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Raman scattering of light by polaritons in thin films; surface polaritons and size effects
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In this paper, we present a general theory of Raman scattering of light by polaritons in thin films. We
consider both forward and back scattering of light from a film laid on a transparent substrate. With the
assumption that the light couples with polaritons in the film via the Raman tensor and electro-optic coupling
within the film, we relate the Raman cross section to the spectral density of the electic field fluctuations in the
film. The spectral density functions are constructed from electromagnetic Green's functions derived previously.
Our expressions for the Raman cross section describe scattering by volume LO phonons, by volume TO
polaritons, and by surface polaritons associated with the substrate-film-vacuum structure. We apply the
general formulas to simple special cases, and examine the form of the cross section for both forward and back
scattering from surface polaritons, along with the nature of size-dependent corrections to the cross sections for
scattering from volume excitations. We present numerical calculations of the shape of the cross section for
both forward and back scattering from the film. We also discuss a number of qualitative features of the
scattering process, such as the origin of the large forward-backward asymmetry in the surface-polariton cross.

I. INTRODUCTION

There is currently active interest in the study
of the surface polaritons which propagate along the
interface between two dielectric media. A surface
polariton is an electromagnetic wave which propa-
gates along the interface, under a variety of condi-
tions. ' The electromagnetic fields associated with
the surface polariton decay to zero exponentially
as one moves away from the interface into either
medium.

For the simple case of the plane surface between
vacuum and a lossless isotropic dielectric, surface
polaritons may propagate wherever the (frequency
dependent) dielectric constant e(A) is negative. For
an insulator or semiconductor with a single infra-
red-active TO phonon, the dielectric constant is
negative between the TO and LQ phonon frequency.
Thus, the modes exist at infrared frequencies.
While the conditions that must be met for surface
polaritons to propagate are less simple for more
complex interface configurations, ' these modes
exist at infrared frequencies for many interesting
physical situations.

Quite generally, at the interface between a di-
electric and vacuum, the dispersion relation of the
surface polariton requires cQ„&A, where c is the
vacuum velocity of light, Q„ the wave vector of the
surface polariton parallel to the surface, and 0 its
frequency. This condition is required for the elec-
tromagnetic field of the wave to decay to zero ex-
ponentially as one moves away from the interface
into the vacuum. Because cQ„&A, one cannot cou-
ple to the surface polariton via a linear coupling
to a plane electromagnetic wave incident from the
vacuum onto a smooth plane interface.

Two methods have been used widely either to
generate surface polaritons, or to study their dis-
persion relation. One is the method of attenuated
total reflection (ATR), in which a prism is used to
upshift the wave vector of the incident electromag-
netic wave, and energy is transferred to the sur-
face polariton across a gap between the prism and
the sample under study. A second is the use of a
grating ruled on the surface. While both methods
of studying these modes have proved most useful,
in each case the method of coupling to the mode
perturbs the surface on which the mode propagates.

Since surface polaritons are elementary excita-
tions of bounded media, they must appear in the
Raman spectra of the system, as Ruppin and Engl-
mann have pointed out. s A number of experimental
investigators have searched without success for
surface polaritons in the Raman spectrum of light
back scattered from semi-infinite materials opaque
to the incident radiation. The first successful ex-
perimental study of surface polaritons by Raman
spectroscopy was reported by Evans, Ushioda, and
McMullen. ' These authors examined the Raman
spectrum of light scattered from a GaAs film
2500 A thick on a sapphire substrate. The sap-
phire substrate was transparent to the incident
radiation and, in contrast to earlier studies, the
experiment examined light scattered in the near
fo~ard direction with the laser beam incident
through the sapphire substrate. '

In a previous publication, we presented a quan-
titative theory of the surface polariton line inten-
sity which explained the very large forward-back-
ward asymmetry observed experimentally, and
which provides an excellent account of the line in-
tensities observed by Evans et al. in the near for-
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ward direction.
The purpose of the present paper is to present

a detailed discussion of the Raman scattering of
light from polaritons (both volume and surface) in
a thin film placed on a substrate transparent to the
incident and scattered radiation. We consider both
forward and back scattering intensities within the
framework of a Green's-function method that al-
lows study of line shapes as well as line intensities.
Our earlier results, which focused on the inte-
grated intensity of the surface polariton line,
emerge as a special limit of the present analysis.
Our previous paper provided a quantitative theory
of the line intensities, as remarked above. Here,
we confine our attention first to the task of obtain-
ing a general expression for the shape and intensity
of the frequency spectrum of light forward scat-
tered or back scattered from the film. We then
apply the formula to a special case which allows
us to explore many features of the general result
by analytic methods: we consider plane polarized
radiation normally incident on a film of zinc-blende
structure material with (100}surfaces, and ex-
amine the spectrum of radiation scattered near the
normal to the film. After we discuss a number of
features of the spectrum o& scattered light by ana-
lytic methods, we present numerical calculations
of the shape of the spectrum. In addition to lines
associated with scattering from surface polaritons
in the spectrum, we find that the intensities of the
volume LO phonon and volume TQ polaritons are
size dependent.

The method we use is an extension of an earlier
description of the back scattering of light from a
semi-infinite opaque material. We require the
scattered fields outside the film produced by fluc-
tuations 5e„„(x,t) of the dielectric tensor of the
film. The electromagnetic Green's functions re-
quired to relate the scattered field to sa„„(x,t)
have been constructed for use in a different con-
text. 8 We then relate 5e, „(x, t) to the amplitude of
the thermodynamic fluctuations of the electric field
in the film. The cross section for Raman scatter-
ing may be related to certain spectral densities
of the electric field; these spectral densities may
be constructed from the same Green's functions
that enter the description of the scattering process.

While this work was in its final stages, we have
learned that Nkoma has also analyzed the spectrum
of light scattered from surface polaritons in a
three-layer geometry by extending the method used
earlier by Nkoma and Loudon. They employ a re-
sponse function method mathematically equivalent
to our Green's-function method. The two methods
produce identical results, if the problem is fully
solved with either method. We believe the de-
scription presented here is more complete than
that of Nkoma and Loudon. They examine only the

contribution to the spectrum from surface polari-
tons, while here in addition we explore size-de-
pendent corrections to the volume excitation (LO
phonons and TO polariton) line intensities. Also,
our treatment gives a more complete description
of the interaction between the incident radiation,
and the excitations in the film, in a sense described
below.

II. GENERAL THEORETICAL DISCUSSION

We wish to analyze the Raman-scattering geom-
etry illustrated in Fig. 1. One has a film of thick-
ness d laid down upon a substrate. The dielectric
constant of the film e, and that of the substrate c~
are both isotropic, frequency dependent, and com-
plex. Light is incident upon the film either from
the vacuum above the film, or through the substrate
under the film. Only the latter case, the config-
uration employed in the experiments of Ushioda
and co-workers, is illustrated in the figure. We
assume the substrate is transparent to the incident
radiation, while (as for GaAs illuminated by the
Ar ion laser), the film may be strongly absorbing.
In the experiments performed by the Ushioda group,
the sapphire substrate is transparent while the film
was two or three optical-absorption lengths thick.
The film is also surface active, in the sense that
Re(c, (A}) may be negative for frequencies 0 in the
range of frequency shifts encountered in the Raman
experiment. Our treatment makes no assumption
about the behavior of e2(A}, but in the special cases

RAMAN SCATTERED

RADIATION

VACUUM
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FIG. 1. Configuration analyzed in the text. One has
a surface-active film of thickness d, and the incident
radiation is Raman scattered into the vacuum above the
crystal through coupling to fluctuations in the film.
While the figure shows the incident radiation strikes the
film from below, the discussion in the text considers in
addition the case where the incident radiation strikes the
film incident from the vacuum.
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considered below we suppose Re(zz(A)) )o.
The calculation of the scattered fields will pro-

ceed along lines very similar to discussions pre-
sented elsewhere. 7' '"' As a consequence, the
initial discussion here will be schematic in nature.

If we wish to examine the scattering of the in-
cident radiation by fluctuations within the film il-
lustrated in Fig. 1, then if the incident radiation
"sees" the fluctuations through their effect on the

dielectric tensor of the film, we solve Maxwell's
equations in the presence of the dielectric function

z„„(x,t) =5„„z(z)+5&„„(x,t), (2. I)

where z(z) is the dielectric function of the struc-
ture in the absence of fluctuations, and 5z„„(x,t }
is nonzero only within the film. In general, the
fluctuation will lower the symmetry of the film, so
6z„„(%lt) is a tensor quantity. As remarked in
Sec. I, in this paper, we presume the incident
electromagnetic wave couples to the fluctuations
only when it is within the film. The method used
here may be extended to a more general descrip-
tion of the scattering process. In another paper,
we have presented a discussion of the case where
the film is a Raman-inactive medium, and the in-
teraction responsible for the Raman scattering
takes place within the substrate. "

For z(z), from Fig. I we have

1 d(z(oo,

z(z) = z, 0&z&d,

-~(z(0.
(2. 2)

(~~l. t tl) t D (~~I, 0&)
&lx($ t& (2-3)

tt

where D„„(x,x'; 0&} satisfies

To calculate the scattered fields that contribute
to the first-order Raman spectrum, one solves
Maxwell's equations to first order in 5z „„(x,t), un-

der the presumption that when 5z„„(x,t) vanishes
the solution is just the incident field R(0&(x, t). The
procedure is quite analogous to the first Born ap-
proximation of quantum-mechanical scattering the-
ory.

To derive the form of the scattered fieMs, as
explained in the earlier works cited above, one
introduces a Green's function D„„(xx';t- t') of
Maxwell's equations and its Fourier transform

+72 Q2
-xx&*, &x„,— ~ x„x')D (x„
C " GX„SX)t

=4«5„„5(x—x'} . (2. 4)

D 0(xx'; t t')5 z(x', -t')E ((0x&'t') . (2. 5)

In Eq. (2. 5}, E $(0(&x't' }is the yth Cartesian com-
ponent of the electric field of the incident radia-
tion, the integration over z' ranges from 0 to d,
and ~0 is the frequency of the incident radiation. '~

We require the intensity of the scattered radia-
tion. The intensity of the scattered radiation (i.e. ,
the Poynting vector) is readily calculated once the
square IP"(xt)I is known either in the vacuum
above the film, or within the substrate. The cal-
culation of the square of the scattered field is
straightforward, and follows readily from Eq.
(2. 5). The quantity we require is (IE"'(x, t) Iz),
where the angular brackets denote a statistical
average over the fluctuations in the dielectric ten-
sor. We write the Green's function in the form

p 2 $$

t t) ~ii s fk ~ (x -x ') -fee (g-g')D p(xx 't —t )=
(2«)'

Xdlx (k$0&$
i
zz') (2. 6)

and we note that after the statistical average is
performed, the correlation function

(5zz. & (x't ')5z0„(x t}) (2. 7)

is necessarily a function only of t- t', and x„-x,'„
although it depends on z and z' separately. Fur-
thermore, we let k,',

' be the projection of the wave
vector of the incident radiation on the plane paral-
lel to the film surface, and write

E&0&(&~t) z& (k~ii z$-l$0$&E(0&(k(0& 0&
i
zl) (2 6)

It is then a straightforward matter to show that

In Eq. (2. 4), the frequency dependence of e(z) has
been explicitly indicated. These differential equa-
tions are to be solved subject to the outgoing wave

boundary conditions of scattering theory. For the

geometry under consideration, the explicit form of
D„„(xx';&0) has been derived in an earlier paper. 0

We quote the results in Appendix A of the present
paper.

With the Green's functions introduced above, the
expression for the scattered electric field be-
comes~' '3

"d'x'dt'
E($& ( t) c „4m

(iE"'(xt)iz) = a /gal E' '(t&' '0& iz')E' '(It' 'iz")$ dzf&„d0&, d*.(k„0&,izz")d (k„4&,izz')
C

(x &y zz' "0
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In Eq. (2. 9) we have defined

(p)
Qi) =k()

and

(2. 10a)
(2. 13a)

the high-frequency dielectric constant of the film,
we have also

Ps(x, Q) = (I/4v)[&, (Q) —z, ]g(x, A),

A=(dp- CO (2. 10b)

The quantity 0 will be the frequency shift of the
scattered radiation, and Q„ the change in wave
vector projected onto the xy plane. Our task is
now to reduce the expression in Eq. (2. 9) to man-
ageable form. To proceed, we require the form
of the correlation function which involves bzs„(x, t).

If we let u (x, t) be the relative displacement of
the ions in the unit cell and g (x, f) the electric
field set up by the ion motion, then we write

bzs~(x t) =g bs»gs(x, t)+g as»us(x, t), (2. 11)

Pz(x, Q) =nes'u(x, Q), (2. 12)

where n is the number of unit cells/unit volume
and e* the transverse effective charge. If ~& is

where b», is the electro-optic coefficient of the
film, and the term proportional to u, (x, f) de-
scribes the modulation of the dielectric tensor by
atomic displacements of optical character. In Eq.
(2. 11), we can eliminate u, (x, f) in favor of g, (x, f}.
If Pz, (x, A} is the lattice contribution to the dipole
moment per unit volume with frequency 0, then

z, (A) —z",
bs.s(A) = bs.s+ 4 ds»4gne* (2. 14)

one has the identity
~ d~i eknt'

( zs'~. (x' ') zs~(x, 0)) =Q b s)' 6(A)b s»(Q)
'1J 55s

XJ( 2 (gs. (x't'}gs(x0})e'"' . (2. 15)

We now define a spectral density function for
electric field fluctuations in the film via the rela-
tion

~0

[I+n(Q)]S ~ (Q„Q z"z')= d x, dte'"'e '

x(g, .(x„z",t)gs(OZ', 0)), (2. 18)

where n(A) = [exp(RQ/ks T) —1] ' is the Bose-Ein-
stein function, to write the intensity of the scat-
tered field in the form

so we may write

us(x, Q) =(I/4vne*)[e, (A) —z, ]g (x, A) . (2. 13b)

If we then define an effective electro-optic coef-
ficient which contains a lattice contribution

4

&IE"'(x, f}l'&= ~ QZZ "' ".' E,"'(bl"~6~")E"'(bl"~6~"')*
gps 66s +p
yr'

"dak dx ",' d.'sa(k„(0,
~

zz" ) d.s(ksc0,
~

zz') bs, „,(A)bs„, (Q)[1 + u(Q)]&6 6(Q6 Q; zz ) (2. 17)

To conclude the general discussion, we require
a prescription which enables us to construct the
spectral density function which appears in Eq.
(2. 17). We discuss the method by which this may
be done in Appendix B. In fact, the spectral den-
sity function is readily related to precisely the
same Green's function d s(kgurl zz') that entered
our scattering theory, as Abrikosov, Gor'kov,
and Dzaloshinskii have shown. " The prescription
that emerges is remarkably simple:

I

we call the readers attention to the useful relation
displayed in Eq. (C8) of Appendix C.

The expression in Eq. (2. 17) may be used to
calculate the intensity of the scattered field in the
vacuum above the film, within the film itself, or
in the substrate below the film, for an incident
field of general angle of incidence and polariza-
tion. We confine our attention here to the radia-
tion scattered into the vacuum above the film. For
z&d, after consulting Appendix A we have

&6 6(46 A.zz') =(Q'/ic')[ds 6(Q», A —iq~ zz') d s(k„&u,
~

zz') =4m e 6 z~s(k„~, ~z'}, (2. 19}

ds' 6(Q 6t A + 67)1 ZZ )] (2. 18) where

Thus, once we are given the Green's functions tab-
ulated in Appendix A, the spectral density func-
tions which enter Eq. (2. 17) are readily con-
structed. We prove Eq. (2. 18) in Appendix B, and

z (k„~,
~

z') =g S „(k„}S„(k„)I'„„(k„u,)E„(k„&u,
~
z'),

(2. 20)
with the matrix I'„„(k„&u,) defined by
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I'„„(k„0))=

ko

kii Wi)(k„(&))

1
ll'i(&(i&d)

ko

k„W),(k„&0

(P"') = (c/Sz)(
~

E"
~

'} (2. 22)

ated into the vacuum above the film. The time
average of the total scattered power at a point in
space is

1
W((k )(0)

1
0

)pl)�(~ll

~)
(2. 21)

We may now form an expression for the fre-
quency and angular distribution of the power radi-

and from Eq. (2. 17}the contribution to (P"') from
scattered radiation in the frequency interval be-
tween ~, and ~,+d~„and with scattered wave
vectors k, which have a projection onto the xy
plane in the phase-space element d k„ is given by

d2P(s) &d0

0
=

0 0[1+ "(Q)]QQ Q bzro(Q)f)() y 0 (A)
e JQ' od'

~d

x
~

dz'dz" E' '(k' '&d0~ z'}z'0(ki)&d&~ z')Ep'(k' '&00~ z"}*z'0 (ki)0)&~ z")0&0,0(Q„Q; z"z') . (2. 23)
"0

We may calculate the distribution of scattered radiation directed into the solid angle dA (k, ) by multiply-
ing Eq. (2. 22) by the ratio~

&f k)) )'~&d

cos8, . (2. 24)
&fA $, )&c

Thus, our final expression for the distribution in angle and frequency of the scattered radiation is

d P"' ~~cosa
0 0 [1+n(Q}]Q Q Q f)0„0(Q)b0.„.0.(A)*

d0), dA(k, ) S4z c
cg gl' 56'

r7"
) d

x dz dz E (ke &d0~ z )z 0(k (00~ z )E+ (k &00~ z } z 0 (k &0,
~

z } B0.0(Q A' z z ), (2 25)
dp

This expression gives the distribution in fre-
quency and angle of the radiation scattered above
the film, for an incident field of arbitrary direc-
tion and polarization. Thus, this one expression
may be used to calculate both the forward and the
back scattering intensities; in the former case
(the configuration used by Ushioda and co-workers)
the radiation is incident on the film through the
substrate, and in the latter case the radiation
strikes the film incident from the vacuum. In both
cases, the Raman radiation is detected and studied
in the vacuum above the film.

The expression in Eq. (2. 24) may be converted
into a scattering efficiency by dividing the expres-
sion by the power per unit area incident on the
film. For the case of back scattering, the power
per unit area incident on the film is

P' ' =( c/Sv)iE' 'i cos8 (2. 26)

where E' ' is the amplitude of the incident field
and Hp the angle of incidence. For forward scat-
tering, with the substrate presumed transparent
at the incident frequency,

Pz, '=(c/Sz)[zz(0) )]" iE+'i cos80, (2. 27)

where E' ' is the amplitude of the incident field,

measured in the substrate.
The result in Eq. (2. 25} is the principal result

of the present general discussion. While the ex-
pression on the right-hand side is compact in ap-
pearance and its application straightforward, one
is lead quickly to extremely lengthy and compli-
cated expressions when this is done. As a conse-
quence, we confine our attention in the remainder
of the paper to application of Eq. (2. 25) to a sim-
ple special case. This will lead us to appreciate
the physical content of the genera1 expression. We
turn to the more quantitative applications in Sec. IV.

III. APPLICATION OF GENERAL RESULTS TO
SPECIAL CASE

We now apply the result in Eq. (2. 24) to a par-
ticular special case. We examine the following
scattering configuration:

(i} We suppose the incident field is plane polar-
ized in the y direction, and is normally incident
on the film. Then

E(0)(y(0) ~
~

zr) 5 E(0)(~
~

zt) (3.1)

where for normal incidence, k)) =0 and k„-=Q„.
(ii) We presume the film to be a crystalline

film of zinc-blende structure material, with (100)
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surfaces. Then for this case, we have

'se='l~srsl d

&s,s= &Izs"I,
and as a consequence

k,„,(a) = k(n) I's„sl,

(3.2)

(3. 3)

(3.4}

where in these expressions, ) a~„, I is the absolute
magnitude of the Levi-Civita tensor, i.e. , la&~ I

vanishes if any two incidences are equal, and as-
sumes the value +1 when p c yo &.

(iii) We confine our attention to the scattered
radiation which emerges very close to the normal
to the film. For forward scattering, this means
we examine the region of small-angle scattering,

and for back scattering, we examine the scattered
radiation which emerges very near the specular
direction. The extension to the case of large angle
scattering is straightforward, but this assumption
greatly simplifies the exposition of the present
section.

For incidence radiation polarized along y, and
scattered radiation emerging very near the normal
to the film, the nature of the Raman tensor and
electro-optic coefficient requires the scattered
radiation to be polarized along x, and only electric
field fluctuations in the film parallel to the normal
are able to produce scattered fields. Thus, as-
sumption (iii) when combined with (i) and (ii) enable
us to replace Eq. (2. 24) by the much simpler ex-
pression

d P"' ~ cosa s1+nl 14

d(u, dQ(k, ) 'I C 40

X & Q„(ds Z E „Q()CO Z $„,)Q, Z Z (3. 5)

where for incident radiation at normal incidence, one has k, ) =Qii.
After some algebra, with

—= cosy and —= singQx Q3

Q
S 8y

one finds

u2 sin
(Q„~ Iz)E„(Q„(u',lz") = s s

' ', E*(Qco Iz'}E(Q" Iz")'
c Q)(l Wii Qn) ~d) I

2+, ', s E,(Q„u&, lz')E~(Q„&u,
l
z")* .~ ~Q ~ )2 P 8 P () S (3.6)

As long as we examine scattered radiation which
emerges close to the film normal, then to a good
approximation we may set Q„ to zero in W„and W,
that appears in Eq. (3.6}. Then one has

IW(0, &o,)l =(cu,/c)ld, (cu,)l, (3. 7a)

factors C,"', C"', C,"", C'"' which appear in E'
and E„. When this is done, then we find

p f (Q))(dlz)z (Q))(d

and for small Q„,
c' E'(~. I z')E'(~. l

z")*
~co, ~d, (~,}I' (3. 9)

(3. 7b) where

where

d,(,)=(1+~d, )cod(~~d, d)

"+ ., sin ~ ., ~ . 3S

In the same spirit, we may also let Q)) 0 in the

'3 ~ 10
where kz"' is the z component of scattered radia-
tion in the film, chosen such that Im(k,"))&0, as
described in Appendix A.

If we ignore the difference between ~0 and ~, in
the prefactor of the expression for the scattered
power as we have before, then Eq. (3.5) becomes
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dzP") ~e4cos8, (1+n(A}) I b(A) I

d(u, zfA (k,) 64m'c' I d, (ze,) I'

d

x ' dzdz'El'(&uei z')E'(u&ei z")eE (ru, i
z')E (m, i

z")*X)„(Q„A,z"z') . (S.11)

(3.13)

where we have introduced

There is one more simplification of Eq. (3.11) that is useful. The relation between S„(Q„A;zz ) and

d„(Q„A+ iz)!zz') is stated in Eq. (2. 18}. Furthermore, from Eq. (C8) of Appendix C, we have

d„(Q„,A —iz)~ zz'} =d",,(Q„, A+iz)~ z'z) . (3.12)

When Eq. (3.12) is combined with the observation that d„(Q„,A —iz)l zz } is left unchanged upon interchang-

ing z and z', then Eq. (S.11) becomes

dzP"' u&4ecos8, (1+n(A)) I b(A} I 1

d&v, dA (k,) 16m'c' I d, (&o,) I

' i
i4

x lm d*d*' 8' '(
i
r\E (,i

*'tE' 'I
i

z') Eli"z'1 "A,„(Q», 0+ 0**'))', ,
~x 0

5 z —z' 0
A, (Q„, A, zz') = — [E,(q„A

~

z)E (q f
A

~

z'}8(z —z')+E, (qxA
~
z)E,(q„~ z')8(z' —z}] .

(3.14)

While the expression in Eq. (3.13) is very much
simpler than the general form in Eq. (2. 24), none-
theless it retains all of the essential features of the
general result. Note that we can apply Eq. (3. 13)
to either the analysis of forward or backward scat-
tering, within the framework of assumptions (i)
through (iii) stated at the beginning of the present
section. The two cases differ only by the incident
field that is to be inserted into Eq. (3.13).

%e next turn to an anlysis of the structure of the
right-hand side of Eq. (3.13). For definiteness,
consider the case of near forward scattering of
radiation incident on the film from below. Then
the incident field has the form

E' '(&ue~z)= 7' '[e I " +Rze'e' z '], (3.15)

enters the contribution to the effective matrix ele-
ment from the process. Each of the four proces-
ses "connects the same initial and final state, " to

exp[-i (ki —k" )z ]

(b)

exp[ —
i (ki +k", )1 z ]

where with our convention Im(k, ) &0, the first term
describes the component of the incident wave in Eq.
(3.15). We assume the incident field has unit am-
plitude [given by exp( —ikz(e'z)] in the substrate be-
low the film. Then in Eq. (3. 15}, Tz'ze) is the

transmission factor for transmission of the inci-
dent wave through the substrate-film interface
while Rj'0' is the amplitude for reflection of the in-
cident wave off the film-vacuum interface once it
has been transmitted through to the film.

Crudely speaking, the integral in Eq. (3.13) has
a form similar to the square of a matrix element
which involves an effective interaction sandwiched
between an incident state E'e'(~el z) and a final
state E (~, I z). There are four terms in the prod-
uct E'e'(cuel z)E'((u, l z), and each term may be rep-
resented by a diagram, as illustrated in Fig. 2.
Alongside each process is the phase factor which

(c)

exp[ i (kI"&k,')z ]

exp[ i (k, -k, ')z ]

FIG. 2. Four fundamental scattering processes which
contribute to the Raman cross section in the near forward
direction. Alongside each figure is displayed the phase
factors which enter the contribution to the effective ma-
trix element from each processes. The scattering event

takes place at the encircled cross.
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use language appropriate to quantum-mechanical
transition theory. The square of the matrix ele-
ment contains a total of sixteen terms [the number
of terms in E'e'(eel z}*E'(&u,l z)*E' '(&eel z')E'(~, l z')]
as a consequence. Thus, it is indeed a tedious
task to evaluate even the greatly simplified ex-
pression in Eq. (3.13}.

There is one important feature which enters the
contribution of each term illustrated in Fig. 2.
Two of the diagrams [(a) and (d)] of Fig. 2 de-
scribe a process in which the incident photon is
fonuanf scattered. The contribution to each of
these two processes to the effective matrix ele-
ments involves an exponential which contains the
difference between z components of the complex
wave vector k,' ' of the incident and that k&" of the
scattered radiation. The remaining two diagrams

[(b) and (c)] involve back scattering of the radia-
tion, and the effective matrix element involves an
exponential with the sum of the same two wave
vectors. When we discuss the theory of back scat-
tering from the structure shortly, we shall see
that the same rule holds there also.

As we have previously emphasized, ' this is
the origin of the large forward jback scattering
asymmetry in the cross section for scattering from
surface polaritons. This asymmetry is responsible
for frustrating early attempts to observe surface
polaritons in back scattering from thick (effective-
ly semi-infinite} semiconducting samples, while
the experiment of Evans, Ushioda, and McMullen
in the forward scattering configuration was suc-
cessful. If one computes )k,

'e' and k,'" for typical
semiconducting materials (GaAs, in particular}
for frequencies in the visible, the real part of k,'o'

and k,'" is larger than the imaginary part by nearly
an order of magnitude. Thus, the phase factor
exp[i(k,'e'+)k,"')z] that enters the back scattering
matrix element oscillates very rapidly with z, and

reduces the back scattering matrix element strong-
ly, compared to the forward scattering matrix
element. ' Our quantitative calculations show that
for the configuration employed by Evans et al. , the

intensity for back scattering from surface polari-
tons is smaller than that for forward scattering by

nearly two orders of magnitude. We refer the
reader to our earlier work for a quantitative dis-
cussion of this point. ~

To calculate the intensity of back scattering from
the structure, instead of the expression in Eq.
(3.15), one inserts into the integral of Eq. (3.13)
the result

+,~&o&,

E '(ure
~

z) = Tez (e +it&x'e ' ) . (3.16)

The four fundamental scattering processes may be
described in terms very similar to those which
entered our discussion of the forward scattering
case. The processes are illustrated in Fig. 3,

along with the phase factors which enter the effec-
tive matrix element.

Evaluation of either the forward or the back-
scattering intensity with the incident fields given
in Eq. (3.15) or Eq. (3. 16) leads to lengthy and
unwieldy expressions for the scattered intensities.
In the experimental studies of Ushioda and co-
workers, the surface-active GaAs film has a thick-
ness of roughly three absorption lengths of the in-
cident or scattered radiation. If we confine our
attention only to such thick films, then an adequate
description that is much simpler may be obtained.

If we consider the case of forward scattering,
then when the film is thick compared to the absorp-
tion length, the dominant contribution to the cross
section comes from Fig. 2(a). The processes in
Figs. 2(b) and 2(c) are small compared to the pro-
cess in Fig. 2(a) because a back scattering event
is involved in each case, while the process in Fig.
2(d) requires the radiation to pass through the
film at least three times.

When we consider back scattering from a thick
film in the sense just described, Fig. 3(a) is the
dominant process. While Figs. 3(b) and 3(c}each
involve a forward scattering, they each require
two passes of the radiation through the film at
least, while the scattering process in Fig. 3(a)
may occur entirely within the optical skin depth

exp[ i (k+&k, ' )z ]

exp [ i ( k()- k',")z ]

(c)
exp[-i( k, -k", )z ]

(d)

exp[-i ( k & k, ' )z ]

FIG. 3. Four fundamental scattering processes which
contribute to the Raman cross section for back scattering.
As in Fig. 2, alongside each figure we display the phase
factors which control the contribution to the matrix ele-
ment from each process.
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of the upper interface.
In the thick film limit, the remarks above allow

us to describe the spectrum by choosing for the
incident fields the forms

T2((2' exp(- ik(2'z} (forward scattering),21

IT~~' exp[+ ik,(2'(z —d)] (back scattering),
3.17a( )

while we may replace E'(v,
~
z) by

E((* =(—,(( exp('k,"'*) . (3. 17b}

In the work reported by Nkoma, ' it has been as-
sumed early in the discussion that the scattering
processes illustrated in Figs. 2(a) and 3(a) play
the dominant role. The results that follow may
only be applied to analyze spectra from films thick
compared to the absorption lengths of the incident
and scattered radiation. Since this condition is not
met either in thin films, or films transparent to
the incident radiation, we have felt it worthwhile
to construct explicit formulas that include all pos-
sible scattering processes, and may be applied
readily to more general situations if desired.

When Eq. (3.17) is inserted into Eq. (3.13}, we
encounter the factor

I+(z /z )2/2 2

d, ((c,)

2 1 2

1+ v E, 1 —R,2R2, exp[2i((u, /c)v a, d]

x exp —2 (3.18)

where

R,2
= (v g, —I)/(We, —1)

and

(3.19a)

R,2=(&a, —ve, )/(vC, +(/a, ) . (3.19b)

In Eq. (3.18), l, '=(&u, /c)im(W&, ) is the absorption
length of the scattered radiation, and the prefactor,
which after here we write as I 7,'0" I, is the am-
plitude transmitted through the film-vacuum inter-
face of a field of unit strength and wave vecfor k,"'
directed toward the interface.

The above ingredients, when combined with Eq.
(3.13}and the remarks at the end of Sec. II, enable

d(((, dA (k,) 8(( c

x exp[- 2(1/l, + 1/12)d](I/i) Im [8 „(-k((2' —k((")],
(3.20b)

where
~d

&„(hk) = dz dz' e A„(Q„,0+ i(); zz') .
4 Q (3, 21)

It is a straightforward matter to evaluate 8 (Ak).
Before we display the result, a comment on the
notation we shall use will be helpful. In Appendix
A, we have defined certain quantities k» k„and
k2. These quantities are defined in Eq. (A5) and

Eq. (A6). When these objects have been evaluated
at the frequency and wave vector of the incident or
scattered light, these quantities are the z compo-
nent of the wave vector of the incident or scattered
light in the vacuum above the film, within the film,
and within the substrate, respectively. We have
designated the resulting wave vectors by the sym-
bols of the form k,"' or k,"', respectively. In the
function A„ that appears in Eq. (3.21), we en-
counter ko, k„and k3 evaluated at the frequency
transfer 0 and wave vector transfer Q„parallel to
the surface suffered by the radiation. These val-
ues of k» k„and k~ we denote below by Ko Kg,

and Kgy l.e.
y

KO = k0('Q(» fl + i'(l} t

((( 2
--k(

~ 2(Q((~ 0 + i'g) .
(3.22}

(3.23)

After 2 (hk) is evaluated, it is convenient to
divide it into two parts whose physical interpreta-
tion shall become clear shortly:

2 „(nk}= S,(,"'(Ak) + 5 S„(bk),
where we have

(3.24)

us to form an expression for the scattering effi-
ciency/unit solid angle/unit frequency interval
both back and forward scattering through our mod-
el film. We have, with lo the attenuation length of
the incident beam

o(+n( )){ ( }{ (T(&)
)

(&(
du&, dA (k, ) 8(('c'4 z2(u&2}

xexp[- 2(1/I, + I/l2)d](1/i) Im[8 „(k(2' —k,")]
{3.20a)

and"

q„+ (gk2') z((Q) Q„+(4k*) z~(O) —(c /0 )[Q„+(4k+) ] i[n.k+ —nk]

The expression for 5&„(nk) is more complex. Before we write it down, we define

f(e) =(""—I)/e .
Then we have in terms of the coefficients A,'"' and C,'"' defined in Appendix A

(3.25)

(3.26)
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2

5sgg(hk) ~ ~
)

C~ A f(Ic~+6k+)f(tcq nk)
II I Qll j

Ak* —K, Lh, k*+ Ki

A'"'C'"' — -4k exp ihk*+K, d
k

1
~ke+ Kl

1 ~ k* Ki

+A'"'C'"'f( —~, +nk+) f( —~, —nk) (3.27)

The physical content of S'"'(d,k} is clear, since
its form is quite elementary. It contains a portion
which describes scattering from volume LO pho-
nons [the part proportional to 1/c, (A)], and a part
that describes the scattering from volume trans-
verse polaritons (the part proportional to [e,(A}
—(c'/A~)(Qf+(bk~)~}] '). The quantity kkr3 = Q',

+(nka)2, where nks is the real part of nk, is the
change in wave vector of the scattered radiation
in the film. The second term in Eq. (3.25) thus
contributes a peak in the spectrum of scattered
radiation whenever

(cm/A2}(hkr)2 = e~(A), (3. 28)

i.e. , when the frequency and wave-vector change
suffered by the scattered radiation equals the fre-
quency and wave vector of a volume TO polariton.

The width of the LO phonon peak is controlled by
the damping felt by the LO phonon in the medium,
i.e. , it is controlled by fm(c, (A)). There are two
distinct contributions to the linewidth of the bulk
TO polariton. The first has its origin in the damp-
ing of the polariton itself [from the imaginary part
of c,(A)], and the second from the combined effect
of the curvature in the volume TO polariton dis-
persion relation, and the effect of attenuation of
the incident and scattered radiation in the medium.
Wave-vector components normal to the surface
are then not strictly conserved, and in any mea-
surement. , a finite region of the bulk dispersion
curve is sampled, even if the intrinsic linewidth
of the bulk TO polariton is very small. Mathe-
matically this effect enters through the complex
part of (6k+) in Eq. (3.23), which gives a finite
width to the bulk TO polariton line even when c,(A)
is purely real. This feature is absent from the
bulk LO phonon line simply because (in the present
theory) no dispersion is present in the bulk LO
phonon dispersion relation.

In the geometry assumed here, when the scat-
tered light emerges right along the z direction
(Q„=O), the selection rules allow the LO phonon
line, while the TO polariton line is forbidden. One
sees this feature in Eq. (3.25).

The coherence length or effective scattering
length that determines the scattering intensity in

the infinitely extended medium is controlled by the
imaginary part of 4k. When this coherence length
is long compared to the film thickness [id(4k~ —6k)
small compared to unity], the effective coherence
length becomes the film thickness, and the scat-
tering efficiency is proportional to the film thick-
ness. In the opposite limit, coherence length is
small compared to the film thickness, S' '(nk) be-
comes proportional to the coherence length l, = 2/
(hk —nk+).

Thus, the contribution S,',"'(Ak) to S„(dk) de-
scribes a contribution of the volume excitations
(LO phonons and volume TO polaritons) to the Ra-
man spectrum. The contributions 5S„(hk) dis-
played in Eq. (3.27) may not be reduced to a sim-
ple transparent form in general. This contribution
to S„(hk) contains two pieces of information: it
describes the contribution to the Raman spectrum
from the surface polaritons associated with the
structure, and in addition it contains corrections
to the intensities and shape of the volume LO pho-
non and volume TO polariton features. We next
turn our attention to these features.

Since it is not possible to reduce 5S„(nk) to a
transparent form, in general, we consider a spe-
cial limit that will allow us to explore pieces of
the function. We suppose that the damping in the
material is small enough that the volume LO pho-
non, volume TO polariton and surface polariton
features in the spectrum are narrow, well defined
and distinct features in the spectrum. In practice,
this is a marginal assumption, ~' but with this as-
sumption we can extract simple information from
&S„(hk). We examine two features of the spectrum
in this limit: the surface polariton lines, and size-
dependent corrections to the volume LO phonon
line.

A. Contribution to Raman spectrum from surface polaritons

In the frequency regime where the real part of
the dielectric constant a, (A) of the substrate is
negative, while that of the substrate is positive,
there are two surface polariton branches associ-
ated with the structure analyzed here. ' In the limit
as the film thickness d approaches infinity, one
branch becomes localized at the vacuum-film in-
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terface, and one becomes localized at the sub-
strate-film interface. In the Raman studies re-
ported to date, the film thickness is sufficiently
thin that for both branches, the electric fields and
atomic displacements associated with both branches
extend throughout the film.

If we consider the function W„(Q„, Q) as a function
of frequency for fixed real values of Ql„ then in the
absence of damping [&,(Q) and e2(Q) presumed
real], W„(Q„,Q) has zeros when Q=Q, (Q„) and Q

=Q (Q„), where Q, (Q„) and Q (Q„) are the surface
polariton dispersion relations for the structure.
We shall shortly cast W„(Q„, Q) in a form where it
may be directly compared with the implicit dis-
persion relation given by Maradudin and Mills. '
When damping is present, and weak enough so the
surface polariton remains a well defined excita-
tion, the surface polariton polkas lie close to the
real 0 axis in the complex 0 plane. In some of the
manipulations below, we presume these poles lie
close enough to the real axis for the prefactors of
W))(Q)) Q) to be evaluated at the pole, with little
error.

After some algebraic rearrangement, f)s„(sk)
may be broken into parts:

fCp —+ ZQp ~

Kg 2= —ZQ

We also introduce the quantities

% = (I/&g —&&0/&g),

I), = (e2/e, + oo2/n, ),
so we have

A,'" ' = 2a, exp [ —( no + a n, }elJ,

(3.34a)

(3.34b)

(3.35a)

(3.35b)

(3.36a)

(3.36b}

We may then write

peak, since 5S,', '(Ak} does not contain the factor
W„(Q„, Q) that gives rise to the surface polariton
poles in the response function. Thus, in what fol-
lows, we discard the piece 5$,",'(n.k), since it only
contributes a small background to the spectrum
near the surface mode poles.

In the absence of damping, the constants 1(p

and I(2 become pure imaginary at the surface po-
lariton pole. In the presence of a small amount
of damping they acquire a real part which will be
small. We relable these constants, with the con-
vention Im(«0))0, Im(«, z) &0 in mind:

5 s„(hk) = 5&,",'(Ak) + 5 3,",)(6k),

where

0
5S,",'(Ak} = —

P
(Q Q)

(3. 29) 2

Wi)(Q)) Q) =
4 2Q2 expHot o'o)4)f(Q Q),n(E)O

(3. 37)
where

(ll )

)1 — '
))(hk ++ o«~)

l(kk I) Ky)
( ll )

gy —0'y) 3.30)

d(Q„, Q) = k, a —5 a, exp( —2a. ,d)

2

(3.38a)

and
i (Ek +-fc& )d i ( &k +-d, k)d

5 &,', '(Ak) =
2«, e, (nk+ —«~)(Ak —«, }

t (hA'++If) )d I (bk+-b, k)d)e —e
(sk++ «, )(sk+ «, )

(3.3l)

ln Eq. (3.30), o ranges over the values+ 1 and —l.
To derive these results, we have employed an
identity that will prove useful later:

&2/&i + o2/oi = 0 ) (3.39a)

exp —2n, d

(3. 38b)
The statement d(Q„, Q) =0 may be recognized as

the implicit dispersion relation of the surface po-
laritons associated with the structure. For this
structure, as remarked above, there are two
branches to the dispersion relation. As the film
thickness d-~, the two dispersion relations be-
come

C,A —C A, =
2Ky&g

(3. 32)
and

CA =—CA, . (3.33}

This relation will also prove useful.
Quite clearly, only the contribution 6 ~,",'(Ak)

contains information about the surface polariton

In particular, note that near the zero of W„(the
surface polariton poles of the response functions)
we have

I/&, + ap/&, —0 . (3.39b)

These may be recognized as the implicit dispersion
relations of the surface polariton associated with
the film-substrate interface, and that associated
with the vacuum-film interface, respectively.

With the above rearrangements, the expression
for 5S,",)(b,k) may be written
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(~k) Q,', exp( —2n, d)
n, e, d(Q„, II)

(6k*—ion&)

(
-' -))~ (Lk+ ion~)

(3.40)

So far, save for the neglect of b~,',"(4k), we
have made no approximations. Near the zero of
d(Q„, II), we have

b a, —= b, a exp(2n~d) . (3.41}

This becomes an equality in the limit of zero
damping, right at the surface polariton poles. In
the weak-damping limit, we make little error by
presuming it to be an equality.

If we use Eq. (3.41) to rearrange the quantities
in curly brackets, and we define

r=b /b, , (3.42)

then in the "pole approximation" defined by treat-
ing Eq. (3.41) as an equality, and disregarding the
imaginary part of r,

(n k)
'vll z+1~ + +

ng&g d(Q„, II)

dp

2
l +kg +RgE lÃgC)dze (e +re

is equivalent to the matrix element of the wave
function of the excitation created in the scattering
process (the surface polariton) between the initial
and final photon states. Our formula is written
with the surface polariton wave function normal-
ized so that the piece proportional to exp(n, z} has
coefficient unity.

The only difference between the forward and

~Ip

When the form for bs(d k} displayed in Eq. (3.43)
is inserted into the expressions for the scattering
efficiencies given in Eqs. (S.20a} and (3.20b),
then simple and workable expressions for the scat-
tering efficiencies from the surface polaritons fol-
low. It is straightforward to generate expressions
for the scattering efficiencies for other film geom-
etries [i.e. , for a film with a (111)surface, for
example]. It must be kept in mind that results
such as these are valid in the weak damping limit,
since it is only then that the surface polariton
piece can be extracted from the total response
function.

We conclude with some remarks about the ap-
proximate result for 58„(n,k} displayed in Eq.
(3.43).

In a language appropriate to quantum-mechanical
perturbation theory, the factor

back scattering intensities [other than the trans-
mission factors in Eqs. (3.20)] occur in the ef-
fective matrix element just described. For for-
ward scattering we have

~k =k"'- k"'
1 1

while for back scattering

Ak = —k) —k~

(3.44a}

(S.44b)

As discussed above, and in quantitative detail in
our earlier work, for GaAs under the conditions
relevant to the experiments of the Ushioda group,
we have

k,"'~ » ~k,"'-k,"'~,
with the result that the surface polariton intensity
is very weak in back scattering.

Notice that in forward scattering, the imaginary
part of b k is the difference between the imaginary
part of k,' ' and that of k,"'. This result, expected
on physical grounds, P emerges naturally from the
present approach.

The analogues of the phonon strength functions
which enter the description of Raman scattering
from bulk polaritons2' are contained in the residue
of the function ab, /d(Q, I)}at the surface polariton
poles. We could extract analytic expressions for
these quantities from the approximate form for
53„(hk), but the resulting expressions are com-
plex in form. Indeed, it is easiest to work direct-
ly with Eq. (S.43) rather than with the expressions
valid in the no-damping limit.

We conclude this subsection with a comment on
the behavior of 5S„(n,k) in the limit as the film
thickness -~, and the surface polaritons become
well localized to the film-vacuum and film-sub-
strate interfaces.

First, let the film thickness d -~, and consider
scattering from the surface polariton localized on
the film-vacuum interface. We then have

b a /d(QI 0) —a, /a

while the integral is dominated by the contribution
from the term e' ". Then for the surface mode at
the film-vacuum interface, as d- ~, we have

Q,', n, —no@, exp[ —id(b, k —nk~)]
QgE'g Ag + Apl' ) 6k+ su~ ]

(3.45)
As d-~, the dispersion relation of the film-

substrate surface polariton becomes b, =0 in the
present notation. Then as d-~, r-~, and the
contribution from the substrate-film surface po-
lariton comes from the term in the wave function
proportional to rexp( n, z). If we ke-ep only this
term and disregard the contribution from the upper
limit as d becomes large, we find for large d the
contribution from the surface polariton localized at
the film-substate interface is
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B. Contribution to volume LO phonon peak from 5S„(hk)

As we remarked earlier, when the spectrum of
scattered light from the film is examined, one
finds not only the new features associated with the
surface polariton, but in addition the intensities of
the volume LO phonon and TO polariton lines are
size dependent. The physical origin of these ef-
fects is the modification of the eigenfunctions as-
sociated with the bulk excitations by the electro-
magnetic boundary conditions at the interfaces.
For example, in the case of LO phonons in an iso-
tropic, lossless dielectric slab, it is simple to
show 3 that these boundary conditions require the
tangential component of the electric field set up by
the mode to vanish at the interface, while the nor-
mal component approaches the interface with zero
slope. Because of the influence of these boundary
conditions, the contribution to the LO phonons to
the electric field fluctuations are influenced by the
boundaries, with the consequence that the intensity
of the LO phonon Raman line becomes size depen-
dent.

These size-dependent effects which arise from
the influence of the boundary conditions are con-
tained in the contribution 5S„(hk) displayed in Eq.
(3.27}. In this subsection, we isolate the size de-
pendent corrections to the LO phonon line intensity,
in the spirit of the small-damping approximation
used in Sec. IIIA.

When the damping is small, and the frequency
transfer 0 lies near the LO phonon frequency of
the film, then z, (A} becomes very small, while all
other quantities remain finite. Then with z, (A}
near zero, we have

(3.47)

and furthermore we have

A,'"' —= (I/2c, ) exp(izod —oq„d},

C.""= (I/2&&)ez/2z»

and also

W(}(q(„A)—= (A zz/c Q„z,) e sinh(Q, d) .

(3.48a)

(3.48b)

(3.48c)

Even with these simplifications, the form assumed

5&(nk) = — ~ r exp( —2o(&d)
Q 2 1

Qgfg 0 I &k —ing j

2
q}} (zz(}'i —eiaz) 1

(3.46)
&g&g (&z&g+eg&2)

These remarks conclude our subsection of the
contribution to the Raman spectrum from the sur-
face polaritons, in the weak damping limit. We see
that for large d, the spectrum consists of a line
from the mode localized near the film-vacuum in-
terface, and a second line from the mode localized
near the film substrate interface.

2. Limit Q)~d && 1 (thin-film limit)

Here we find for 0 near the U3 phonon frequency

5&„(nk)

d 4/ &kl 4

e, (A) I q,', + (nk)'I ' sin(znkd)
akd (3. 50)

Once again we have a size-dependent correction to
the LO phonon intensity.

In this section, we have applied our general
Green's-function theory of Raman scattering from
films to a description of the spectrum for scatter-
ing from a particular film geometry, either near
the forward direction, or very near the specular
direction in back scattering. We have tried to il-
lustrate the main effects that arise from the finite
thickness of the film by examining selected fea-
tures of the Raman spectrum in the limit of small
damping. There are two effects that one encoun-
ters: new lines associated with scattering from
surface polaritons arise in the spectrum, while
the cross section for scattering from volume LO
phonons and also from volume TO polaritons (we
did not discuss this case here) become size de-
pendent.

When Q„d is comparable to unity, one encounters
"guided volume modes" for the structure consid-
ered here, in frequency regions where the real
part of z~(A) is positive. These modes have fields
which vary like a linear combination of cos(Q,z)
and sin(Q, z), where the values assumed by Q, are
quantized, with adjacent values separated by 4Q,- v/d. These guided modes also have fields local-
ized m the near vicinity of the film, i.e. , the
fields in the vacuum decay to zero exponentially as

by 58„(&k) is reasonably complex. As a conse-
quence, we present results for two limits where
the results become simple:

I. Limit Q))d &&1 (thick-film limit)

Here we find

68„(~k)-=-
a&((}} (al + i(}„,}(ak —'q„})

k

1 exp[((Sk" —kk}d[)
hk —iQ„hk+ iQ„

The first term in Eq. (3.49) has its origin in the
modification of the LO phonon contribution to the
electric field fluctuations near the film-substrate
interface at z =0, and the second term comes from
the film-vacuum interface at z =d.

If the film is perfectly transparent to the incident
radiation (then nk = 4k*}, the contribution to the LO
phonon line intensity from Eq. (3.50} is indepen-
dent of d, while that from 8,(", }(nk) increases lin-
early with d. In general, however, the correction
from 5&„(nk) is size dependent.
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one moves away from the film, and into the sub-
strate. These modes in principle may contribute
structure to the Raman spectrum, and a descrip-
tion of this structure is contained in the present
treatment. However, we reserve discussion of
these modes to a future publication.

It is a straightforward matter to calculate the
full expression for B„(nk}numerically, once the
dielectric constant of the film and substrate, as
well as the frequency of the incident radiation is
known. Qne may then obtain calculated spectra
with invoking the weak damping assumption used
liberally here. In Sec. IV, we present examples
of such calculations.

IV. NUMERICAL STUDIES OF SPECTRUM

In Sec. III, we examined the structure of B„(nk)
by analytic methods, under the assumption that in
the film the damping of the polaritons may be pre-
sumed sufficiently weak that the various contribu-
tions to the Raman spectrum stand free as distinct
lines. As remarked earlier, in practice this as-
sumption is marginal. For example, the frequen-
cy of upper surface polariton branch lies close to
the frequency of the LQ phonon in the structure
examined by Ushioda and co-workers, ' while as
the scattering angle is decreased to zero, the line
associated with the lower branch merges with that
from the volume TQ polariton. Under these cir-
cumstances, one should calculate the spectrum
from the full response function s„(b,k). This is in
fact a straightforward matter, since the full form
of B(hk) is given by a simple algebraic expression.
Indeed, it is no less complicated to study the full
function B„(n,k) than the various pieces pulled out
of the full spectral density in the discussion of Sec.
III. We also present calculations of Im{s„(n,k)j,
where

A„(Q„A, zz')

0 „[z',(Q„n i
z)E',(Q„n i

z')

x8(z —z')+E, (QIA~ z)E (QIA~ z )8(z z~] .
(4. 1)

From a physical point of view, Im{B„(nk)) rep-
resents the contribution to the Raman spectrum
from thermal fluctuations in the atomic displace-
ments and the electric field fluctuations normal to
the film surfaces, while Im{S„(n,k)j describes the
contribution from fluctuations parallel to the film
surfaces. The Raman spectrum from a perfect
crystalline films will contain in addition contribu-
tions from cross-correlation functions s„(nk) and
s„(nk).

All of the quantities which appear in the general
expressions are readily computed from information
available in the literature. Values for the complex
index of refraction of GaAs at the 4880-A line are

Q„= (oo,/c) sin8 = (&uo/c) 8, (4. 2)

where 8 is the angle made by the wave vector of
the scattered radiation and the normal to the film
surface, and the last statement is valid for small
scattering angles, with incident radiation in the
visible. Note that 8 is the scattering angle mea-
sured outside the film. This seems to us the nat-
ural variable to use in describing the spectrum.
In the papers by Ushioda and co-workers, ' their
angle P is the scattering angle inside the film, re-
lated to 8 by Snell's law. When our computed spec-
tra are compared to their data, one xnust realize
that 8 = 4. 4 f.

For small-angle forward scattering through the
film,

k(3& = k(o& + &k+

where

n k =+ —eg((do) + n
k&" n B&i(4'o) i o+-, 8

zi(~o) ~o 8(d

(4. 3)

(4. 4)

where the upper sign is used for the anti-Stokes
spectrum, and the lower sign for the Stokes side.
All the calculations reported below are of the shape
of the Stokes spectrum, and we have ignored the
influence of the (Be,/B~) term of Eq. (4.4).

The quantities displayed in the figures discussed
below are f„(8,n) and f„(8,n), where

f„(8,n}= —. Im{B„(hk)), (4. 5)
b(n) o 1

with a similar definition of f„(8,n}.
In Fig. 4, we show f„and f„for the scattering

angle 8=30', for forward scattering. In both spec-
tra, the bulk TO phonon and I O phonon peaks are
clearly visible. In addition, in both spectra one
sees a clear, well defined line from the lower sur-
face polariton branch centered slightly above
1.04&pro. In addition, the contribution to f„near
the LO phonon frequency (&o«& =—1.085&pro) is dis-
torted toward the low-frequency side. This comes
about because the upper surface polariton branch
lies close to, but just below ~«. The peak near
1.08cu~~ contains contributions from both the bulk
LQ phonon, and the upper surface polariton branch,

quoted in the paper by Evans et al. , and the pa-
rameters which enter the infrared dielectric con-
stant have been given by McWhorter and Mooradi-
an. 4 We have taken the dielectric constant of the
sapphire substrate to be purely real, and equal to
10. We also require the magnitude and sign of the
ratio 4&neob/e„C to compute the frequency depen-
dence of the effective electro-optic coefficient b(n)
defined in Eq. (3.4). We take this ratio to have
the value -0.3, as in our previous work.

Finally, we have the variables related to the
kinematics of the scattering process. For example,



13

Peak~ while at th e same time the contrib tio
comes very

ln Figs. 5(b) and 6(b) we show the beh
.5' and 8=10'

avior of

e surface. T
uctuations

gles.
ear ~To and ~

o „(8,0) is

Asw

Lo at these sm 11a an-

p ete Raman s
earlier ts we remarked

spectrum of a
o compute the com-

reguire additional
a crystalline film

tdfo g
s

firn

reen's u

xpression for the
s, to form a com-

f an average over the orienta-

16

4433

~ I

1.02 1.04 1.061.06 1.08 I.I 0
TO

0.98 1.00

16

12.

8-

RAM AN S CAT TER)NG OF IGHT Bp p OLAR1TON S &N TH1N

4-
16--

14- ~

fXX FOR

0.98 1.00 1.02 1.04 1.08 1.101.06

FIG . ri u'
TO

IG. 4. Contribu ' ()
n spectrum of 4880-A r ' ' rward sc

h". ..---A f'l
g gle has bee scatterin an

ace on a sapphire
e30 I

12-

10

8-

6-

2-

and the two eako peaks overlap. Here on
ofth o 1 te

c rum, since
gen-

'b d' tixs nct lines to th
es o not

p
e note that Pr'

ut over-

ave observed s
rieur and Ushi d '

h
such distorted

s o a

asa pplmre substrate. B c
cy in their stud of

t
and back scatt raering spectra

orward

ract informati ion about the fr
ra, they were able to ex-

de ata.
e upper

As one mmoves to smaller sca
inate contrib t''

u &on to the
er scattering angl thes, edom-

trumfromth 1

prominent peak
'

e ower surfa
j.n the spec-

ce polariton branch corn

r . s e scatterin
c comes

g g

and
e lower bran

ses,

d th t th of f„8
6(), h f (86 a, „8,0) is plotted fo

One clearl
or 8=10 and 8

ar y sees the
s& and mer

e-
erge with the TO phonon

0.98
I

1.00 1.02 1.04
(d/(d TTO

I

1.06 1.08 1.10

16

14--
fzz FOR e

12--

r

8- ~

6--

2-

0.98
) I s I

1.00 1.02
s I s I

1.04 1.06 1.08 I.IO

FIG. 5
' ufo

TO

. 5. Contributio
Raman s

'
u sons from (a)

spectrum of 4880- '
n

of GaAs placed on a
e scattering angle is 20',e s 20', and the film thi ckness



4434

16-

D.~ L. MILLS Y HEN . BURST E IN 13

xxFQR 8~p go

l2-

8! ~-

0.98
I

I.QQ I Q2
I

l.oy IIQ
Tp

l6
FOR

I 04 I 06 II.OS

FIG. 6 '
u io

TO

. 6. Contributio
Raman s

'
u ion from (a)

strate. Th
f.~ 1 d

e scatterin
ace on a sa h'

~ g g
pp ire sub-

and the film th'ick-

I.IO0.98 I OO I Q2

displayed in Fi
and

' f the a e
McMullen. S

p per by Evans U hi

quant tatively
pie prpceduruch a slm

shipda

y correct.
re lS npt

the theor . . For exam 1

TO
etlcal ratio b twe een the h

p e, » the flgu
'

ure,

p ononpeak and th t
elghtpf the bulk

face polariton br
produced by the low

m
ranch is about —'

ower sur-

ental value ls about —'
" r, where the e~e '-

arefulatt ntlon tp t
earler papere a d

ded calculated
ve details, and

with the dat
s in excellent

ructlng the th
mp~fied meth d

ter in t '
only one ad'ust

s calculation
able parame-

admix'xture of f„aud f„.
, and that l's he ratio of the

In our previous a
abov e' we showed the

paper, and ln the dlSCuSSiOn

lariton was absent in t
face ppreason wh th

trum, while lt
the back scatteerlng spec-

ure in a forward
»"g and clear

lllu
ar scatterl

ustrate this p t . ng measurement
Point again w

To

calculation pf th
t e present ln F.

e Raman s e
lg- sa

scattered from
pectrum pf 4880 p

om our model slab. .
back

c
nstructed by ~cans pf

This spectrum

edure emplo ed
the approximate

y to cpnstr t th
p p-

face . lnt of s
e

There ls np h'
spectra display d

polarltpns in th
true ture from

e spectra, as o
su

our earlier argu-

tion of the crystal axes. Since

xp

g

e cross
p

Theof- '
n on

f, (B, Q} b both
scribe om correlat

faace. It is not
e and normmal to the film

a ' unreasonable
sur-

t ll' f'1, th

i
p io

aman spectrum b siy 'mply superim

abl o
In fact

pos-

y good representat
, we get a reaso-

a o of the LO
i

/
son-

i i ht.
In Fig. 7 a, again for near

ho th R
d d be

graphs. Th lt
crl d in the r

s are strikin' gly similar to those

35

~ 4.5

~ 6

~ 30
I I

I.06 I.08 I.IO0.98 I.OO I.02

e

I.04

FIG. 7.
QP/QJyo

G. 7. Raman spectr
sapphire sub

pectrum for a 2500-
s strate constr

A GaAs fil

as described '
ructed from f e

imona

have been u d.
in the text.

use .
Several scatt

, 0) and
a ering angles 8

(8, Q),



RAMAN SCAT TERING OF LIGHT B Y POLARITONS IN THIN ~ ~ ~ 4435

800-

700--

600-

I
500

400-

200-

0

BACKSCATTERING SPECTRUM

fxx + fzz

APPENDIX A: FORM OF ELECTROMAGNETIC GREEN'S
FUNCTIONS D„,(xx';u) FOR PRESENT GEOMETRY

As remarked in the text, a derivation of the
form of these Qreen's functions is presented in
Ref. 8. Here we simply quote the results.

We write

22)'

where x and x,', are projections of x and x' on the
xy plane. We introduce a matrix S(k„) defined by

1.020.98 I.04 1.06 1.08 1.10
To

FIG. 8. A theoretical calculation of the back scatter-
ing spectrum fromat»n film (2500 A thick) of GaAs as
a sapphire substrate.

1
S(k„)=—

II

k„k, 0

—k~ k„0
0 k„)

(A2)

ments predict. We have estimated that for both
surface polariton branches, the integrated intensity
of the surface polariton contributions to the back
scattering spectrum should be smaller by roughly
two orders of magnitude compared to their strength
in the forward scattering spectrum. When it is
realized that this small scattering intensity is
spread over a frequency interval with width com-
parable to the surface polariton feature in Fig. 7,
then one expects no perceptible structure from
surface polaritons in the back scattering spectrum,
as Fig. 8 shows.

Notice also that if the scales of the vertical axes
in Fig. 7 are compared with that in Fig. 8, one
sees the back scattering spectrum is much more
intense than the forward scattering spectrum. The
physical origin of this is simply absorption of the
incident and scattered radiation. In back scatter-
ing, the interaction may take place entirely within
the skin depth.

The calculations presented here offer consider-
able insight into the nature and frequency distribu-
tion of the fluctuations responsible for the spectra
reported by Ushioda and co-workers. While our
method of producing the Raman spectrum is a bit
oversimplified, the calculations produce spectra
quite close to the observed spectra, with only one
adjustable parame ter.

We wish to conclude with the remark that the
numerical calculations required to generate the
spectra displayed above are extremely easy to
carry out. All that is involved is a computer eval-
uation of a straightforward, although somewhat
lengthy algebraic expression. We hope the theo-
retical structure developed in this paper is com-
plete enough to enable more information to be ex-
tracted in future experimental Raman studies of
size effects and surface polaritons in planar geom-
etries.

and write

d„„(k„~lzz )

= Q g„,„,(k„(a)
~

zz')S„.~(k, )S„.„(k(() .
fk 2@2

(A5)

This operation rotates the coordinate system, so
g, „(k„&ul zz') is the function d, „(k„~lzz') calculated
in a coordinate system with k, directed along the
x axis.

We have

g „(k„ui zz') =g»(k„&zizz')=0

for p, =xor z. (A4)

The remaining five elements of g~„(k„&ul zz') are
expressed compactly in terms of two fields
E'(k„ul z} and E'(k„tel z). To define these fields,
we introduce the quantities

k = [((u+ ig)'/c2 k2]li2 Im(k2) &0, (A 5)

kl 2 [(~ lc )zg, 2 k ] lm(k|, 2) &0 ~ (A6)

In Eq. (A5), the limit q- 0+ is implied. Careful
attention must be paid to the sign conventions in
Eq. (A5} and Eq. (A6) when the results below and
in the text are utilized.

We now define the fields

+i kOc
y

E,(k„&u
~
z) = A,' ' e ' + A"' e

(~) $ k2+ (& ) -f k2c8, e +B e

z)d,
0&z&d, (A7)

z(0,

f kgbe z(0,

D( )e' o +D&')e
'

o z)d
E,(k„&a~z)= C,' 'e' 2'+C"'e ~, 0&z&d, (A6}
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i kpge

fkPg {II) -ikpgB, 8 +B 8

z&d,

0&z&d,

x&0.

E„(k„(elz)

—(k,/k„)(D,'"' e""—D'"' e *"'},

—(k~/k„) e'" ', a&0,

and finally

E~(k„~
l
z)

—(ko/k„) e z&d,

—(k2/k„)(B,""e' ' —B'"'e ' ), z&0,
(A 9)

(A10)

(A 11)

g„(k„~l
zz')

= [4z/Wy(kiiGd)] [E&(kiiM z)E&(kii(ol z )

x8(z-')+El(k ~lz}El(k ~l")8(z' —z)],
(A22)

g„„(k„&u
l
zz')

= [4z/W„(k„~)) [E',(k„~l z)E~(k ~l z )

x8(z —z')+E„(k„w z)E,(k„wl z')8(z' —z)],
(A 23)

g~ (k„(d
l

zz )

= [4m/ W (k„&u)] [E',(k„~
l

z)E„'(k„~
l

z')

x 8(z —z') + E', (k„u&
l
z)E', (k„&u

l
z') 8(z' —z)],

(A 24)

= —[4z/W„(k„&u)] [E„'(k„~
l
z)E,'(k„&u

l
z')

x 8(z —z') + E„'(k„~
l

z)E', (k„~
l
z') 8(z' —z)],

(A25)
g„(k„&u

l

zz')

D(II) gkpg D(II ) t kpg

E',(k„~lz)= C,""e ' +C'"'e ', 0&z&d, (A12)
ikpge z&0.

In these expressions, with 0. =+ or —,we have

A."' =-,' e"~(I+ok, /k, ) e """

B,"' = —,
' e' o [(1+o ko /k, ) cos(k, d)

(A 13)

(A14)

—i(ko /k, + cr k, /kz) sin(k, d)],

B,""=-,' e'""[(I/&2+ o k, /k, ) cos(k, d)

(A15)

—i(k,z, /k, &2+ ok, /z, k2) sin(k, d)], (A16)

C,"'= z(1+ o k2/k, ),
C,' ' = z(t2/e~+ ok2/k, ),
D,"' =-,' e' [(1io k /k )cos(k,d)

+ i(k2 /k, + o k, /ko) sin(k, d) ],
D~ = 2 e [(zz + e kz /ko) cos(kid)

(A 17)

(A16)

+ i(ko —kz)k, cos(k,d)], (A 20)

W„(k„&u) = (~ ko/ic k„) e [(z2 —k2/ko) cos(k, d)

+ i(z, k, /k, —z, k, /e, k,) sin(k, d)] .
(A21)

In term of the quantities define above, we have

+ i(e~k2/k, + ok, zz/koz, ) sin(k~d)] . (A19)

We require two more quantities before we may
write down expressions for the nonzero elements
of g„„(k„~I zz'):

W, (k„~) = (e ' /k, )[(k', —k,k, ) sin(k, d)

= [47rc / QPz (z, (0)]5(z —z )

—[4z/ W„(k„, ~)] [E',(k„~
l
z)E,'(k„&u

l
z')

x 8(z —z') + E,(k„u
l
z)E,(k„&u

l

z') 8(z' —z) ] .
(A26}

In Eq. (A26), e(z, ~) is the frequency-dependent
dielectric constant of the three-layer structure,
i.e. , the coefficient of 5„„in Eq (2. 1) .of the text.
As remarked earlier, the elements of g, „(k„m!zz')
not displayed explicitly in Eqs. (A22)-(A26) van-
ish identically.

APPENDIX B: RELATION BETWEEN SPECTRAL DENSITY
FUNCTION AND GREEN'S FUNCTIONS OF

ELECTROMAGNETIC SCATTERING THEORY

The relationship between the spectral density as-
sociated with fluctuations of the electromagnetic
field, and the Green's functions of the scattering
theory of classical electromagnetic waves has been
discussed and utilized in Chap. 6 of the well known

text of Abrikosov, Gorkov, and Dzyaloshinskii. ~4

As a consequence, the description we present here
is somewhat schematic.

From Eq. (2. 16) of the text we have

[1+n(A)]53;y(Q~~AI zz')

d XII 418 $p XIIZ, f gp OZ', 0
(B 1)

IIIie regard h(x, f) as the electric field operator
in the Heisenberg representation, where the Ham-
iltonian describes the electromagnetic field and
its interaction with matter. Then if Z is the par-
tition function of the system at temperature T,
with p = 1/k~ T one may obtain the spectral repre-
sentation
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1 8Ag= ———
c 8t (B3)

[1+n(Q)]K)„(Q Q„; zz') = —P e &5(Q+ ~„)
nm

x d Q„e ' " n gg{x„z m m g~ Oz' n

(B2)
In this expression, $(x) is $(x, 0), the Heisenberg
operator h(x, f) evaluated at t= 0, E„ is the energy
of eigenstate In), and 1d„=E„—E„. The electric
field is related to the vector potential in the gauge
where @=0

ary condition as the Green's function of the classi-
cal scattering theory. Thus, the two functions are
identical and Eqs. (B6) and (2. 18) of the text are
identical.

APPENDIX C: USEFUL RELATION BETWEEN

e;j(QII,& - &ql »') AND I,, (Q,B+i@I ~

In the appendix of Ref. 8, the functions of
d' &(Q~~ Q& zz' ) are constructed as solutions to a
certain set of differential equations. If we keep
track of the frequency variable 0, then when 0
lies just above the real axis, in these differential
equations,

so in terms of the vector potential one may write

2 0[1+n(Q)]D;, (Q„Q; zz') =
2 Q e "5(Q+ (u„)

nm

X d XII e n ALf XIIZ) m mIIA) 0, Z' n

(B4)
Now examine the retarded Green's function

21,2(Q+ 2 l) ~1,2+ 2~1, 2

and when 0 lies just below the real axis,

~1&2(Q 2 I) z1y2 2~1, 2

where &,"2&0. Thus we have

(C 1)

(C2)

D„'(xx'; t —t'}= —i8(f —f')([A, ( xt), A, (x't')]) .
(B5)

We introduce the Fourier transform with respect
to time

D12)( P, f f I) ~ 1 1 )D(A)(» lQ~) (B6)

and then transform out the coordinate dependence
parallel to the surface:

Dp&(Q„D g*')=f d'*„' " '"' "''Dt*'( '0). (BV)

By comparing the spectral representation of
D11~ '(Q„Q; zz') with that of D„(Q„Q;zz' }one may
establish the identity

&,~(Q„Q; zz') = (Q2/ic2)[D~~'(Q„, Q —irI; zz')

—D1", '(Q„A+i'; zz')] . (B6)

Q[-(&&&&&), +(Q /c )e(z, Q)5,. ]D'", '(xx'; Q)

=4v5„5(x- x') . (B9)

This equation is identical to Eq. (2. 4) of the text.
Furthermore, D,'", '(xx'; Q) obeys the same bound-

In their discussion, Abrikosov, Gorkov, and
Dzyaloshinskii demonstrate that D,'", '(xx'; Q) obeys
the differential equation (for a planar geometry)

(C 3)z, 2(Q —iTI) =&2'(Q+i@) .

Now the solution for g;,.(Q„A+i@I zz') must have

a form identical to the functions in Appendix A,
and so must g, &(Q„Q —i2II zz'). In one case k, and

k2 are calculated with e, (Q+ i2)) and e2(Q+ i'll) and

k2 is given by Eq. (A5) with cv+i1) replaced by Q

+ iq. In the second case, these same quantities
are to be computed with 0 —iq. In both cases, we

are to choose

Im(k2) & 0,
Im(k, , ) &0 .

(C4)

(C 5)

By examining the position of the roots in the
complex plane, one shows that the conditions in
Eqs. (C4) and (C5) require

k2(Q —irI} = —k2 (Q+ i2I),

k1 2(Q —i2)) = —k,*2(Q+1q} .
(C6)

(C 7}

If these relations are used in the explicit forms
for the Green's functions given in Appendix A, then
one may establish the identity

g;, (Q„, Q+i2} zz') =g, , (Q„, Q —i'~ z'z)*. (CB)

This relation is extremely useful in constructing
the spectral density I);,(Q„Q; zz') defined in Eq.
(2. 18) of the text.
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