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For a one-dimensional Hamiltonian, H = —(h'/2m)(d'/dz') + V(z), it is well known that the Green's

function G(z, z';E) may be written in the simple form G(z, z';E) = f+(z&, E)f (z&, E)/W(E), where

Q (z; E) are the solutions to the Schrodinger equation, (E —H)Q(z; E) = 0, which satisfy outgoing boundary

conditions, respectively, at z l ~ oo, and where W(E) is the Wronskian. Here, an analogous expression is

derived for the Green's function of a crystalline film, i.e., of a solid whose one-electron potential V(p, z) has

the translational periodicity of a lattice in p=(x, y), and vanishes as z~ + oo.

INTRODUCTION solutions of the Schrodinger equation

Although the spectal representation of a Green's
function is frequently useful in proving formal re-
sults, in practical numerical calculations it is not
for a number of reasons. First, since it express-
es the Green's function at energy E in terms of a
sum over a complete set of wave functions, in-
cluding those which are far from. E in energy, the
use of thespectralrepresentation seemingly nec-
essitates the development of approximate schemes
for calculating wave functions far from the energy
range of interest. Second, even assuming that one
knows how to compute all of the complete set of
wave functions, in order to use the spectral repre-
sentation one must still perform a singular inte-
gral over products of these functions, which in
general is a far from trivial computational prob-
lem. Finally, one frequently wishes to find a
Green's function for a non-Hermitian "optical po-
tential. " In this case the ordinary spectral repre-
sentation does not exist.

For one-dimensional problems, as is well known,
a Green's function may easily be evaluated without
the use of the spectral representation. That is,
for example, the outgoing Green's function
G'(z, z';E), which is defined by the equation of
motion

E+,—V(z) G'(z, z', E) =6(z -z'), (I)
cP

by symmetry under the coordinate interchange,
z =z', and by the condition that it be an outgoing
function of z as z -+ ~, may be written explicitly
in the form'

G'(z, z';E) = [I/W(E)][)('(z; E})() (z';E)8(z —z')

+0 (z';E))I (z;E)~(z'-z)l.
(2)

In Eq. (2), g'(z;E) are the two linearly independent

E+ ——V(z) g(z;E) =0
2m dz

(3)

which satisfy outgoing boundary conditions, re-
spectively, as z-+ ~, the Wronskian W(E) is de-
fined by

w)E)= '
) (* El —)'(z z) '

}2m dz ' ' dz

(4)

and 8(x) is the usual step function. [That W(E) is
z independent is, of course, a direct consequence
of Eq. (3).] Comparing Eq. (2) for G'(z, z';E) to
the spectral representation

+( ) ~ ))'.(z))).*(z')

where the summation runs over any complete set
of solutions to

jE cP.—)'(*)}).(*)=)), (6)

one sees that the former equation is far simpler
to use in practical calculations. First, Eq. (2)
only requires knowledge of the two wave functions
g'(z; E) instead of the complete set [)),(z)], and be-
sides, Eq. (2) requires no summation to be per-
formed. [Also, Eq. (2) is trivially generalizable
to the case of a non-Hermitian potential. ]

In general, in three dimensions there is no rep-
resentation of the Green's function analogous to
Eq. (2). However, in certain special cases there
is. The most obvious case is that of a jellium
film, i.e. , a solid whose one-electron potential
V(p, z) is independent of p

=- (x,y). In this case the
Schrodinger equation separates in x, y, and z, and
one finds that
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G+(p, z;p'z';E)
" d'k h'k'

i%~(p -p ') G+ (7)

in which the Fourier-transformed Green's func-
tion G'(z, z', E —k'k'/2m) is given precisely by Eq.
(2) (with E replaced by E -EEkE/2m). In what fol-
lows an expression similar to Eq. (2) is derived
for the Fourier-transformed Green's function of
a crystalline film, i.e., a solid whose one-electron
potential V(p, z) has the translational periodicity of
a lattice in p, and which vanishes as z -+ ~. This
formula [Eq. (30)] should prove useful in future
calculations concerning the structure of crystal
surfaces. One obvious such calculation is that of
local field effects at the surface of a crystal irrad-
iated by an electromagnetic wave. In the jellium
version of this problem, ' Eqs. (2) and (7) were of
great value, in reducing the amount of numerical
computation necessary.

CONSTRUCTION OF THE GREEN S FUNCTION FOR A

CRYSTALLINE FILM

Consider a solid whose one-electron potential
V(p, z) can be written in the form

V(p, z) = g e"' V;(z),
g

(8)

where (g] is a set of two-dimensional reciprocal-
lattice vectors, and suppose that the solid is a
film which lies roughly between z = 0 and z = D,
i.e. , that for z sufficiently negative, or for z» D,
V-(z) = 0. One seeks the outgoing Green's function

g
G'(p, z;p', z';E) which satisfies the inhomogeneous
partial differential equation

E O' —V(p, *))G*(p,z;P', *';E)

= &"'(p —p')5(z -z') (9)

and which is symmetric under the coordinate inter-
change (p, z) = (p', z').

The first step in the formal solution of Eq. (9) is
to make use of two-dimensional crystalline period-
icity [Eq. (8)], which immediately implies that
G'(p, z;p', z', E) is of the form

into Eq. (9) one obtains a matrix of one-dimension-
al equations for the G& - -, (z, z'), namely,

K, E;gtg

(E
— $+g)'+, G& (z, z ')

2m 2m dz .&:g.g'

—Q VB B., (z)G-'„-„,(z, z') =5(z-z')5
gtt

where 5g g, is a Kronecker 5 function. At the same
time, since by symmetry under the interchange
(p, z)=(p', z'), G'(p, z; p', z';E) must also satisfy
the equation

S'
E V" —V(P', z')) G'(p, z;P', z';E)

the G' (z, z') must satisfy in addition to Eq,
(11) t e equation

h'
E — (fr+ g)'+ B G~ (z, z')

2m 2m az .&:g.g'

—QG~ - -„(z,z')Vg, g, (z')=5(z-z')5g z, .B~pgtg '
gtt

(13)

In the special case of a reflection symmetric sur-
face, for which

v-, (z}= v;(z}, (14}

Eqs. (11) and (13) are identical. But in the general
case they are not.

The idea to be pursued, in analogy to the one-
dimensional case, is to attempt to find solutions
to Eq. (11) and (13) in terms of solutions to the
corresponding Schrodinger equations,

E —
2

$+g)'+, u' (z;K,E)(
Ef', 8' cP

2m 2m dz' b. g

—g Vg &„(z)u& (z;R, E) =0, (15a)
g

tt

h' h'
E —

2 (%+g)'+2, v' (z;k, E)
2m 2m dz b Bg

G+(p, z;p', z', E)
d'k

"ED-BZ

—g v' (z', E,E)Vg„&(z) =0. (15b)
g

tt

j(%+g) p -$(tf+ g ) pXZ~e
g. g'

x G-' - -,(z,z'), (10)].&:g g'

where the k integral runs over the first two-dimen-
sional Brillouin zone (2D-BZ). Equation (10) is the
crystal film analog of Eq. (7). Substituting Eq. (10)

[These equations are identical to one another if Eq.
(14) is true. However, for what follows there is no
need to restrict to this case. ] In general, for a
fixed value of E, each of Eqs. (15a}and (15b) will
have two linearly independent solutions per recip-
rocal-lattice vector. This fact accounts for the +
and b labels of the u's and v's. The superscripts
plus and minus are given a precise meaning below.
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All that one needs to know about the band index 6
at this point is that there is one value of 5 for each
value of g.

The most important property of the u's and v's
in the construction of G' (z, z') is that they
satisfy Wronskian relatrdnk' In particular, using
Eqs. (15) it is easy to show that the quantities
W'~k ~,(}r,E), defined by

W" (%,E)=- Q & ' ' v' (z;fc, E)
2m (fz

1' .g
8

( k )vv(, -(z;%8)

(16)

satisfy

—W 'k (R, E) = 0.

Thus the W~ ~k, (R, E) are constant in z, and repre-
sent a matrix of Wronskians for Eqs. (15).

One now proceeds to specify the precise boundary
conditions satisfied by the uj -(z;%,E) and v& -(z;
k, E). One will then be able to evaluate the Wron-
skian matrix formally, and to construct a trial ex-
pression for G& - -,(z, z'}.

EEvgeg
In order to impose boundary conditions on the u's

and v's, one examines Eqs. (15) in the regions z-
In these regions, because of the assumption

of film geometry, Eqs. (15) assume the form

where K(k+g, E) is defined by

K(k+ g, E)

[2mE/g —(k+ g) ]'i, E )IIE(k+ g)k/2m

it".'(k, E) =a,"'.(k, E)=2)"..(%,E)

=5). .(k,E) = 6- ./iK(k+g, E) (22)

and that

(9 v„.',(k, E) 8 v".(k, E}=i'v. .$,E}

z[(k+ gP —2mE/I' j'i', E «lf'(k+ g)'/2m,

(21)

and where the g's, 8's, ~'s, and X)'s are con-
stants are specified by imposing boundary condi-
tions on the u's and v's. In particular, since each
of Eqs. (15a) and (15b) is a matrix of second-order
differential equations with one matrix row and
column per reciprocal-lattice vector, in order
to specify each of the uf, ,k(z; k, E) and vg .(z; k, E)

b
for a given band index b, one must impose two
boundary conditions per g.

A particularly convenient set of (manifestly
linearly independent) u's and a similar set of
v's is obtained when one imposes boundary con-
ditions as follows: One requires that

0= E- + '+, x
2m 2m dz vg (z;k, E

~ g

=e-„" -(k, E)=0. (23)

(18)

Therefore asymptotically the u's and v's are linear
combinations of plane waves, of the general forms

(z k E} g v k (k E}E((v D)K(t( + g E)
eg g

g+ Ii~ r. (k ( g(g D)K(, k+ g)E))
bag

(19)

Note that Eqs. (22) and (23) correctly correspond
to two conditions per reciprocal-lattice vector
for each b.

According to Eqs. (22} and (23}one has the as-
ymptotic formulas

u', (z-~;k, E) =v'. .(z-~;k, E)
bgg bgg

)/iK(%+g E)
bg g

(24)
v'„.(z; k, E), = 6"--(k, E)e("

+(sv (k E)E- ((v- D)K(k v ((IE)
beg

and

u, (z- ~;k,E)=v,-.(z-—-~;k,E)
beg b, g

ivK(%+((& E)/iK(k+ g E)
beg

v.'„.(z; k, E) (vvv (k E) i KE( +kg, k)E
$, 1

g)vv (k E) E ivK(k+E~E)
beg

u! (z k E) = 6"-'-(k E) e(vK'I"'
oe b g

+2)vv (k E) E-ivK(g+g, E)
$ g 7

(2o)

Thus the superscript plus now corresponds to
functions which are outgoing on the right (z -+~)
and the subscript minus corresponds to those
which are outgoing on the left (z --~).

Now that one knows the asymptotic properties
of the u's and v's, one can calculate the Wronskian
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matrix (which is guaranteed to be z independent
and therefore may as well be calculated in the
regions z -s~, where the u's and v's are known).
Using Eqs. (19) and (20), and (22) (25), one finds
from Eqs. (16) and (17) the following results:

K (.k, ,E) = W: . (k, E) = 0,
W-' e(k, E)=(h'/m)$,",= (g'/m)g", .

(26)

(27)

and

W.'-,(k, E) = —(8' /m)8-"'. =-(K /m)$". . . (28)

Note that in addition to having calculated the
Wronskian matrix completely, in Eqs. (27) and

(28) one ha, s a,iso found (via the z independence
of the Wronskian}relations between the di's and

p„s.
At this point one has sufficient knowledge of the

u's and v's to propose a trial solution to Eqs. (11)
and (13) for G: .. (z, z'), namely,

LEE; gt I'

G.' .. (z, z') =Q[u'. (z;R, E).M ..(k, E).
b, b'

xv. . (z', k, E)e(z —z')
b'p g

+u -. (z; k, E)N. .,(%,E)

xv.' .(z';k, E)e(z'- z)],

(29)

wherein M. (k, E) and Ngp(k, E) are z- and z'-
independent matrices, to be determined. (The
fact that these matrices are z and z' independent,
of course, instantly suggests that they will have
to be related to the Wronskian matrix which, as
is shown below, is quite true. )

Note that by virtue of Eqs. (24} and (25), the
trial function of Eq. (29) automatically satisfies
outgoing boundary condition as z - +~ or z '- +~.
In order that Eq. (29) satisfy Eq. (11}, it is neces-
sary and sufficient that the following equations be
satisfied for all g, g', k, E, and z:

M b p(k, E)vbj zi(z;k, E)
b.b'

du z k E) +
Nj j (k k) j j* k Z))

2m
, 6 .. (31)

Equation (30), if satisfied, guarantees that

b, g y y b, b' y b', g'
b, b'

—ub -(z;k, E)Nb bi(k, E}vb g(z;k, E)]=0

(30)

and

dG~ z, (z, z'}/dz contains no term proportional
to 6(z —z'} (which is clearly necessary if
dG-„,- -.(z, z')/dz' is not to contain a term pro-
portional to d[&(z -z')]/dz]. Equation (31), if
satisfied, guarantees that the application of the
operator on the left-hand side of Eq. (11}to the
trial function of Eq. (29) yields precisely
6 ~6(z —z').

8~g
In addition to Eqs. (30) and (31}, in order that

the ansatz of Eq. (29) satisfy Eq. (13), it is also
necessary that the equation

ub g(z;k, E)Mb b (k, E)
b, b'

dvb g (z;k, E)—ub Z(z;k, E}Nb,bj(k, E)

6- - (32)
2m

be satisfied. This equation is the analog of Eq.
+

(31) for the z' and g' variables in G-„z,
& &

(z, z').
[Equation (30}serves the same function in satis-
fying Eq. (13) as it did for Eq. (11); i.e. , it guaran-
tees that dG k,z, g. g (z, z')/dz' contains no term
proportional to I(z —z'). ]

One now seeks to determine whether any ma-
trices Mb b (k, E) and Nb b. (k, E) exist such that
Eqs. (30)-(32) are satisfied. To begin, one sub-
tracts the z derivative of Eq. (30) from Eq. (31).
This exercise immediately shows that if Eqs. (30)
and (31) are true, then Eq. (32) is automatically
satisfied. Thus Eq. (32} need not be considered
further.

To solve Eqs. (30) and (31), one first multiplies
Eq. (30) by dvb g (z; k, E)/dz and Eq. (31) by

vb &(z;k, E). Summing the resulting equations on

g, subtracting one from the other, and using the
definitions of Eqs. (16}, one then obtains the rela-
tion

b, b" y b, b' y b', g'
b.b'

—Wb b ~Nb b z(k E)vkkjtz'(z )kj E)]j

=vb„z, (z;k, E) (33)

or, using Eq. (26), the equation for Mb b (k, E),

8'b b k, EMb b k, e Vb~g~ Z;k, E
b b t

= vb ~ ~ (z;k, E). (34)

A similar equation is obtained for Nb b (k, E}
by multiplying Eq. (30) by dvb- &(z; k, E)/dz and

Eq. (31}by vb. &(z;k, E) Again subtract. ing one
of the resulting equations from the other, summing
on g, and using Eqs. (16) and (26), one finds that
Nb b (k, E) must satisfy
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Q Wb b«(kg E)Mf) lg (kg E) =5b.bg 9

b

~ +
(-Wb g«)Nb b''(k, E) =5b b

b

(36)

which state that M and N must be the transposed
matrix inverses of W and —8"', respectively.

Equations (3V) and (38) are necessary conditions
for the satisfaction of Eqs. (30) and (31). It re-

Wb bg, EMg bg k, E vbg, gg z;k, E
b.b'

=vj
g (z;K, E). (35)

Equations (34}and (35}must be true for all values
of z, 5", and g'. By virtue of the linear indepen-
dence of the U's these equations are therefore
equivalent to the relations

mains to show that they also represent sufficient
conditions. Thus suppose that Eqs. (36) and (3V)
are true. Then using Eqs. (16) and (26) it follows
that the equations

Z ( T, g(:k, E)gg, g (*:k,E)
g

'@
Tg, g (*;k,E)) =0, (88)

vb g(z;k, E)Sg,g. (z;%, E)
g

Tg 9'(;k, E)) =0 (89)

are satisfied for all 5 and g', where S
g g (z, k, E)

and Tg g (z;k, E) are defined by

Sg, g (z;k, E)

b, b'

+
dug g(z;k, E) - - dug@(z;k, E) - + - 2m

ggg 0 (kE)089(gkE)- '" ' '
g«g T (kE)gg. z (Zkk) — 8, gz z)

(40)

Tg, g (z;k, E)= /[A. -g(z;k, E)MI, g (k, E)vg g.(z;k, E) —ub g(g, k, E)Nb b (k, E)vb. g (z;k, E)]. (41)

(„~ ( 9 ))
8; g(z;k, k)j

~ g dz

(--(*9k)'- g' ' '
)dz

(42}

is nonsingular. Thus Eqs. (38) and (39) imply that

S;;,(z;k, E)=T;;,(z;k, E) =0

or, equivalently [cf. the definitions of S and T,
Eqs. (40) and (41)], that Eqs. (30) and (31) are
true.

Thus it has been shown that if the matrices
Mg b. (k, E) and Nb b, (k, E)are the transposed inver-
ses of the Wronskian matrices W& b. (k, E) and
—Wg b, (k, E}, respectively, then the ansatz of
Eq. (29) satisfies all the conditions to be the
Green's function for a crystalline film.

The final formula for the two-dimensional

(43)

But by the linear independence of the functions
vb g(z;k, E) [and the fact that these functions satis-
fy the second-o~der differential equation, Eq.
(15b)], one knows that the matrix

Fourier transform of the Green's function of a
crystalline film is given here, for convenience,
as follows:

G)( g g g
~ (zgz )

+b, g
b, b'

xv;, ;.(z';k, E)e(z -z'}

+ub g (z;k, E)[-W '(k, E)] b b

x vb g
{z';k,E)8(z'-z)}.

The Wronskian matrices W' and their transposed
inverses are defined inEqs. (16), (36), and(3V).
The wave functions u and v are defined by Eqs.
(15), (24), and (25). The superscript T means
"transpose. "
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