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A variational Ansatz for the ground state of the Anderson Hamiltonian for hydrogen chemisorption is
presented which becomes exact in three limiting cases and gives a very good interpolation for all values of
parameters. The binding energy is calculated for three different model systems and turns out to yield more
than 99.9% of the exact result for a finite metal cluster for all values of coupling strengths. The wave function
is used to give criteria separating the weak-coupling regime from the strong-coupling regime.

I. INTRODUCTION

In a recent paper by the author! (hereafter re-
ferred to as I) a variational Ansatz for the ground
state of a hydrogen atom chemisorbed on a metal
surface has been proposed to give a proper de-
scription of the electron correlation effects which
are known to play an important role. In most cases
the Fermi energy of the metal lies between the ion-
ization and the affinity level of the hydrogen atom
and the hydrogen is adsorbed neutrally, For larg-
er distances from the surface, when the intraatom-
ic Coulomb energy U is large compared to the cou-
pling strength, charge fluctuations on the hydrogen
atom are strongly suppressed.

This correlation effect cannot be described with-
in the restricted Hartree-Fock (RHF) theory where
the ground-state wave function is given by a Slater
determinant with identical orbits for different spins.
For larger adatom distances solutions of the HF
equations are known to exist®?® in which the spin
symmetry is broken, i.e., one obtains different
orbitals for different spins. This unrestricted HF
(UHF) ground state gives qualitatively the correct
behavior for the binding energy AE at large adatom
distances (AE -0 for R -=), but the quantitative re-
sults for finite distances are not very good. *°

The variational ansatz proposed in I uses the HF
ground state (RHF or UHF) as a starting point but
allows the components of the HF state with a def-
inite number of electrons on the hydrogen atom to
be determined by the variational principle for the
ground state, This procedure leads to the correct
behavior of the binding energy in the limit R -«
also starting from the restricted HF ground state.
The model calculations of I use the Anderson Ham-
iltonian for chemisorption in which the adatom-
metal coupling is described by a one-electron hop-
ping parameter V. For V larger than a critical
value V, only RHF solutions exist and the Ansatz of
I yields important improvements in the binding en-
ergy when realistic values for the parameters are
used. For V<V, both types of HF solutions exist
and one can use both types of HF states as the
starting point for the variational Ansatz. It turns
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out that the RHF ground state as a starting point
leads to a lower energy for 3 V.5V, while for

V $3 V, the Ansatz using the UHF ground state gives
the lower energy. In this regime the RHF ground
state becomes a poor starting point and one even
can get slightly positive binding energies. This
crossover behavior is unsatisfactory as one can-
not use the same kind of wave function for all pa-
rameters of V.

In this paper we present an improved ansatz
which does not show the shortcomings described
above. This new Ansatz takes as a starting point
a generalized RHF state which is built up from one-
particle states which are solutions to a one-particle
Hamiltonian with an effective coupling strength v
which is taken as a variational parameter.

In Sec. II we present the ansatz and show that it
goes over to the exact solution in the three exactly
solvable limits: (a) U=0, (b) V=0, and (c) band-
width B=0. The evaluation of the matrix elements
of the states appearing in our ansatz with the Ham-
iltonian is indicated in Sec. III, while all the de-
tails of the calculations are given in the Appendix.
In Sec. IV we discuss the results for the bind-
ing energy for three different model systems which
show that our Ansatz leads to excellent results for
all values of parameters. We also show the re-
sults for an expectation value which is a measure
for the transition from the weak-coupling to the
strong-coupling (surface molecule) regime of
chemisorption. This and another criterion for the
transition involving the variational parameter 174
are compared with a very simple criterion using
the exact wave functions in the extreme weak- and
strong-coupling limits. The modifications of our
Ansatz for a more sophisticated model Hamiltonian
to describe hydrogen chemisorption are briefly
discussed.

II. VARIATIONAL ANSATZ

In the following we present a variational Ansatz
for the ground state of the Anderson Hamiltonian
for hydrogen chemisorption. We will not treat the
nonorthogonality of the metal states and the hydro-
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gen ls function explicitly, as this can be put into a
renormalization of the matrix elements of the
Hamiltonian.® The Anderson Hamiltonian reads?

H= Z €flpet Z €Mag+ Ungatty,
Ryo .4

+ 2 V¥l o+ Hocl) . (2.1)

Ry 0

The first term describes the free metal surface
with % labeling the wave vector K and the band in-
dex the second and the third term the free hydrogen
atom with U the intra-atomic Coulomb repulsion
and the last one the coupling between the metal and
the adsorbate.

The coupling term can be rewritten using the
creation and annihilation operator of a normal-
ized state |b) localized at the metal surface in the
vicinity of the hydrogen atom*

| ) = V"Zkivaklf@ ,
with
vi= ; |Vl ®

In the model calculation described in Sec, IV this
state |b) will be simply a Wannier state of the met-
al atom next to the adatom. The coupling operator
V can be written

(2.2)

V=V Wl b+ H.c.) . (2.3)
o

Before we present our variational ansatz for the

ground state | ¢y which works well for all values

of parameters in the Hamiltonian we shortly dis-

cuss the three special cases for which the exact

solution for the ground state is known:

(a) For U=0 the problem reduces to a single-
particle problem, and the ground state is given by
the Slater determinant constructed from the oc-
cupied single-particle states ¢;=y}| Vac)

|90 IT 4| vac) . (2.4)
<i

max, o

(b) For V=0 the adatom is not coupled to the
metal surface, and in the ground state one has one
electron at the hydrogen atom and the undisturbed
Fermi sea | F). If the metal surface is replaced
by a finite cluster of metal atoms one has to dis-
tinguish the cases of even or odd total numbers of
electrons., For an even number of electrons the
unperturbed ground state is degenerate, and one
has to use a spin symmetric linear combination

| 6) < 9o Fo + #,o| F

while for an odd number of electrons or for a
semi-infinite metal one simply can use

(2.5)

| =t | F) . (2.6)

(c) In the limit of zero bandwidth B=0 the hydro-
gen 1s state is coupled to the state |4) defined in
(2. 2) which is not coupled to the rest of the solid.
In this case the ground state is given by the ground
state of the a-b surface molecule and a modified
Fermi sea | F) constructed of the metal orbitals
orthogonal to the state |b). For €,<€p<¢€,+ U the
lowest energy is obtained if there are two electrons
in the surface molecule and they form a singlet
state. The coefficient ¢; in

I OV [cow{o IP{. + 01(4’2' d);l + lp;i ¢ZO)+ Czll)f.r lle] I F)

(2.7
can be obtained by solving the eigenvalue problem
for the surface molecule alone.

In I we have described a variational Ansatz for
the ground state which starts from a restricted HF.
wave function with identical orbitals for different
spins which becomes exact in all three of these ex-
actly solvable cases but for small V has the unde-
sirable features described in the introduction.
Another variational ansatz for the ground state of
the Anderson Hamiltonian starting from a RHF
state has been proposed in the context of the local
moment problem by Cogblin and Toulouse’ but their
ansatz does not even give the limit V=0 correctly.

In our new variational Ansatz we start from a
generalized Hartree-Fock state l\iHF) to be speci-
fied below and introduce projection operators
P,(i=0,1,2) which project onto the subspaces with
i electrons on the hydrogen atom. The P; can be
expressed in terms of the occupation number op-
erator of the hydrogen 1s state

P0=(1_na')(1-nao) ’
Pi=n,(1=ng)+n,1=-ng,), (2.8)
Py=Nge Mgy «

With these projection operators our Ansatz reads

2
| 6o =§ NPy | Wyg) + (\gPo+ NPy) VP, [ ¥yg)
_ o (2.9)
with the A; variational parameters and | ¥y a
state of the form (2. 4) with the ¢, eigenstates of an
effective single-particle Hamiltonian H,

H, =Z €Ny + Z (€,+ Ung) myg
Ryo (]

+ VY (Wl Ype+H.C) . (2.10)
.

For ny=nyr and V=V I~\I'HF) goes over to the re-

stricted Hartree-Fock ground state of the Ander-

son Hamiltonian (2. 1). In the following we shall

use the parameters V and n, as extra variational

parameters.,
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Apart from the difference |¥yg) —~ I\leF) our new
Ansatz (2. 9) differs from the one used in I by the
last two terms. As will be discussed below these
terms give an important improvement in the weak
coupling regime. In the state ?PII:PHF) one has
two or zero electrons at the hydrogen atom and the
free variation of both of these parts will be impor-
tant if the energy of the doubly occupied adsorbate
is much different from the empty one. As shown
in the appendix the numerical effort in calculating
matrix elements is not altered by this splitting of
the VPll\I'HF) term. This Ansatz leads to the ex-
act result for the three limiting cases discussed
above and alsogives the correct behavior for small
V as shown in Sec, III. The exact results for the
limiting cases can simply be obtained by taking
special values for the variational parameters in
(2.9): .

(a) U=0: If we choose V=V, A\=2,=0, and ),
=X;= 2 =1, we obtain the exact result using Py+ P,
+Py=1,

(b) V=0: In the limit V=0 and n,= (e;—€,)/
U=ngp(7=0) P, ¥yz) goves over to the exact limit
[(2.5) and (2. 6)] as we show in Sec. III.

(c) B=0: Choosing Ag=A,=0 and V2 V and n,
arbitrary \;(i=0, 1, 2) are just the exact expansion
coefficients c; of (2. 7).

The variation of V and n, will be shown to be
necessary to ensure AE < 0, while the last term in
our Ansatz (2.9) leads to a binding energy « V2 for
small V.

To obtain explicit results we have to evaluate the
matrix elements of the states in (2.9) with the
Hamiltonian, as well as the overlap between these
states,

III. EVALUATION OF MATRIX ELEMENTS

To obtain the ground-state energy from (2. 9),
the variation of the ); leads to a 5X5 eigenvalue
problem of the form det(H - €S)=0. The lowest
eigenvalue gives the ground-state energy as a func-
tion of »; and V. To calculate the matrix elements
H, (i,j=0,1,...,4) it is convenient to rewrite the
Hamiltonian (2, 1) using the one-particle Hamilto-
nian H, (2.10)

H=H,+Hy+ AV ,
with
Hy=Ulngmg, = ny(ng +n,,)]= U[(1 = 2ng) P, —~ nyP, ]

and

(3.1)

AV=V-V.

The state l\‘I'IHF) has been chosen to be the ground
state of the system of noninteracting electrons de-
scribed by Hy=Hy+ V

Hl"f’ﬂp>=E~o|‘~I’HF> . (3.2)

In the following ( ) denotes the expectation value
in the state | ¥yg).

The matrix elements Hy;(i,5=0,1,2) are quite
simply to evaluate and have been given in a similar

form in I. For the diagonal terms one obtains us-
ing
[HO,P‘]'_"O, P, VP;=0,

Hy=(PHP) =(HoPy +(HyPy (3.3)

={I§0+ U1 = 2n0) 5, 5~ me3;,1]} i -(f’Pi) .

For V=0 the last term vanishes and one obtains for
i=1
ﬂ =2 Z<k+ 2(€,+ Ung) f(€,+ Ung) = Uny
sll k(kF
(3.4)

with f(€) the Fermi function. As stated in Sec. II
this goes over to the unperturbed ground-state en-

ergy
Esu) =2 Z: €t €
Py

for ny=(€r—€,)/U. As this result is independent
of V it ensures AE<O for all V. For V#0 the last
term in (3. 3) does not vanish and can be calculated

using the product form (2. 4) of I@HF). If we con-
sider again the case i=1 we obtain
(VP = V2 [ b0 (ane)
[
+(¢;q¢ao)((1-na-u)>]=2Vpab ’ (3- 5)

with pg, = (¥l ¥se). As H, is of the form of the ef-
fective HF one particle Hamiltonian for the Ander-
son model, ? the expectation value p,, can be ob-
tained from the corresponding Green’s function via
the fluctuation-dissipation theorem®:

I-’pa,,=— ”K _[Img,,a(€+io)f(€)d€
=_1—17 f Im(Tg,,)f(€)de

=f6F[€ —(€,+ Ung)] p,(€) de , (3.6)

with

pu(€)= = (1/m)Im[€ +i0 - €, = Uny - (€ +i0)]" ,

F(z) = VZZ Il k)12

——, (3.7)

All other matrix elements H;; can be reduced in a
similar way to the calculation of moments of the
density of states at the adsorbate corresponding to
the one particle Hamiltonian H;. The detailed re-
sults are given in the Appendix. It turns our that
the matrix H;; splits off a term proportmnal to the
ground state energy Eo of H,, i.e., Hy;= EOS”+H,,.
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FIG. 1. Binding energy AFE for adsorption on a one-
dimensional infinite chain: long-dashed curve, RHF re-
sult; short-dashed curve, Ansatz used in I; solid curve,
Eq. (2.9) as a function of V.

The binding energy AE is then given as the sum of
Ey- E{® and the lowest eigenvalue of the 5x5 ei-
genvalue problem of fl‘ 4+ The calculation of a dif-
ference like £y~ E{® has been described in detail
by Newns® and involves again only the adsorbate
Green’s function g,.

IV. RESULTS AND DISCUSSION

We have carried out model calculations using
our Ansatz (2.9) for the one-dimensional chain
used by Newns,® a simple cubic metal surface de-
scribed by a tight-binding s band and the finite
chain used by Einstein.® As the essential features
of our Ansatz can already be seen in the symmetric
case 2€,+ U= 2€r most of our model calculations
were performed in this limit,

In the symmetric case (with a half-filled sym-
metric band) our Ansatz can be simplified using the
particle-hole symmetry of the problem. The doub-
ly occupied and the empty adsorbate states obtain
the same weight, i.e., X\y=2X;, A=) which reduces
the 5%5 eigenvalue problem to a 3xX3 one. The
more important simplification occurs from the fact
that the particle-hole symmetry fixes the value of
ng to ny=ntBF =yt =1 The lowest eigenvalue
then only depends on the one extra variational pa-
rameter V.

We have calculated the binding energies AE for
given values of U and B as functions of V. For
small values of V the variational parameter V be-
comes very important and the ratio a= V/V turns
out to be very small if U is large enough. This
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variational parameter allows the state | ¥, to de-
pend on U in contrast to the true HF state of the
system which was used as a starting point in I.

If we consider a fixed value of V and take the limit
U, l¢| =% U~, the true RHF state remains the
same as for U=0 while it is obvious that the exact
ground state in this limit is just given by the un-
perturbed ground state [(2.5) and (2.6)]. We obtain
this exact behavior of our Ansatz (2. 9) by having
a-0, i.e., V=0as U-». The influence of the
VP, 1 ¥, ) term in (2. 9) can be seen by noting that
our ground-state energy will be lower than the one
for the special choice 3g=2;,=0, A3=X,=2, and
V=0. For this choice our Ansatz reads with |0)
=5l F)

| ¢ = |0y +2AV|0) (4.1)

which leads to a ground-state energy given by the
second step of a continued fraction expansion of the
resolvant (0](z — H)™10) which gives the correct be-
havior AE « — V%/U for small V. For large V our
Ansatz goes over to the exact ground state and pro-
vides an excellent interpolation scheme between the
weak-coupling and the strong-coupling regime.
Figure 1 shows the binding energy AE for the
symmetric case as a function of V for the adsorp-
tion on the one -dimensional metal chain discussed
by Newns.® The energy unit is given by the half-
bandwidth B=1 and the intra-atomic Coulomb re-
pulsion has been chosen to be U=2.5. The re-
stricted HF curve shows the well known incorrect
behavior AE—~3 U for V-0. The other broken
curve shows the result for the RHF Ansatz of 1.
For small V the binding energy is positive and this
Ansatz is a poor approximation. This behavior is
not so drastic for the finite-chain calculation given
in I and appears only for extremely small V. For
larger V the results for the binding energy become
nearly as good as the results of our new Ansatz
(2. 9) (full curve) and both results approach the ex-
act solution as discussed in Sec. II. To test our
Ansatz we have also calculated binding energies for
the finite-chain model used by Einstein.® For
chains consisting of three metal atoms Einstein
has calculated the exact binding energies by diag-
onalizing a 36 X36 matrix on a computer. These
exact results are compared with our approximate
solution from (2.9) for U=2.5 in Table I. In the
second column we also give the results for a= I7/ \4
which goes from 0 to 1 for increasing V. Our re-
sults for the binding energies are in very good
agreement with the exact results giving more than
99. 9% of the binding energy for all values of V.
The calculation of binding energies for parameters
different from the symmetric case requires a little
more computer time, as the lowest eigenvalue of
our 5X5 eigenvalue problem now depends on two
parameters 7y and V. The most important effect
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TABLE I. Binding energies AE for the finite chain
used by Einstein in comparison with the exact results.
(U=2.5).

|4 /v AE AE 0t
0.15 0.221 -0.04121 —0.0412
0.25 0.357 —-0.11188 -0,1119
0.375 0.505 —-0.24077 -0,2410
0.5 0.618 —0.40380 —0.4041
1.0 0.833 —-1.22649 —-1.2266
1.5 0.906 —-2.15149 -2,1515
2.0 0.935 -3.10990 —-3.1099

2T. L. Einstein (private communication).

again comes from the variation of I-/: if one chooses
ng to go from (€x - €,)/U to 3 when V goes from
zero to infinity, which is just the behavior of the
restricted HF expectation value n5F,

We have calculated the binding energy of H on a
simple cubic metal surface described by a tight-
binding s band using the parameters for Ni given
by Newns. * For V in the region of the equilibrium
distance the V variation is no longer very impor-
tant as the system can be described quite well by
the surface molecule picture. For V= 3.4 eV we ob-
tain a binding energy 0.7 eV larger than the HF
value, which is about 25% of the total binding en-
ergy. This shows that our Ansatz gives quite im-
portant corrections to the HF results for realistic
values of parameters.

Our Ansatz also enables us to calculate expecta-
tion values of various operators of physical inter-
est, In the following we discuss the expectation
value (n,,7,, Which gives information about the
transition from the weak-coupling to the strong-
coupling case.

In the extreme weak-coupling case (2, 6) this ex-
pectation value can be factorized (1,70 =("4q) (Mss)
and equals ; in the symmetric case. In the strong-
coupling limit (2. 7) one has (#,,7,,) =0 as the sur-
face molecule state is a singlet state. Figure 2
shows that the larger the U the longer the system

<Ngg Nbe>
0.25

0.1

1 L

L

0.l

FIG. 2. Expectation value {n,,) as a function of V
for two different values of U.

u
<n(la'nb0>:8 / V=Vso
/
/
/
/
/
/
5T Weak Strong
Coupling / Coupling

FIG. 3. Boundaries separating the weak- and strong-
coupling regime in the U-V plane: left-full-curve cri-
terion using (ngynp,), right-full-curve criterion using vV
=Vso and dashed line criterion (4.5).

remains in the weak-coupling regime. These ex-
pectation values have been calculated again for the
one-dimensional half-infinite metal chain. As a
criterion for the transition from the weak to the
strong-coupling regime one could now (somewhat
arbitrarily) take the value where (n,,7,, has fallen
to half of its maximum value, i.e., for values of
parameters yielding (1,0 (7,0} = (oo M0 = 3 Mag) (Mpe)
one is in the weak-coupling regime, while for pa-
rameters leading to (7,,%p0) < 3 (y0) (Mpe) ONE gOES
over to the strong-coupling regime. The left-hand
full curve in Fig. 3 shows the boundary between the
weak- and strong-coupling regimes in the U-V
plane using this criterion. Another, more obvious
criterion to distinguish these two regimes is to
look at the form of the eigenstates of our one-par-
ticle Hamiltonian H;. For values of V greater than
a value Vo depending on the form and the width of
the metal band, localized split-off states appear in
pal€) (3.7) as first discussed by Newns.® For the
one dimensional semi-infinite chain this critical
value is given by Vgo=(1/v2)B. Using this crite-
rion one obtains as a boundary between the two re-
gimes the right-hand full curve in Fig. 3 which
shows a similar functional behavior as the left-
hand curve. These two curves would nearly coin-
cide if we would choose not half the maximum value
of (nqo7,,) in the first criterion but about a quarter
of the maximum value.

Another boundary (dashed line in Fig. 3) which
shows a similar functional behavior can be obtained
from a very simple argument, Let us simply take
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the wave functions in the extreme weak- [(2.5) and
(2.6)] and strong- (2.7) coupling limit and see

which one leads to the lower energy. In the weak-
coupling case we obtain
(Gol H 09 =EP=2 . €<, (4.2)
<Rp

while in the strong-coupling limit one obtains with
l$o) given by (2.7)

($o| H| gy =E + AEgy+E, , (4. 3)

where AEg)y is the binding energy of the surface
molecule and E, is the energy required to separate
the singly occupied state |b) from the rest of the
metal. The weak-coupling energy is a constant as
a function of V, while in the strong-coupling case
one has (¢g| Hl ¢o)= Eéo’ for small V. The criterion
for the boundary is given by

AEgy+E,=0 . (4.4)

In the symmetric case an explicit expression for
AEg), can be given and one obtains defining y by
E,=vB

$U-[GUP+4aV¥V%:yB=0
or

U=8V%/yB-2yB . (4.5)

For the half-infinite one-dimensional chain one ob-
tains y=2/7 for the half-filled band case and y—1
when the Fermi energy reaches the band edges
(note that we have defined B as the half-bandwidth).
Quite generally we expect E, to be of the order of
half the bandwidth., As the symmetric case is also
not too far from reality in hydrogen chemisorption,
the criterion (4. 5) provides a very simple first
estimate to see whether the weak-coupling or the
strong-coupling picture is a better description of
the chemisorptive bond.

The transition from the weak-coupling regime
to the strong-coupling regime is obviously not a
sharp one and in the intermediate region (between
the full curves in Fig. 3) neither the weak-coupling
wave function (2. 5) nor the strong-coupling ground
state (2.6) will be a very good starting point for
perturbation theory. 5

Newns® has determined the coupling strength V
doing an HF calculation and fitting V to give the ex-
perimental binding energy and obtained V~ 3,75 eV
for Ti, Cr, and Ni. If we take into account the
correlation energy obtained from our Ansatz this
value for the V will be reduced by about 0.4 eV.
Using these values for V and using the criteria
given above we come to the conclusion that the sur-
face molecule (strong coupling) picture is a good
description for the chemisorption of hydrogen on
the narrow d-band transition metals at the equilib-
rium geometry,
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V. CONCLUSION

In Secs. I-IV we have presented a variational
Ansatz for the ground state of the Anderson Ham-
iltonian for chemisorption which turned out to work
for all values of parameters providing in particular
a smooth interpolation between the weak-coupling
and strong-coupling or surface molecule picture.
As our Ansafz has spin symmetry it can be used to
calculate expectation values like the charge on the
adsorbate without getting the unphysical behavior
which occurs in an HF calculation due to the spu-
rious breaking of the spin symmetry.® The Ansatz
can quite easily be generalized for more sophisti-
cated model Hamiltonians to describe hydrogen
chemisorption, If one starts with the same basis
set, i.e., {¢, ¢, one could work with the same
form of the Ansatz, only replacing the coupling
operator in f’Pll\I',w) by the more general coupling
operator which would be no longer a single-particle
operator as in the Anderson model. With this re-
placement the argument given in (4. 1) would still
apply leading to a result for the binding energy be-
low the one for a second step of a continued frac-
tion expansion of the resolvent matrix element
{01(z = H)!| 0) in the weak-coupling limit. We
would also expect the generalized Ansatz to inter-
polate smoothly to the strong-coupling limit which
will come out exactly also for a more general Ham-
iltonian. As we would expect a generalized Ansatz
to work also quite well, we believe the major prob-
lem in the description of the hydrogen chemisorp-
tion bond is to find a more realistic model Ham-
iltonian and to perform an ab initio calculation of
the matrix elements appearing in it.
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APPENDIX

In this appendix we give the expressions for the
overlap matrix §;; and the matrix elements H;; of
the Hamiltonian H between the states |z),
i=0,...,4 appearing in our Ansatz (2.9).

Using the explicit form the states |3) and |4)

| 3> = VZZIJL,ZIJ“(I —na-o)l\i’HF) )
- (A1)
l 4> = VZ zlﬂa’azpbona-al ‘I’HF> ’

the overlap matrix S;; can be easily calculated us-
ing the fact that all expectation values ( ) contain-
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ing more than two field operators can be factorized
using the fact that |¥yg) is of the form (2.4).
Using the abbreviations z={n,,) and p,, =¥} ¥,) the
nonzero elements in the upper right of S,; are giv-
en by

See=(1=n), S);=2n(1-n),
Se3=2Vpap(l = 1), Sy =2V , (A2)
Sgs =2V [n(1 = n) (ny) + (L+m)p% ]

Sie=2V2[n(1=n) (1= (n,))+(2=n)o3, ] .

The calculation of the matrix elements H,;, =0,
1, 2 was indicated in Sec. Ill. We rewrite Eq.
(3.3)

Hii"io*‘ Ul(1- 2ny) 5:,2—"054.1]Sf¢—<f’P4> .
(A3)

.2
Sgp=n",

The last term yields for {=0, 1, 2
(VP =(P, VP =(V/V)Sps=2Vpy(1-7) ,
(VP =(P, VP =(V/V) Spy=2Vpm , (A4)
(VP =(V/V) (Ses+ S2a) =2V

The off-diagonal in the upper right-hand elements
for i, j=0, 1, 2 are given by

Hyy =(PyVPy) =Sg3»

For the other nonzero matrix elements one obtains
Hyy =Eosos - <f’PoVP1> =Eosos - (‘-’/V) Sss 5
Hyy=[Eq+ U1 = 219)] Spe = (V/V) Sy (A6)
Hy3=Sg3, Hp=Sy ,

H02= 0, le =Sz4 . (A5)

and
Hyg =(P,VH,P,VP;) =(HoP, VP,VP,)
+(Py[V, Hy] P, VP,)
= EgSss = (V/VI(VEPGVP) +([V, Ho] P, VP))
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Hy=[Eo+ U1 = 2ny)] Sy = (V/VI(VEP,VP))
+({[V,Hy] P,VPy) , (A7)
with
(VEP,VPY =2V2 p, {(1 = n) +{(mp) (1 = 1)
+pap+ 2 [n(1 = (n,)) + Pib]} s

(V2P VP =2V3p{n+n(l = (n,)) (A8)
+ pib‘* 2[(1 —”X”b> + pzsz]} ’
and
([ V’ HO]POVP1> =2 kz; Vak(ek - €a) Vak’
X[n(1 =)L) + (2 = XD Who )]
(A9)

(v, H)lP, VP = -2 kaI Val€x— €) Ve

X [1(1 = n) Pl )+ (1+2) (D) Wlba)]

Using the special form of one-particle Green’s
function for the Anderson Hamiltonian for the case
U=0? the expectation values in (A8) and (A9) can
be expressed in terms of the adatom Green’s func-
tion only as in (3. 6).

(ny) = V- l§ f’“ <¢‘:¢’k'> ‘-,k'u
=7 [ Tle- e+ U P pyle)de
Zk: Var€a (0800 =L:F ele - (€,+ Uny)] p(€) de = nV?

; V-ak Ek(lp;‘pk) = f’.l[eF {€[€ - (€u+ Un())]a

- V2[€ = (€,+ Ung)] }pal€) de .
(A10)

Twork partially supported by the National Science Foun-
dation DMR-03838.

On leave of absence from Physikdepartment der TU
Miinchen, West Germany.

K. Schdnhammer, Z. Phys. B 21, 389 (1975).

’p, W. Anderson, Phys. Rev. 124, 41 (1961).

’D. M. Newns, Phys. Rev. 178, 1123 (1969).

4W. Brenig and K. Schénhammer, Z. Phys. 267, 201
(1974).

ST. L. Einstein, Phys. Rev. B 11, 577 (1975).

K. Sch6nhammer, V. Hartung, and W. Brenig, Z.

Phys. B 22, 143 (1975).

"B. Cogblin and G. Toulouse, J. Phys. Chem. Solids 29,
463 (1968). In the early papers on the local moment
problem (Ref. 2) people were looking for magnetic so-
lutions of the type (nyg)# (7g-o) . It is now well known
that such solutions with a broken spin symmetry do not
occur if correlation effects are correctly included in
the ground state. This is also confirmed by our work.

8D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov.
Phys. -Ushpeki 3, 320 (1960)].



