1 —8(q —2k~)

x [1 —(2k/, /q)' ] 'i')

(14)

With these approximations we can integrate over
~ and obtain the self-energy

M(k, E)=M, (k)+M, (k, E),

(16)

d g e
Md(kd E)

( )q

8(k —1% —q I ) 8(1%—q I
—k )

E —$(% —q)+ (o, E —t'(% —q) —(o,
{1V}

e' e„e' e'
2e„q e(q, ~) 2e„q 2e„q e(q, &u)

(6)

Since the integrands are functions of the magni-
tudes of q and of R —q, it is natural to introduce
q= 1q1 and u=(K-q}' as integration variables:

(2v)'e (, ,)~ (- f (ku-q)'l[ (ku+q)']]" ' (16)

2e'm d u 8(kr~ —u) 8(u —kr)
(2v)'& (0, (, )~ (-[u —(k —q)'][u-(k+q)']]'" u+ p, u+p (19)
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where

Py = —2 tB (E6 (d~ ) —kw .
The integrations over u can be performed analytically, and we have

for k(k~:
e' '&+' e' w k'+ q' —k'

M, (k) = — dq—,——arcsin w dq,
4ww„ ~w ~ 2w w„ 2 2kq

(2o)

2me' (up
M, (k, E)= — dq, —~ H((k+q)', k, q, P,}

dq „~[H(k', k, q, p )+H((k+q}, k, q, p ) H(k-, k, q, p )]
aw-a 2w} ~ ~a

OO 2%l8 4l
dq „rH((k+q)', k, q, P ) .

ay+a 2w} ~ ~a
(21)

For k& kz,
e' w k'+ q' —k'

M, (k) =—,——arcsin w d q,
2w 6 2 2kq

(22)

2me'
M, (k, E)= — dq, , z

—~ H((k+ q)', k, q, p }
0 ~2K' E'„a)

2 ~
~

~
~

~

P
~
2

t t t I
'+'& 2me'

dq, „—~[H(kw, k, q, P, )+H((k+q)', k, q, P } H(k2w, k, -q, P )]

2 pps8 co
dq, „—~ H((k+ q)', k, q,p ) .

(2z) 6'~

The function H is given by, for p & —(k+ q)',

-1 . [x —(k'+q')](P+k'+q')+4k'q' w~

([P+(k —q}'][P+(k+q)']j' ' 2kq(P+x} 2 l

'

for —(k+ q)'& p& —(k —q)',

xh, ([P+ (k —q)'] [P+ (k+ q}'][x—(k —q)'] [x —(k+q)']j'~'+ [x—(k'+ q')] (p+ k'+ q')+ 4k'q'
2kq(P+ x) (24)

for —(k —q)'& P,

1 . [x- (k'+ q')] (p+ k'+ q'}+4k'q' w

([P+(k )2][P+(kyq)2]j~&2 2kq(P+/) 2

By differentiation of the Dyson equation (V) we
find the effective mass m'= k(dE/dk) ':

(25)

where the derivatives are to be evaluated at E= 0,
k= k~. The derivatives were also calculated as
one-dimensional integrals. The rather complicated
integrands wiQ not be shown.
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III. RESULTS IN THE TWO-DIMENSIONAL LIMIT IOO

All calculations of this work have been done with
the parameters corresponding to the SiO, —Si(100)
interface. A list of these parameters is given in
Table I. From a simple electrostatic consider-
ation it follows that, in the two-dimensional limit
where the electrons are right at the interface, the
permittivity of the surrounding medium is the
average of the permittivities of SiO, and Si.

In Fig. 1 we show the Fermi energy, exchange
energy, correlation energy, and self-energy as a
function of inversion-layer concentration. The
exchange energy was calculated earlier by Chaplik'
and Stern" and increases as the square root of
concentration. The correlation energy is also
negative, so the magnitude of the energy is larger
than the exchange energy alone. This is in direct
contrast to what would be obtained in a static
screening approximation and demonstrates that the
dynamical features of the screening are important.

For momenta different from the Fermi momen-
tum the correlation energy changes in such a way
that the variation with k of the exchange energy is
almost cancelled. The resulting self-energy
found by solving the Dyson equation varies very
little with k, as shown in Fig. 2 for an inversion-
layer density of 10" cm '. Thus the quasiparticle
energy band is very nearly parabolic. The mean
mass mdefined by k~2/2m = E(k~) —E(0) is changed
somewhat from the noninteracting value. These
results are similar to what is seen in three dimen-
sions both in the plasmon-pole approximation"
and in the RPA. '

Figure 3 shows the mean mass as a function of
density and the effective mass calculated from
Eq. (25). For densities below 5x10" cm ' the
electron-electron interaction enhances the effective
mass, whereas it is lower than the bulk value for
higher densities. For n„= 1 and very high densities
our results coincide with those of Janak" who used
the static approximation and those of Chaplik. ' It
should be noted, though, that in the real system
higher subbands will be populated at densities
above -5X 10" cm ' so the model is not applicable
there.

0 IO

E

lO

N[™]
FIG. 1. Fermi energy ez, exchange energy e„, cor-

relation energy e, , and self-energy ~ evaluated at the
Fermi level as functions of inversion-layer density in
the two-dimensional limit.

IV. THEORY FOR FINITE LAYER THICKNESS

f(r) = &,(z) exp(ik. R). (26)

—IO

-20

The finite thickness of the inversion layer can be
taken into account rather straightforwardly. The
envelope wave function for the noninteracting elec-
trons is

-40—

TABLE I. Parameters used in the calculations.

Valley degeneracy
Mass parallel to surface
Permittivity of Si
Permittivity of Si02
Average permittivity

trav

ln

Es
E'2

E~

2

0.1905m~
11.7&p

3.9&p

7.8&p

-50
0.0

I

0.5
k/kF

I

I.O

FIG. 2. Exchange energy ~, correlation energy c~,
and self-energy Ias functions of wave vector in the
two-dimensional limit. N jfiy = 10 cm
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N [cm-'j

FIG. 3. Mean mass m f&z/2m=E (kz)-E(0)}, and effec-
tive mass ~* as functions of inversion-layer density in
the two-dimensional limit. ~ is the bulk mass for mo-
tion parallel to the interface, and mg is the free-elect-
ron mass.

101510

The potential )()(R, z; z,) created by an electron at
(0, 0, z,) is found by solving Poisson's equation

fined to a plane embedded in a medium with a q-
dependent effective permittivity

& (q)=e /f(q).

The RPA screening and the Lundqvist-Over-
hauser approximation then follow from the expres-
sions in the two-dimensional limit (Sec. II) by
using this permittivity instead of e„=(e, + e, )/2.
A more rigorous justification for this will follow
from the more general theory to be introduced in

part II of this work. See also Siggia and Kwok. "
V. RESULTS

The simplest wave functions to use in (29) is the
variational wave function applied by Fang and
Howard"

g(z) = (b'/2)' ' e " '

b is determined by minimizing the total energy. '
For this wave function f(q) is given by

v')() =—5(R)5(z —z ) for z&0,
&S

V2$ = 0 for z& 0,
8+9x+3x' e, —e, 1

8(1+x}' e, + e, (1+x)' ' (32)

with the boundary conditions

P(R, 0+;zc) = Q(R, 0 —;zo},

8$
S 8Z g (}+

)()-0 for Iz I-

ay
BZ g 0

where e, and e, are the permittivities of the semi-
conductor and insulator, respectively. Upon Four-
ier analysis in the directions parallel to the inter-
face, we obtain the solution for z&0:

where x= q/b
In Fig. 4 are shown the exchange, correlation,

and self-energies as functions of inversion-layer
concentration. Dashed curves show the results
when the variational wave function is used. The
values z„=3/b are those found' for a bulk doping
of N= Vx 10" cm '. The full lines show results
when we use the Hartree wave functions calculated
numerically by Stern. '" In neither case is the

Q(R, z;zc)= )() (z;z )e'&'R, 30

)() q (z; z,}=
2ES g

e o+ eg . S i -q(g+g )
Es+6

(28)

20—

The bare Coulomb interaction between two elec-
trons in the lowest subband having momentum dif-
ference q is then

2

~(q) =
2, f(q)

S

f)dl= f d d*' Id, (*)l' ld. ( ')I*
0 0

X -~
~
g-"

~
~s ~' -~(g+ge + e
Es+Ei

(29)

This reduced interaction, which has been derived
and used by several authors, " "can be viewed as
the Coulomb interaction between two electrons con-

IO—

I

0 3
N (IO cm ]

FIG. 4. Exchange energy ~„, correlation energy ~~,
and self-energy M at the Fermi level as functions of in-
version-layer density. Full curves: Results obtained
with self-consistent Hartree wave functions. Dashed
curves: Results obtained with the variational wave func-
tion [Eq. (31)] .
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interaction of an electron with its own image in the
insulator taken into account in calculating the wave
function. However, if we use Hartree wave func-
tions determined from a Schrlinger equation
which includes the image potential, the self-energy
lies between the two and a little closer to the re-
sults for the variational wave function. Thus the
exact shape of the wave function does not affect
the results much, but comparison with Fig. 1
shows that the finite thickness of the layer strongly
modifies the strictly two-dimensional results; the
self-energy is roughly halved.

This is also the case for the effective mass.
Results are shown in the discussion and comparison
with experimental results, Sec. IX.

VI. FINITE INSULATOR THICKNESS

The possible effects of a small oxide thickness
d can be treated in a very similar way. If the
metal is considered infinitely conducting and we
restrict ourselves to the two-dimensional case,
Poisson's equation can be solved"" and the un-
screened Coulomb interaction between two elec-
trons on the interface is v(q) = e'/2qe(q), where
the effective permittivity e(q) is

t(q) = g[e~+f( coth(qd)] .

The main difference from the simplest case with
d =~ is that the plasmon energy is proportional to
q instead of q'~' for small q.

In Table 0 we show typical results on the self-
energy of such a calculation. It is seen that the
oxide must be extremely thin to show any percep-
tible effect. Since the finite thickness of the in-
version layer will make the changes even smaller,
they can be disregarded in normal experimental
devices. The change in the effective mass is even

TABLE II. Effect of finite insulator thickness (d) on
exchange (&„), correlation (&, ), and self (M) energies
as functions of inversion-layer density & calculated in
the two-dimensional limit.

smaller: At d =100 A the mass is further en-
hanced by 5%, 1.5/p, and 0.3% for the densities
10", 10', and 10" cm-', respectively.

E
~~(~) =~( w+

1 —(e/(u, )' —i y(u/ru,
' (34)

where S is the oscillator strength and y the damp-
ing constant. In (34) we have only considered the
lowest band; all higher bands are absorbed in the
"high-frequency" dielectric function && „, i.e.,
e; „—= e; „—eP where c; „is the static permittiv-
ity. Experimentally, $ =0.84 determined from the
infrared absorption measurement by Miler. " The
static dielectric constant is about 3.8.

Since the permittivity of the insulator enters in
the bare Coulomb interaction because of the image
potential, the dispersion can modify the previous
results.

If we apply the rules [Eqs. (9-11)]for construct-
ing the Lundqvist-Overhauser approximation to the
permittivity e, (u), we obtain

&~(4P) = &
~

—fOS(dz/(I'd —(d& + i 5), (35)

i.e., the oscillator model without damping. In the
two-dimensional limit the total permittivity func-
tion for interaction between electrons in the in-
version layer is then

EDS (dy/2 (dp

(36)

where e„=2(e, „+e,) and up~ and &u, were defined
in Sec. II. For the inverse permittivity function
the two dispersion relations mix and we obtain
after elementary manipulations

VII. EFFECT OF OXIDE DISPERSION

rt is known that amorphous SiO, shows disper-
sion and the lowest absorption band lies at a fre-
quency co, of 440 cm ' corresponding to an optical
phonon energy of 55 MeV." In the simple oscilla-
tor model the permittivity of SiO, is given by

N
(cm 2)

1Pi i

d
(A)

100
50

(me V)

—6.6
—4 ' 2
—3.1

~c
(meV)

-12.1
-11.5
-10.2

M
(meV)

-18.7
-15.7
-13.3

2Q+ Qp+ 2Q (d

e(q, &u) &o' —sP, + H +' —&u' +i 5'

where

2 ao 0 p [1(~2 ~2)2 + ~2~2]1/2 (38)
1Pi2

1Pi3

400
200
100

50

100
50

-20.8
-20.1
-19.3
-17.9
-15.5
-65.9
-62.8
—59.9

—21.3
-21.3

2 1 ~ 3
-21.1
-20.6
—33.6
-33.5
-33.4

-42.1
-41.4
-40.6
-39.0
-36.1
-99.5
-96.3
-93.3

&u,'=-, (~,/e„)S&u,', and e', , =&a,'+~,'. When Eq. (37)
is inserted in the integrals for the self-energy,
we see that the calculations are only slightly
more complicated: to obtain the correlation en-
ergy we have to perform two integrals over q,
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TABLE III. Effect of oxide dispersion on exchange
(&„), correlation (e~), and self (M) energies in the two-
dimensional limit (&„.,= 0) and when the finite layer thick-
ness is taken into account through the variational wave
function [Eq. (31)]. The values of &.,„=3/b correspond
to a bulk doping of 7 &10 ~ cm 3. S is the oscillator
strength of the lowest absorption band of Si02.

VIII. INFLUENCE OF ELECTRON-PHONON INTERACTION

In this section we describe a simplified theory
for the contribution of the electron-phonon inter-
action to the self-energy. If we disregard the ef-
fect of the Sio, -Si interface on the phonons, the
deformation potential interaction is given by

N
(cm ~)

2 J0
(A)

~x

(meV)
Ec M

(me V) (me V) 8 p= dg g 'ur + „$rfr), 42)

]pii

1Pi2

45

30

0
0.84

0
0.84

0
0.84

0
0.84

6.6
7.0
5.6
5.7

-20.8
—22.0
—14.7
—15.3

—12.1
—16.3

4
5.0

—21.3
—25.4

5.2
5.5

—18.7
—10.1
-10.1
—10.7
—42.1
—47.4
-19.9
—20.8

where

)l)(r) =~ g g(z)e' 'RcK,

A is the area of the interface, cK is the destruc-
tion operator for an electron with momentum K,
and in this section we use capital letters to denote
the components of vectors parallel to the interface.
For the displacement u(r) we have (o. = x, y, z)

with

.(s, ) = ~ )e) () — , ' .
0

(40)

one for each branch. The same is true of the cal-
culation of the effective mass.

It requires a few manipulations to convince
oneself that these methods are applicable when we
take the finite thickness of the inversion layers
into account. Instead of the first two terms of
Eq. (36) we have to introduce an effective-permit-
tivity function of the surrounding medium defined
by

u, (r) =~ Q e'q'u-„, .e (qj),
qe 9

u-. =(2p(o ) )i'(b . +b-t- ),
qy

(44)

(45)

where V is the volume of the sample, e denotes
the direction of polarization, p is the mass den-
sity of the sample, mq, . is the phonon energy,
b Q,

. and b~ are phonon destruction and creation
Qgoperators, respectively, and j is the branch in-

dex.
Insertion of Eqs. (43)-(45) in (42) yields

&-(q) =e.lf (q),

, e, +e; „f,(I))
~ e, + e, „f„(q) ' (41)

H„= p M.(q~)fc& -cl, (b-, +b'-„)].
n, 1C, q, j

With 0„„=D„==, and D„==~ + =„we have

Mn(ql) =(2 v~zy2 ~&2 dz l&(z)l e'

(46)

~l=~', ;„""[1f.(e)lf (e}j, -
S Ioo

where e& „=c;„+c,S is the static permittivity of
the insulator, and fo and f„are the functions in
Eq. (29) calculated with the static and high-fre-
quency value of E&, respectively.

In Table III we show typical results both in the
two-dimensional limit and for finite layer thick-
ness. The change is quite large in the former
case for low densities but as one would expect
the effect is much smaller in the latter since the
image contribution to the bare Coulomb interac-
tion decreases rapidly inside the semiconductor.

The effect of dispersion in the oxide on the ef-
fective mass is marginal. In the two-dimensional
approximation the change is less than 0.6% for
10ii~¹10" cm

M '")(K E)Pil

where

e(IK Ol-k, )

2u)T)y E —$(K —Q) —v-

8(ke —iK -@i)
( )

E —$(K —Q} + &u-,.

yS
lr(q~f)l = Q (2 )yg2D A~e~(ql')

(b
. )3 . (49)

(47}

If the variational wave function [Eq. (31)t is used,
the last integral is b'/(b —iq, )'

With a phonon propagator (&o' —&)2&) ' we then
Obtain for the bare phonon contribution to the self-
energy
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To perform the integration over q, we note that
except for the factor b6/(bm+q~)' the integrand does
not vary extremely rapidly with q, . We therefore
crudely approximate it with that factor multiplied
by the integrand evaluated at q, =0. Then only
longitudinal phonons contribute and we get

M "'(K E)

N z~„ ~c
(cm ) (A) (eV) (meV) (meV) (meV)

&m*
m

TABLE IV. Effect of the electron-phonon interaction
on exchange (&„), correlation (&, ), and self (M) energies.
4m*/m shows the contribution to the mass enhancement
from the electron-phonon interaction. " is the deforma-
tion potential.

45 0 —5.5 —4.6
6 —5.5 -4.9

5 x10 35 0 —10.9 -5.0
6 -10.9 —5.7

—10.1
—10.4
—15.9
—16.6

1.4 xlp 4

1.9 x10-4

1Pi 2 30 0 -14.7 -5.2
6 —14.7 —6.4

—19.9
-21.1 2.5 x10 4

with

lg(Q) I'= —„-=-;Q',
16 p

(51)

2 x]0&' 25 p 19 9
6 —19.9 -7.5 —27.4 3.4 x10 4

4 x10 20 0 —27.0 -5.5 —32.5
6 -27.0 -9.2 -36.2 5.2 x10

where y was defined in Eq. (6). A few manipula-
tions lead to

e' ~' —~e2 + (2e „Q/e')g'

2

y(Q, co)
2e„Q

(53)

and if the Lundqvist-Overhauser approximation is
applied for y™ we see that we have the same mixed-
mode problem as in the case of dispersion in the
insulator, Sec. VII. We only have to substitute
lg(Q)l'&& 2e„Q/e for w,' and wo2 for ru,', in Eqs.
(37-39).

As in Sec. IV we take the thickness of the inver-
sion layer into account by using a q-df;;»endent
permittivity for the medium:

(g) =&,/f (q),

and v =sf, where s is some average sound ve-
locity for longitudinal phonons. The self-energy
is now seen to represent the interaction between
the two-dimensional electron gas and two-dimen-
sional phonons with a propagator (u&' —&uo)

' and
an effective coupling lg(Q}l . Thus we can proceed
in two dimensions, the third dimension being pres-
ent only through b in the coupling (51).

The electron gas screens the electron-phonon
interaction. We note that as long as we do not go
beyond the RPA, we can simply add the bare pho-
non contribution to the bare Coulomb interaction
and obtain the total screened Coulomb and phonon
interaction in the RPA:

e'/2e. q + lg(Q) I'/(~' —~2e)

I - [e'/2e. Q + Ig(Q) I'/(~' —~g)] X(Q, ~) '

(52)

where f(q) is given by Eq. (32).
In Table 1V we list representative results. For

the velocity of sound s =8780 m/sec was used, and
for the mass density of Si p =2330 kg/m~. It is
seen that the electron-phonon interaction contri-
butes little to the self-energy and almost nothing
to the effective mass.

IX. DISCUSSION

Experiments which measure the self-energy in-
variably involve excitation from the lowest sub-
band to a higher subband, and to make a compari-
son we have to know the self-energy of electrons
in the excited subband. This calculation is the
subject of a subsequent paper. Here we want to
compare our results on the effective mass with
experiments.

The cyclotron mass of electrons in the n inver-
sion layer has been measured by several
groups. "" There seems to be agreement that
for high frequencies and for concentrations N;„„
& 10" cm ' the cyclotron mass does not depend on
N;„„. This agrees with Kohn's theorem24 that in a
homogeneous system the cyclotron mass is not
affected by the electron-electron interaction.
There is not agreement on the actual value of the
cyclotron mass, however, although all measure-
ments have given results a little above the ex-
pected value 0.19 m, . Kennedy et al.""have ob-
served a frequency-dependent cyclotron mass
with a variation from 0.193m, at ~~, =52 cm ' to
0.207m, at co, = 25 cm'. At lower frequencies they
have found a cyclotron mass which varies with N,„„
in much the same way as measured by Smith and
Stiles' from Shubnikov-de Haas oscillations.
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They attributed this frequency dependence to the
electron-electron interaction gradually made ob-
servable when the electron scattering gets rela-
tively stronger so that the system can no longer
be considered homogeneous. On the other hand
the Munich group has seen no dependence of the
cyclotron mass on urv, 27 where 7 is the scattering
time.

Magnetoconductivity oscillations in inversion
layers were first observed by Fowler et al." By
measuring the temperature dependence of the am-
plitude of the oscillations and fitting to the corre-
sponding theoretical expression they determined
an effective ma. ss of 0.2m, . Smith and Stiles"
used the same method and found that the effective
mass varies with density, as shown by their ex-
perimental points in Fig. 5. Most recently, in an
effort to study the variation of the effective mass
as a function of substrate bias, Lakhani et al.29

have performed the same experiment. For zero
substrate bias, they saw practically no enhance-
ment of the mass with decreasing inversion-layer
concentration. However, when a sufficiently high
substrate bias was applied they found results a
little above the values of Smith and Stiles. This
was expected because substrate bias makes the
inversion layer thinner, which increases the ef-
fective Coulomb interaction.

Also shown in Fig. 5 are the calculated values of
the mass. The full curve shows our results in the
two-dimensional limit. The curve is seen to fol-

0.24

0.23—

0.22

& 0.2I

0.20—

O. I 9
0

I I I

2 3 4
N [IO cm ]

FIG. 5. Effective mass as a function of inversion-layer
density. The full curve shows results in the two-dimen-
sional limit. The dashed curve shows results for finite
inversion-layer thickness. The variational wave function
was used fEq. (31)] . Experimentally determined va1ues
from Shubnikov-de Haas oscillations (Ref. 26): 0 for
the magnetic induction B = 1.56T, + for B =2.59T.

low the dependence on density measured by Smith
and Stiles' very well. However, as the dashed
curve shows, the agreement with the Smith and
Stiles's measurement is only qualitative when the
finite thickness of the inversion layer is taken into
account. The doping of the samples used by Smith
and Stiles was not recorded; the values for the
parameter b of the variational wave function [Eq.
(81)] used in the calculation correspond' to a
doping of 10" cm ~ (b =0.098 A ' at N;„„=10" cm ',
and b =0.158 A ' at N „=4x10"cm '). The val-
ues of 5 are not very sensitive to the doping.

By now a great many calculations of the effec-
tive mass have been done. ' " """ A rather
complete collection of the results of different
authors can be found in the paper by Uemura. "
We wish to point out that the different approxima-
tions which employ dynamical screening give quite
similar results. The fact that our results lie con-
siderably lower than those of Ting, Lee, and
Quinn" "and those of Qhkawa" is not due to our
use of the plasmon-pole approximation but to the
fact that those authors use the bare particle ener-
gy in the Dyson equation (7) instead of the quasi-
particle energy. "

Naturally it is hoped that sufficiently accurate
measurements should make it possible to distin-
guish between the different approximations. How-
ever, as the experimental situation is not clear
yet and the results are not too accurate, it is pre-
mature to draw conclusions about the accuracy of
the different methods for calculating the many-
body effects. Instead it is worth stressing the
assumptions which have been made to obtain the
theoretical results.

The surface has been considered perfectly plane
and the barrier for penetration into the insulator
was taken to be infinite. Furthermore, all effects
of band structure have been treated in the effec-
tive-mass approximation. These three assump-
tions were discussed by Stern. ' Recently the size
of the mass enhancement due to nonparabolicity
has been calculated by Falicov" to be only about
1% for N;„„=4x10 ' cm ' increasing linearly with

+inv '

For the exchange and correlation we have used
the Lundqvist-Overhauser approximation. " In
three dimensions it is known that the difference
between results of this approximation and the
random-phase approximation is small. " As men-
tioned earlier this is also the case in the two-
dimensional limit.

The critique which can be raised against the
random-phase approximation at such rather low
densities in three dimensions" applies to two
dimensions as well. We do not know how crude
this approximation is although arguments have
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been given that it should work better in two than
in three dimensions for comparable densities. "
Results in the Hubbard approximation '"do not
differ much from the results on the effective mass
in the random-phase approximation, and the con-
tribution to the polarization from interband exci-
tations is also very small. "

In this work we have studied a number of other
interactions which contribute but they have all
been shown to have a negligible effect on the mass.

For the electron-phonon interaction this is in con-
trast with what has been calculated for metals in
three dimensions, ' for which the mass enhance-
ment is even larger than the enhancement due to
the electron-electron interaction.
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