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The role of matrix elements in the calculation of the generalized susceptibilities g(q) of metals is discussed
using the results of an augmented-plane-wave energy-band calculation for the eigenvalues and eigenfunctions
of Sc metal. The inclusion of the oscillator strength matrix elements is found to significantly alter the
structure obtained for g(q) in the constant-matrix-element approximation. The effect of local-field corrections
on the phonon anomaly in Sc and the observed magnetic ordering of dilute rare-earth Sc alloys are described;
in the latter case, a crude estimate of this effect is found to restore a (broad) peak in y(q) at q = [0,0,0.5(m/c)],
in good agreement with experiment.

I. INTRODUCTION

The generalized susceptibility function which
measures the response of the system to an ex-
ternal probe is central to the understanding of
many physical phenomena in solids. Although the
calculations of these response functions are
rather involved, the considerable refinement in
the computational techniques which has been
achieved in recent years makes accurate ab initio
studies possible. The greater realization that
(except perhaps for very simple metals) the true
response function of a real solid is quite unlike
the frequently used free-electron Lindhard func-
tion has led to attempts to include the real band-
structure effects' into the calculations. In the
random-phase approximation (RPA), the dynamic,
i.e. , wave-vector and frequency dependent, elec-
tron-electron dielectric function is written

e(q, ~) = I + (4se'/Qq ) X(q, &o),

where 0 is the crystal volume and

x(q, ~) =xi(q, ~)+fxa(q, ~)

nk nh

~~ En-Ea+~~+fe

Here E~ is the Bloch energy of the state k with
Bloch function g~ and occupation number n~, 4 in-
cludes both the band index and the wave vector
k which is restricted to the first Brillouin zone.
The oscillator-strength matrix element

(4)

imposes the restriction k'=%. +q+ G, where Q is a
reciprocal-lattice vector; co denotes the frequency
of the external field, and X(q, ~) is the bare sus-

ceptibility of the solid, i.e. , the effects due to
local fields are not included. The zeros of e, (q, &o)

= Re[e(q, ~)] determine the plasmon dispersion re-
lation and &2(q, v) = Im[&(q, e)] is related to many
properties including the dynamic form factor
S(q, &o), the optical conductivity, and the optical
ref lee tivity.

The static response function X(q), i.e. , the re-
sponse function for + =0 is itself of very great
interest because of its possible role in causing
electronically driven instabilities which are mani-
fested as spin-density waves, charge-density
waves, or in structural phase transformations.
From Eq. (3) we can write down the expression
for X(q):

x(q) =x(q, ~=&})

=-Z "" ""IM~'(q)l'

"")
lM, „(q)l'.

It has been argued that due to the "nesting" fea-
tures, i.e. , the existence of flat and parallel
areas of the Fermi surface, the denominator in
Eq. (5), will tend to be vanishingly small, giving
rise to a large peak in x(q) at the nesting wave
vector. Such a. large peak in X(q) coupled with
exchange enhancement effects in, for instance,
paramagnetic chromium, ' has been thought to
be the main reason for driving the paramagnetic
phase unstable with respect to an antiferromag-
netic phase, and has since been used by a number
of workers to account for various other instabil-
ities related to Fermi-surface geometry. The
occurrence of anomalies in phonon spectra of
metals has also been related in a similar way to
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the sharp features in }((q). But before one can
have faith in the relationship between nesting fea-
tures of the Fermi surface and observed instabil-
ities, we must note that while nesting features are
important, the effect of the oscillator-strength
matrix elements, M». (q) has been almost totally
ignored in favor of the ener gy denominator part
of y(q}, i.e. , the oscillator-strength matrix ele-
ments have been assumed constant and attention
has been focused just on }f(q), where

The justification for such an approximation has
usually been based on the beliefs (i) that the oscil-
lator-strength matrix elements M». (q} depend
very weakly on k, and they are smoothly and slow-
ly varying functions of q only; and (ii) that the
wave vector where instability occurs, i.e. , the
position of the peak in the generalized susceptibil-
ity function lf(q), will be determined largely from
the nesting features of the Fermi surface. Cal-
culations of y(q) for' Cr and Nb including matrix
elements have shown that these approximations
are, at best, very crude and that the effect of
matrix elements is rather dramatic. It is clear
from Eq. (3) that in the q-0 limit, the interband
matrix elements vanish while the intraband matrix
elements tend to unity resulting in X(q) tending to
the density of states of the Fermi level. Since the
matrix elements are ignored in Eq. (6), both intra-
band and interband transitions contribute to X(q),
and hence X(q) will deviate considerably from the
correct value at q=0. In fact, it was found that
in the case of Cr, the value of }((q) was almost 20
times X(q). In the large-q limit, on the other hand,
the intraband matrix elements will be rather small,
and it is really the interband contributions which

will dominate. The behavior of the interband ma-
trix elements in this limit cannot be easily simu-
lated without an actual calculation using Bloch
functions from an energy-band calculation. In

general, both intraband and interband matrix ele-
ments in transition metals will have quite com-
plicated behavior and will be strongly dependent
both on the initial andfinal Bloch states k and k'

(k' =k+q+G), and not just on q. The strong k and

q dependence will manifest itself even more in

the region where the bands are strongly hybridized.
Accurate calculations of lt(q) are now possible

since we have confidence in the accuracy of the
essential ingredients entering Eq. (5}, namely,
the electronic energy bands and wave functions
derived from, for instance, augmented-plane-wave
(APW) calculations. The Brillouin-zone integra-
tion techniques —a very important ingredient for
an accurate determination of lf(q}—have been suf-
ficiently refined and speeded up during the last

year. In particular, the analytic tetrahedron
linear energy methods has been shown to be simple
to use and to be capable of giving results which

are accurate to within 1% for an idealized system
where analytic results are available for compari-
son.

In this paper we present results for the case of
scandium metal, and examine in detail the im-
portance of including the matrix elements in the
calculation of }t(q). Our motivation to study the
transition metal scandium arises from the fact
that Sc and Y have many properties which very
closely resemble those of the heavy-rare-earth
metals. Sc itself is nonmagnetic, but its alloys
with magnetic rare earths do show magnetic
structure with the magnetic wave vector q =(0, 0,
0. 56m/c). ' The phonon spectra of Sc, available
from the neutron scattering work of Wakabayashi,
Sinha, and Spedding show an anomaly in the
longitudinal-acoustic (LA) branch at a wave vec-
tor q=(0, 0, 0. 54v/c). Both the wave vector for
the magnetic ordering and the wave vector for the
phonon anomaly agree very well with the nesting
feature in the c direction found in our calculation
of the Fermi surface of Sc, and by Fleming and
Loucks~ in an earlier calculation. Since the nest-
ing feature in the Fermi surface of scandium is
found in the c direction, and since we are mainly
interested in the influence of matrix elements on

the nesting-related peaks in the generalized sus-
ceptibility function, we have performed the cal-
culation of lf(q) for q only in the c direction.
Furthermore, we have included only the third and
the fourth bands in our calculation since only
these two bands determine the Fermi surface.
For the Brillouin-zone integration we employ the
accurate tetrahedron method of Rath and Free-
man, mentioned earlier. The electronic band
structure and Fermi surface of Sc are discussed
in Sec. II. Comparison is made between the
single- and double-zone schemes in Sec. III where
our results for }((q) in the constant-matrix-ele-
ment approximation are presented. The calcula-
tion of oscillator-strength matrix elements is
described in Sec. IV, which presents our results
for }((q) obtained with the inclusion of matrix
elements. Finally, the effects of local-field cor-
rections are discussed, and the results of a crude
calculation are presented.

II. ELECTRONIC STRUCTURE OF SCANDIUM

The starting point for the calculation of the gen-
eralized susceptibility function y(q) of a solid is
the determination of its electronic band structure.
In the present work we have calculated the ener-
gy bands and wave functions of scandium metal by
means of the APW method. ' The neutral atom
charge densities for the atomic configuration
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3d~4s' obtained from the Herman-Skillman Har-
tree-Fock-Slater self-consistent atomic calcula-
tions were used to construct the crystal potential
in the warped-muffin-tin approximation, i.e. ,
the crystal potential in the interstitial region was
not assumed to be constant. The contribution of
exchange was included using Slater's p' approx-
imation with o.'=1. Instead of choosing a differ-
ent basis set for each point in the Brillouin zone,
a universal basis set of 49 reciprocal-lattice vec-
tors was used in the expansion of the wave func-
tions. The lattice constants, a=6.23912 a.u. and
c =9.93164 a.u. , were taken from the recent low-
temperature work of Mueller. " We chose the
radius of the muffin-tin sphere as R„T=2.9872 a.u. ,
which is close to the maximum allowable radius
3.0674 a. u. of half the nearest-neighbor distance.
With our basis set, the energy eigenvalues were
converged to within 1 mRy at high-symmetry
points. These results are in agreement with the
earlier nonrelativistic results of Fleming and
Loucks and Rath and Freeman and the relativis-
tic results of Das et al. '~ except for some small
differences arising from the different atomic
configuration and/or lattice constants used.

The hexagonal-close-packed structure has two
atoms in the unit cell. The structure factor and
the Fourier coefficient of the potential vanish for
reciprocal-lattice vectors which have their z
component an odd multiple of 2v/c. The Bril-
louin-zone-boundary planes normal to the hex-
agonal axis are planes containing a time-reversal
degeneracy. This causes the energy eigenvalues
in the AHL plane to be degenerate in pairs of two;
e. g. , first and second band, third and fourth band,
etc. , are degenerate in the AHL plane. This de-
generacy is lifted (except along the AL line) by the
spin-orbit coupling, but since scandium is a light
metal, such effects are unimportant and we shall
not consider them in the present work. As a
consequence of this degeneracy in the AHL plane,
one can visualize, for instance, the first and sec-
ond band as one continuous band by unfolding the
second band into the extended zone A-I' as is
shown schematically in Fig. 1. This is equiva-
lent to doubling the period in the c direction; that
is, to using a Brillouin zone double its original
size in the c direction.

The decision as to the use of the single or
double zone depends on the problem at hand. For
example, the Fermi surface may be quite con-
veniently plotted in this so-called double-zone
scheme without any approximation. But the use
of the double-zone scheme implies that direct opti-
cal transitions from, for instance, a to b' (see
Fig. 1) do not occur because they do not conserve
crystal momentum. However, these transitions
are in fact equivalent to the a to b transitions

which do occur.
The Fermx surface of scanchum determined xn

the double-zone scheme is basically the same as
found earlier by Fleming and Loucks. The Fermi
level was calculated using the tetrahedron method, 6

and was found to be 0.455 Ry (relative to the con-
stant potential in the interstitial region
Vo= —1.04550 Ry). The density of states at the
Fermi energy N (Er) is 30 states/Ry atom, in good
agreement with other calculations. ' '

III. CALCULATION OF x(q)

The structure in the generalized susceptibility
function is very sensitive to the Brillouin-zone
integration procedure. In the present work we
have used the analytic tetrahedron linear energy
method (henceforth referred to as the tetrahedron
method) developed by Rath and Freemane for the
calculation of the generalized susceptibility func-
tion with both constant matrix elements )f(q) and
with APW matrix elements X(q). Rath and Free-
man have discussed in detail the tetrahedron
method, its accuracy and advantages over other
existing methods, and have also used it to cal-
culate )f(q) for Sc, and of some model systems. ~

In the tetrahedron method, the whole Brillouin
zone is divided into microzones which are tetra-
hedrons inside which the variation of energy is
assumed linear. If one assumes that inside each
tetrahedron the matrix elements are constant, then
the contribution to )t(q) is obtained as an analytic
expression which depends only on the energies at
the corners of the tetrahedron. The method is
accurate and simple to use.

The calculation of y(q) for Sc has already been
described elsewhere. 6 These authors performed
the calculation in the double-zone scheme as dis-
cussed in Sec. II using only third and fourth bands
which determine the Fermi surface. However,
since the mesh used in our calculation is slightly
different, it was thought worthwhile to repeat their
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FIG. 1. Double-zone scheme for the hexagonal-close-
packed lattice.
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FIG. 2. Mesh of points (projected in the basal plane)
used in the calculation of X(q) and )((q). Dots indicate
the centers of the triangular prisms where the oscillator-
strength matrix elements are calculated.

Mp, (g ~) = I &.+ q. I
—v/c

I —6;z if
I ~a+ qsI & v/c,

(7)

where i and j are the band indices in the single-
zone scheme. [In this connection we should men-
tion that since the actual matrix elements M». (q)
are step functions (i. e. , 1 or 0 depending on
whether k is equal or not equal to k+ q) for the
free-electron-gas case, their effect is included
explicitly if one uses the extended-zone scheme.
Thus, Eq. (6) will yield the I.indhard function only
in the extended-zone scheme. In the reduced-zone
scheme the use of constant matrix elements will

calculation to facilitate a more meaningful com-
parison with X(q). The grid of points used in our
calculation is shown for an irreducible basal plane
section in Fig. 2, with the I'K and I'M distance
each divided into eight parts. Since I'A distances
were divided into 10 parts, there are 11such planes
in the irreducible Brillouin zone, and each plane
contains 64 triangles of equal area. Thus, there
are a total of 640 triangular prisms in each 2'4th

of the irreducible Brillouin zone, or equivalently,
15360 triangular prisms in the entire first Bril-
louin zone (BZ); each prism accomodates three
tetrahedrons.

It has been usual practice to calculate y(q) in
the double-zone scheme. From our discussion in
Sec. II (cf. Fig. 1) about the double-zone scheme,
it is clear that the effect of treating the two bands
of the single-zone scheme in the double-zone
scheme is to allow only the intraband couplings if
(k+ q}, remains in the first BZ, and only the inter-
band couplings if (k+ q), is outside the first BZ
and a reciprocal-lattice vector 2v/c is required
to bring it back to the first BZ. Furthermore, if
the allowed matrix elements are assumed constant
(which is usually the case) then the matrix ele-
ments are such that

not yield the usual Lindhard result unless matrix
elements (1 or 0) are included. ]

The calculations reported so far for the hexag-
onal-close-packed metals Sc, Y, and the heavy
rare earths" have been based on the two-band
model (single-zone scheme) where two bands, the
third and the fourth, which are responsible for the
Fermi-surface features of these metals, have
been used in calculating X(q). It is easy to see
that in this two-band model, use of the double-
zone scheme, or alternatively the use of Eq. (7)
for the matrix elements, is a simple extension of
the free-electron case where the matrix elements
are implicitly included in the extended-zone
scheme. As we shall see in Sec. P, considerable
deviations occur for transition metals from the
matrix elements given in Eq. (7), particularly in
the region where there is strong mixing between
the bands.

In order to maintain a close similarity between
the calculations of both )((q) and lt(q), we made use
of Eq. (7) for the step-function matrix elements
in the double-zone scheme in two ways. We did
not use the double-zone scheme for y(q) by un-

folding the fourth band into the extended zone. In
the first case matrix elements pertinent to Eq.
(7) which are 1 or 0 were evaluated at the center
of each tetrahedron. In the second case they were
evaluated at the center of each triangular prism
(which accommodates three tetrahedrons). We
found that the results from these two calculations
were almost identical. They also agree well with
the earlier calculations of Rath and Freeman. We
show in Fig. 3 our X(q) calculated along FA using
Eq. (7}either at the center of the tetrahedrons or
at the center of the triangular prisms. It is grati-
fying to note that it is possible to ignore the vari-
ation of the matrix elements over a small volume
without affecting the accuracy of the results. This
is an important consideration when one includes
the matrix elements calculated with actual Bloch
functions, as is done with APW wave functions in
Sec. IV. It is clear that by using the ApW matrix
elements at the center of each triangular prism
rather than at the center of each tetrahedron, and
assuming them constant throughout the microzone,
considerable saving in machine time as well as
programming effort can be achieved.

From Fig. 3 we note that there are two sharp
peaks in y(q}—one at approximately q= 0. 60m/c and
another at approximately 1.40v/c. The first peak
position agrees very well with both the magnetic
wave vector observed in scandium-rare-earth
alloys and the q vector for the phonon anomaly.
It also agrees very well with the nesting wave vec-
tor found in the Fermi surface which connects the
third-band hole surface to the fourth-band electron
surface. To understand the origin of the peaks in
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gives sharp peaks (or critical points) in the joint
density of states. Clearly Fermi-surface nestings
do help in the formation of peaks in }t(q), but they
may not be the dominant cause, as has been found
in the present case.

IV. CALCULATION OF x(q)

A. Calculation of the oscillatorwtrength matrix elements

In order to calculate }t(q), we need to obtain the
expression for the oscillator strength matrix ele-
ments M», (q) defined in Eq. (4). In the APW
method'g the Bloch function )I),(P) is expanded in
the APE('s in the following manner:

(j),(r)=~ a;(k)4;(k, 'P),1
k g g (8)

l0.0

where II is the crystal volume, ag(k) is the coef-
ficient of expansion determined variationally from
the APW secular equation, g is the reciprocal-
lattice vector used in the expansion, and eg(k, r)
is an APQf defined as

e;(k, r)=e™&~ (8)

for r in the interstitial region, and

(k r) 4 t (ieg& ~ RneRv&

FIG. 3. Generalized susceptibility function X(j) of Sc
metal in the double-zone scheme (in the constant matrix
elements approximation) for q along I'A.

g(q), we have separated the intraband and interband
contributions, and plotted them in Fig. 3. Quite
surprisingly, there is no sharp peak in the inter-
band part as implied by the "nesting'" hypothesis,
although there is certainly a shoulder around
q= 0. 60&ijc. The peak at this wave vector in fact
arises from the fact that with increasing q the
interband part of p(II) is rising faster than the in-
traband part is dropping, until the interband part
becomes constant in the region of the peak and the
intraband part shows a plateau and starts dropping
again. A similar behavior around q= 1.40v/c re-
sults in a second sharp peak in Bq). The origin
of this behavior of the intraband and interband
parts of }t(q) is probably the same as that which

x gi'j, (~k+g~R)Y,* ~ Y, (p)R, (k, p),
J fft +gt

(10)
inside the muffin-tin spheres. Here R is the
radius of the muffin-tin sphere around each scan-
dium nucleus, and the distance P from the origin
has been expressed as

r= R„+0„+p,
where R„ is the translation vector and R„ is the
position of the vth basis atom inside the unit cell.
The vector p is now measured from the center of
the muffin-tin sphere. R, (k, p) denotes the radial
wave function which, of course, depends only on
the band energy and not the Bloch wave vector k,
In Eq. (10) we have normalized R, (k, p) so that it
has the value unity at the muffin-tin boundary.
All other symbols have their usual meaning. '
Inside the muffin-tin spheres we may combine
Eqs. (8) and (10), and rewrite the Bloch function
as

&j)g(f') =~pa;(k) 4&ie™~~""""pi'j, ()k+ g ~R) Y; - Y»(p)R, (k, p)
C lm

lttt )k+ g (

~5k» (%~+Rp)

(k) Y&)g(p)R, (k, p),
Em

where

A," (k)=4ege"'" )'(()4 ~ i(R)v, -+ )444).
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The Ap~ wave function inside the muffin-tin spheres in the form of Eq. (12) was also similarly ex-
pressed by Gupta and Sinha. This form not only simplifies considerably the evaluation of the oscillator-
strength matrix elements but is also intuitively appealing because of its close resemblance to the Korringa-
Kohn-Rostoker form. The expression for the oscillator-strength matrix elements M». (q) can then be
written

(t))=&( le "'l('~)=E -", (k) '(k') l) —
g G()(R)s(K)) M', .(t)), (14)

where K=k'+ g' —k- g —q is a reciprocal-lattice vector, S(K) is the structure factor S(K) = 2g„e " a~, Vo

and Qo are the volumes of a muffin-tim sphere and the unit cell, respectively, and the function G(ff'R) is
defined as

G(x) = 3(sinx —x cosx)/x' .
M», (q) is the contribution to M», (q) due to the part inside the muffin-tin spheres, and is given by

4m
»' (q}= „—g e' ' " g g g I "' "A*, "(k)A", (k') F(" "(q)T(ll'l", kk'q)G(lm l'm'l" m") ~ (16)

0 v tm i fff' g

Here G = k' —k- q is a reciprocal-lattice vector
which brings k+ q back to the first Brillouin zone,
and

T(ll'l", kk'q) = j „,(qp)R, (k, p)R„(k', p) p'dp,
0

(17)

G(lm I'm' l"m") are, of course, related to the
Clebsch-Gordan coefficients. " Clearly the ex-
pression for the matrix elements is quite cumber-
some and time consuming on a machine. Because
one needs to evaluate a very large number of
these matrix elements in order to compute X(q),
one needs to evaluate them as economically as
possible. In our calculation, we restricted the
maximum value of l and l' to 2 (and hence l" to 4)
and renormalized the wave functions accordingly.
It was observed, however, that the higher-l com-
ponents did not contribute significantly to the wave
functions in the muffin-tin region —a fact expected
intuitively from the success of the Korringa-Kohn-
Rostoker method.

It was noted in Sec. III that X(q} was practically
unchanged whether we evaluated the step-function
matrix elements of Eq. (7} at the center of each
tetrahedron, or at the center of each triangular
prism comprising three tetrahedrons, assuming
them constant throughout the microzone. We have
made use of this result to reduce the number of
matrix elements entering our calculation of y(q).
As stated before, we used only third and fourth
bands in our calculation and for each band, Bloch
functions were calculated at the center of each
triangular prism. This amounts to calculating and
using 1280 wave functions in the irreducible part
of the Brillouin zone. The matrix elements from
Eq. (14}are evaluated at the center of each of

these prisms. (cf. Fig. 2 which shows the pro-
jections of the centers of the prisms onto the basal
plane. ) Since in our calculation, q is restricted
to the c direction and since the values of q we

chose are commensurate with the mesh points
in the c direction, k+q reduced to the first Bril-
louin zone falls in the same chain of prisms as
does k. Thus the programming and calculational
effort is reduced considerably.

In Sec. II we discussed briefly the double-zone
scheme (DZS). It was stated that in the two band
model the DZS allows only the intraband couplings
if $+q) lies in the first Brillouin zone, and only
the interband couplings if (k+q}x falls outside the
first BZ. It is clear that in general both intra-
band and interband contributions will be permitted
and the use of the DZS introduces approximations.
Furthermore, the matrix elements for the allowed
transitions will, in general, not be constant. The
validity of these approximations can only be
checked by an actual calculation of the matrix
elements. In what follows we shall present plots
of matrix elements for some k and q points. The
dominant matrix elements are, of course, those
allowed in the DZS. For this reason and for the
sake of clarity we plot the matrix elements as if
the fourth band was unfolded into the extended AI'
zone. The couplings allowed in this one band or the
double-zone picture will be labeled as "DZS, " and
the extra couplings not permitted in the DZS will
be referred to as the deviations from the DZS.

In Fig. 4 we have plotted the matrix elements
as a function of q. The initial state vector k for
these matrix elements has been fixed at a point
very close to I' (i. e. , point "1"in Fig. 2 with its
z component equal to 0.057(/c). The vector q has
been varied from 0 to 2v/c in the c direction, with
both positive and negative q values. The left side
of Fig. 4 shows the results for -q, and the right
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side for +q. The final state vector k+q, of
course, varies in the c direction with its x and y
coordinates again given by the point marked "1"in
Fig. 2. From Fig. 4 we see that although the ma-
trix elements are varying more or less smoothly
as a function of q, they are not slowly varying
functions of q. Needless to say, except in the
small-q regime, they are far from unity. Another
interesting feature we note is the asymmetry, i.e. ,
the matrix elements for forward scattering +q
are not equal to the ones for backward scattering
—q. In Fig. 5 we show the energy bands which
are involved in determining the matrix elements
shown in Fig. 4. We see that there is consider-
able interaction between the fourth and fifth bands,

0.5B—

056—

0.54—

C:~ 052—

0.50—

0.4B
0

kz

FIG. 5. Energy bands which are involved in the de-
termination of the matrix elements shown in Fig. 4.

FIG. 4. Matrix elements M&z (q) for the k point marked
"1"in Fig. 2 with k,= 0.05(7t/c). The left side shows
the matrix elements for -q and the right+ q. kz

FIG. 6. Energy bands for the k point marked "29" in
Fig. 2 with k, varying from 0 to n/c.

and this is reflected in the matrix elements in the
large-q limit as seen in Fig. 4. We recall that
in the DZS, it is only in the large-q limit that the
part of the fourth band which is strongly hybrid-
ized with the fifth band enters into the matrix-
element calculation. Incidentally, for these bands
there is very little deviation (-2%) from the DZS
and it has therefore not been shown in Fig. 4

Looking at the bands in Fig. 5, this is expected
since the third and the fourth bands themselves
are well separated. That this is not always the
case, and considerable deviations occur from the
DZS, can be seen if we choose the points far from
the origin.

In Fig. 6 we show the energy dispersion in the
c direction for the third and fourth bands for the
point marked "29" in Fig. 2. As we see, the
energy separation between these two bands is
rather small; its maximum separation is only
0.02 Ry. This behavior results in matrix ele-
rnents which are strongly k and q dependent and
show considerable asymmetry for + q and —q.
Since the Fermi energy is 0.455 Ry, and since
part of the fourth band is below the Fermi level,
transitions originating from the occupied portion
of both third and fourth bands will contribute to
the y(q). Figure 7 shows the matrix elements re-
sulting from transitions from the third to the fourth
band plotted as a function of k„ the z component
of the initial state vector; for each curve the q
vector is fixed to a value marked on the curve.
Similarly, Fig. 8 shows the matrix elements for
transitions from the fourth to the third band. In
both cases, we find that except for small-q values,
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B. Results for X(q)

Following the procedure discussed above for
calculating the oscillator-strength matrix ele-
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FIG. 8. Same as Fig„7 except that these matrix ele-
ments arise from transitions from the fourth band to the
fourth band and the third band.

the matrix elements are not at all constant. We
note that the matrix elements for a fixed-q value
are strongly dependent on the vector k, with a de-
pendence which becomes increasingly prominent
with increasing values of q. We note also the con-
siderable deviation from the DZS, as is shown in
the curves at the bottom of the figures. As with
the k dependence, the deviation from the DZS in-
creases with increasing values of q. Finally, the
results show a very substantial asymmetry for
positive and negative values of q.

FIG. 9. Intraband and interband parts of the general-
ized susceptibility function. The solid curves include the
APW matrix elements and the dashed curves show the
counterparts from X(q).

ments, and using the grid of points shown in Fig.
2, we calculate )f(q) from Eq. (5). As with )t(q),
the calculation was performed for q varying from
q=0 to q=2w/c in the c direction in intervals of
0. 10w/c. We show in Fig. 9 the intraband and
interband contributions to )t(q), and their counter-
parts from X(q) for comparison. We note that
X, iatra does not differ substantially from Xiatra at
low-q vectors but as q increases, the discrepancy
increases and reaches a maximum at q= 1.4w/c
where Xiatra is more than two times Xiatra' For
q&1.4w/c both X~~„and )f~„,begin to fall off
rapidly and are vanishingly small at q= 2w/c. The
broad peak in )I„„„atq= 1.4w/c still shows up in

X„«abut with reduced magnitude.
The most conspicuous change, however, is

found in the interband part of the susceptibility.
Both X„, and y„ter start from zero values at
q=0, and the difference between them is small
for small values of q. This similarity, however,
ends at q= 0.35w/c. Although the )t„„„keeps
rising until it shows a peak at q = 0.60w/c, X„t
rises much faster. Thus, whereas X~ter at
q= 2w/c is rather small, X„„,is larger than ever
because the DZS, in conjunction with the step-
function matrix elements, permits only the inter-
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FIG. 10. Generalized susceptibility function g(j) in-
cluding APW matrix elements.

band contribution in Xinter whereas Xinter is sup-
pressed by the inclusion of the oscillator-strength
matrix elements. An interesting feature in y„«»
however, is that the broad shoulder in X„„,at
q =0.60w/c has been sharply focused into a small
peak. [We note in this respect the interesting
result of Cooke et al. that the inclusion of matrix
elements brought out structure in the X(q} of Nb

which was not found in X(q}.]
The total X(q) is shown in Fig. 10. We note

that the peak in X„„,at q = 0.60w/c is not present
in x(q}. The intraband contribution has fallen off
so much at this wave vector that the total X is
unable to sustain the peak found in interband part.
We find that the over-all shape of x(q) curve is
totally different from that of x(q), and the influence
of the oscillator-strength matrix elements has
been rather drastic.

C. Effect of local-field corrections on the phonon

anomaly and magnetic ordering

Since the inclusionof the matrix elements re-
sults in the generalized susceptibility function not
showing a peak at a wave vector where the phonon

anomaly is observed, the question remains as to
how can one explain the observed phonon anomaly.
It is now recognized that the local-field correc-
tions play an important role in determining the
phonon spectrum of transition metals and insula-
tors. ' ' The off-diagonal elements of the dielec-
tric matrix e(Q, Q'}

e4 Q'} = 6@@+ t (Q) X(4 Q'} (19)

where

X(q+G, q+G') = f(q+G) f(q+G') X(q), (21)

where f(Q) is a function normalized to 1 at Q= 0.
The actual form of f(Q) is not important here since
it does not enter into the calculation. It has been
shown that the exchange-enhanced susceptibility
is given by the expression

x..(q, q) =x(q, q)/II -IF(q)), (22)

where

F(q) = Q X(q+G, q+G), (26)

and I is the strength of the exchange interaction
(treated here in the usual q independent approxi-

are not insignificant in comparison to the diagonal
matrix elements. Evidently, such off-diagonal
terms will have an important effect on the diagonal
elements of the inverse dielectric matrix E (Q,Q'}
which is what really enters into the calculation of

phonon spectra. It is not clear whether the local-
field corrections of this type can simulate struc-
ture or a peak in e '(Q, Q'} at the observed wave
vector. In any case, e '(Q, Q') is only one of the
two necessary ingredients entering the calcula-
tion of phonon spectrum, the other being the
electron-ion interaction; the combination of the
two gives rise to phonon anomalies. Evidently,
the structure in X(Q) or e (Q, Q') may be helpful
in giving rise to phonon anomalies, but it is by
no means essential. This view is supported by the
recent work of Sinha and Harmon' on Nb metal
and NbC where it has been found that the pho-
non anomalies may appear without any peaks in

x(Q).
As mentioned previously, Sc metal is nonmag-

netic. When alloyed with heavy rare earths with

about 30-at. %concentration, the system orders
magnetically with magnetic wave vector q
equal to 0. 56v/c. ' It is generally assumed that
the host metal scandium simply provides the me-
dium for the indirect exchange interaction between
the localized f electrons situated on the rare-
earth ions. While this may be so, the possibility
of a spin-density wave developing in the system
and supported by the exchange interaction between
the conduction electrons cannot be ruled out. We
have investigated such a possibility in a prelim-
inary calculation in the following way. Following
the work of Gupta and Sinha' on chromium, we

make an ansatz for the form of the susceptibility
matrix as follows,
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FIG. 11. Function F(q) appearing in Eq. (23) and

described in the text.

mation). Quite clearly, a spin-density wave may
be sustained for a value of q for which F(q) has a
maximum. In the present work we have available
y(q+G, q+G) for values of q+G which are re-
stricted to be along the c direction and are not
greater than 2w/c. So if we make the crude ap-
proximation of restricting the sum over G to only
a single reciprocal-lattice vector 2w/c, then F(q)
is simply y(q)+)((2w/c —q). This function is
shown in Fig. 11. We find a broad peak at

q =0. 5w/c, which is remarkably close to the value
of the observed magnetic wave vector —especially
in view of the very crude treatment given here.

V. SUMMARY AND CONCLUSIONS

The generalized susceptibility function of a solid
is rather cumbersome and difficult to evaluate
computationally; hence, only scarce attention has
been devoted for its proper evaluation. The so-
called "constant matrix elements" approximation
has been used frequently in )((q) calculations which

attempt to explain various phenomena such as the
onset of spin-density waves and charge-density
waves and to roughly account for the position of
phonon anomalies. The argument for ignoring the
oscillator-strength matrix elements in such cal-
culations has been that the nesting features of the
Fermi surface [i.e. , the energy denominator in
Eq. (3)] dominate over the influence of matrix
elements and that the matrix elements are more
or less smoothly and slowly varying functions of
the vector q. We have shown that these assump-
tions are far from being correct. Both the posi-

tion and the shape of the peak arising from the
nesting features of the Fermi surface were found
to be strongly influenced by the oscillator-strength
matrix elements.

In the case of scandium metal, it has usually
been assumed that the peak in X(q) (i.e. , in con-
stant matrix elements approximation) results from
nesting feature related to the third- and fourth-band
part of the Fermi surface. Hence, one expects
that such a nesting feature should yield even a
sharper peak in the interband part of )f(q} than that
seen in }f(q) itself. We found that upon decompos-
ing the total contribution to )((q) into its intraband
and interband parts, that the interband contribu-
tion did not have this expected peak. Instead, it
was in fact the variation with respect to q of both
intraband and interband parts which resulted in a
sharp peak in }((q}. This surprising result leads
to the conclusion that the sharp peaks in g(q) may
not be caused by any well-defined nesting features
in the Fermi surface at all.

We have shown here that the matrix elements
are very strongly dependent both on k and q, and
it is not justified to ignore either the k or the q
dependence. For Sc metal, we have found the
effect to be so overwhelming that the peaks in y(q)
were washed out completely and no peaks are
found in )f(q). One may well conclude that even in
materials which do have sharp and well-defined
nesting features in their Fermi surfaces, the in-
fluence of the matrix elements can be dramatic.

Although scandium metal itself is nonmagnetic,
it becomes magnetic if alloyed with 30 at. % of,
for instance, Tb with a magnetic wave vector
q„= (0, 0, 0.56w/c). This onset of magnetic be-
havior has always been interpreted in terms of
local moments associated with the rare-earth-
metal sites. The alternative possibility of the
existence of a spin-density wave in the system has
not been given serious consideration. By crudely
including the local field corrections to obtain the
exchange-enhanced susceptibility, we find that the
possibility of a spin-density wave existing in
scandium cannot be excluded. Since no spin-den-
sity wave has been observed in Sc metal, we be-
lieve that the exchange interaction in the pure
metal is too weak. It is possible that the alloying
with rare earths increases the strength of this
interaction sufficiently to give rise to the forma-
tion of the spin-density wave in the system. Such
a possibility should be examined by neutron scat-
tering both for Sc and Y alloyed with dilute amounts
of rare earths.
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