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We present new results of computer simulations of the time evolution of a model binary
alloy following quenching. Our model system is a square I.attice the sites of which are oc-
cupied by one of two species of atoms, say A and B. There is a nearest-neighbor interac-
tion favoring segregation into an A-rich and a B-rich phase at love temperatures, T & T, .
Starting with a random configuration (corresponding to an "infinite" temperature) and a
50 or 20% concentration of A atoms the system is quenched to a temperature T = 0.59' and

we observe fusing Monte-Carlo simulations of a nearest-neighbor exchange dynamics) the
segregation into the two phases. We study the evolution of the structure function S(k, t) and

the energy and compare their observed asymptotic behavior with theoretical power-law
predictions. We also study, when there is a 20% concentration of A atoms, the cluster
distribution and other characteristic parameters of the A droplets such as average clus-
ter size l, average cluster energy ~, etc. The phase segregation appears to take place in

two distinct stages: (i) a "rapid" condensation of the A atoms into "liquid" drops and a
"gas" phase consisting of monomers, dimers, etc. , and (ii) a "slow" growth of the drop-
lets by coagul. ation through diffusion of large droplets and by evaporation of monomers,
etc. , from one droplet and their condensation on other droplets. By marking and follow-
ing the clusters, a difjusion constant D, for the center of mass of clusters of size L is ob-
tained and its dependence on l is studied.

I. INTRODUCTION

The time evolution of a model binary alloy sys-
tem following quenching has been studied by Bortz
et al. ' in two dimensions and by Marro et al.'
(hereafter referred to as I and II, respectively) in
three dimensions.

The binary alloy is modeled in these studies as
a square (cubic) lattice (with periodic boundary
conditions) at each site of which there is either an

A or a B atom. Starting from a random configura-
tion (corresponding to the system at infinite tem-
perature) the system is quenched to and evolves
at a temperature T = (ksP) ' through the exchange
of A and B atoms on nearest-neighbor sites. The
probability per unit time of such an exchange is
assumed to be ae ~(1+e e~) ' where hU is the
change in the energy of the system resulting from
the exchange. o. ' sets our time unit; it will in
real systems be strongly temperature dependent.
The energy U is assumed to be of the form

U=-ZQ q, q~,
(&, s)

where g, = +1 according to whether there is an A
or a 8 atom present at site i; J& 0 corresponding
to an excess attraction between atoms of the same
type leading to a phase segregation at low tem-
peratures (see Fig. 1 in I and II); and (i, j) indi-
cates that the sum goes over nearest-neighbor
pairs (using periodic boundary conditions). Com-
puter simulation of the evolution is carried out by
a Monte Carlo method.

The work reported in I and II was for systems
with equal concentrations of A and B particles and
described the time evolution of the energy of the
system, and of the structure function S(k, t) (the
Fourier transform of the spatial correlation func-
tion) after the system is quenched to T& T, where
it undergoes a segregation into two phases. At t
= 0, S(k, t) -0 but it soon develops a peak as spatial
correlations are built up. One important finding of
these studies was the absence of any exponential
growth in time of S(k, t): this was generally be-
lieved to occur at early times for small values of
0 on the basis of the linearized classical Cahn-
Hilliard' theory of this process. Instead the peak
was found to grow more slowly than linearly in t
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1/l 2l(d 11/d l-dd+ n /d
1

(1.2)

As a result of this diffusion two "large" clusters
can meet and join together. This is to be con-
sidered distinct from the evaporation and conden-
sation of single atoms (or dimers) on large clus-
ters. The latter is thought in this analysis to pro-
duce, on the average, only a shift in the center of
the cluster.

Binder and Stauffer now argue that a cluster
moving the mean distance between clusters (-l'/')
in the time /dt- ld d/D, will increase its volume

by an amount b, l-l so that

d I/dt- I -"'. (1.2)

Thus the volume of a cluster should grow asymp-
totically as

l-t "', for T«T, . (1.4)

The energy u per lattice site, which is proportion-
al to the "surface area", of the clusters at any in-
stant of time will therefore grow according to

t -uY~+3i (1.5)

or u-t ' ' in two dimensions.
In contrast the Lifshitz and Slyozov' assumptions

that cluster growth is accomplished primarily by
the evaporation of A atoms from one cluster and
their deposition on another cluster predicts that

and to shift towards smaller values of k as the
system evolved in time. The "asymptotic" time
behavior of the energy and of S(k, t) were also in-
vestigated. These studies gave impetus to further
theoretical analysis of this phenomenon. ' '

In this note we report new results for the two-
dimensional system. In addition to their omn in-
trinsic interest these have a bearing on the theo-
retical work mentioned; particularly that of Binder
and Stauffer. 4 These authors assume the late stag-
es of the process of phase segregation to be gov-
erned by the diffusion and coagulation of large
clusters of A particles. A cluster is a group of
A atoms linked together by nearest neighbor bonds.
(It is easiest to think of situations where both the
temperature and the concentration of A particles
is low. ) According to the model kinetics there are
random interchanges between the A atoms in the
cluster surface and the surrounding B atoms. The
frequency of these interchanges can be taken, at
least when the clusters are compact enough, to be
proportional to the cluster surface area l ' ' "

where l is the number of A atoms in the cluster
and d is the dimensionality of the system. Each
such interchange will shift the center of mass of
the cluster by an amount proportional to l '. This
suggests a random walk for the center of a cluster
of size l with a diffusion coefficient

the cluster radius l'~ will grow as t' ', or l-t" '
ands-t ' ' for all d.

By assuming a particular form of S(k, t) involving
a diffusion constant, Binder and Stauffer further
predict that, for d =2,

k (t)-t +' for T«T, (1.8)

II. STRUCTURE FUNCTION AND ENERGY

In Fig. 1 we present the spherically averaged
structure functions obtained from six statistically
independent runs with an 80 x80 lattice at 50% con-
centration and temperature T =0.59T,. The details
of computation are available in I. We have stu-
died the evolution for very long times (as computer
simulations go but still short however on the ex-
perimental time scales) to see if there are any
new effects appearing and to compare the results
with the predictions of Binder and Stauffer. 4 Due
to the finite size of the system S(k, t) is available
only at discrete values of k and it is difficult to
determine the peak position and peak height pre-
cisely. Using a parabolic fit for three values of
k around k we find a reasonable fit with the fol-
lowing formulas:

k (t}-(t+100)

S(k (t), t) -(t+100)
(2.1}

(2.2)

where & =0.2 and &'=0.6. The prediction of Binder
and Stauffer are b =0.2 and &'=0.4. In Fig. 2
we show the behavior of S(k, t) for 20% concentra-

S(k (t), t) t' -' for T&T, ,

where k (t) is the position of the peak of S(k, t) at
time t and S(k„(t), t) is the height of the peak.

The analysis of the asymptotic behavior of u(t)
in I gave a t ' ' behavior which was the motivation
for the work of Binder and Stauffer. In the work
described here the computations reported in I, for
50% concentration of dt atoms, are extended to
much longer times. This permits a better deter-
mination of the "asymptotic" behavior of energy,
the peak position and peak height of S(k, t) We al.-
so report here for the first time results of quench-
ing for systems with 20% concentration of A atoms.
For this system we also investigate the growth of
l and other cluster parameters as the system
evolves in time. In addition we mark the "centers
of mass" of all clusters of ten or more atoms and
study the kinetics of their diffusion, evaporation
and coagulation. In Sec. II we give results for the
energy and for the structure function, in Sec. III
we present cluster properties, and in Sec. IV we
describe the cluster kinetics.
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tion of A atoms. No analysis of asymptotic be-
havior was attempted here since the time evolu-
tion was observed for a relatively shorter period
and there was much fluctuation in the data. In
Fig. 3 we present u as a function of time. Here
again we can obtain a fit of the form

(2.2)

where ~= 0.25. This value should be compared
with X =0.2 which was in agreement with (2.6),
reported in I where the evolution was studied only
for shorter times. An inspection of Fig. 3 shows
an apparent change in the behavior of s(t) from a
t ~' behavior to a faster decay rate. This may
perhaps be interpreted as a change in the dominant
mechanism of aggregation or coarsening from that
considered by Binder and Stauffer to that consid-
ered by Lifshitz and Slyozov.

Also shown in this figure is the behavior of u(t)
—u„(T), where u„(T) is the expected equilibrium
value of u at temperature T. This is computed ap-
proximately, see Ref. 2, as

single phase region, o(T) is the surface tension
and u„(0) is the minimum number of A-B bonds
per lattice site. A power-law representation

74(f) —R„(T) -f (2.5)

yields ~' =0.45. It is not clear however how reli-
able our u (T) is and X' may be quite sensitive to
this.

The behavior of u(t) for the 20% concentration of
A atoms, where Binder and Stauffer and Lifshitz-
Slyozov considerations may be mnre applicable, is
shown in Fig. 4. The corresponding exponents A.

and A.
' are X =0.21, A.

' =0.25. The value of X thus
agrees with (2.6). The time range here is, how-
ever, much shorter than for the 50% concentration
and thus further changes in the slope may be pos-
sible. These results indicate that the asymptotic
behavior may not be so simple or that we have not
yet reached it. In any case it indicates the need
for a better understanding of all the kinetic pro-
cesses involved. We describe some results in that
direction in Sec. III.

II (T) =up(T) +&(T)u„(0), (2.4)

where u~(T) is the equilibrium value of u in the
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FIG. 4. Energy as a function of time for the same
system as in Fig. 2. u ~t~' andu-u (T) ~ t~ with
v (T) = 0.042J.

III. CLUSTER PROPERTIES

When the concentration of one of the species is
small enough, the clusters that are formed during
phase segregation are well separated. We have
studied the properties of these clusters at 20%
concentration (T =0.59T,) with an 80 x80 lattice
(averaged over six runs) and with a single run on
a 200&200 lattice. In Figs. 5-7 we present histo-
grams, at three different times during the evolu-
tion of the system, showing the percent of A atoms
in clusters of a given size. The histograms ob-
tained from the two different sizes of the system
are very similar and we have combined the re-
sults; each run weighted according to the number
of particles in the corresponding system. The
distribution appears '.o broaden while its maximum
shifts towards larger cluster sizes as time goes
on. The large statistical fluctuations prevent us
from making precise statements concerning the
functional form of this distribution function. The
most striking difference with the three-dimen-
sionals case at 20% concentration is that now the
clusters tend to stay rather small during the entire
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FIG. 5. Histogram showing 'Pp of A atoms as a function
of the cluster size at an early time: average over six
runs with an 80 F80 lattice and one run with a 200 & 200
lattice with 20 Vo concentration (T =0.586T,).
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course of observation. This is presumably related
to the fact that in two dimensions the critical con-
centration for percolation is larger than in three
dimensions.

We have also computed the following quantities:
(a) the average cluster size

f = g'fng g'ng, (3.1)

E'Ing nI ' (3.3)

and (d} the average surface to volume ratio

(e/l), „=Q' '"' Qng. (3.4)

Here c& is the number of A-B bonds of a cluster
of given size l. We have observed the following
power laws

l-f', X-f", ~-f ', & /e&,f„--f (3.5)

with a ~ 0.36, a' ~ 6 ~ &a, and c = 0.44. Binder and
Stauffer predict a =0.4 at "low temperatures"
while the Lifshitz-Slyozov theory gives a -3.
The numerical results thus seem to favor the
Binder-Stauffer predictions.

Also of interest is the analysis of the behavior
of the very small clusters (monomers, dimers,
etc.). Apart from fluctuations, the number of
such small clusters (n„ l =1, 2, . . . } reach station-

where n, is the number of clusters of size E and

the sum is over all l ~ 10; (b} the average cluster
radius

(3.2)

(c) the average cluster energy or surface

p=xp„+(1 —x)p, , (3 5)

where p„and p, are the equilibrium density of
vapor and liquid phases and x and 1-x are the
corresponding fractions of the volume V„and VI.
The fraction of particles in the vapor phase is
N„/N=xp„/p. For our system p =0.2 and p„and
pI can be obtained from Onsager-Yang formula'
for the spontaneous magnetization of the two-di-
mensional Ising model: p„=3.05~10 ' and p,
= 0.99'l. We thus have x =0.8018 and the fraction

ary values very early. The values of n„ l = 1, 2, 3
computed by a temporal average over the last 3000
exchanges in each run are n, /N=112 x10 ', n, /N
=15x10 ', n, /N=3 x10 ', where N is the total
number of A-atoms in the system. Fluctuations
in these numbers are of the order of 10%. For
l & 3 the n& are so small and the effects of fluctua-
tions correspondingly so large that much more ex-
tensive runs are needed to obtain meaningful re-
sults.

We may think of these small clusters as consti-
tuting the vapor phase of our system while the
large clusters make up the fluid phase (in the lat-
tice gas language where sites occupied by B atoms
are treated as empty). That is, even though our
system is still far from equilibrium, as far as
the consolidation of the large clusters into a liquid
phase is concerned, the stabilization of the number
of small clusters may be interpreted to mean the
occurrence of phase segregation quite early after
quenching. This interpretation is lent credence by
considering the equilibrium state of our system.
For a given mean density p of the system the "lev-
er-rule" gives, when the system is in equilibrium
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of particles in the vapor phase in equilibrium thus
would be N„/N=0. 0122, while we find in the simu-
lation that the fraction of monomers, dimers, and
trimers is

N ' ln]=0.013.
=1

00
0

00
0

NO. OF EXCHANGES I I 50000 TIME I2494.46

(3.8)

For our system exp(4J/kT) = 20 leading to values
of n, /N in reasonable agreement with our find-
ings. Furthermore the value of r = n, n, /e,' which
should equal to & in equilibrium is remarkably
close (considering fluctuations) to the computer
results.

NO, OF EXCHANGES IOSOOOO TIME I 1222,06

There will also be an additional contribution to
the vapor phase from clusters with l &3, but this
may be expected to be very small. That the vapor
density is slightly higher than in equilibrium is in

accord with expectations, ~' since the "vapor pres-
sure" in equilibrium with finite size liquid drops
should be higher than the true equilibrium value.

This interpretation is further strengthened by
considering the relationship between the n, for
l =1, 2, 3. For the very dilute vapor phase in equi-
librium we have, "letting the monomer density
n, /V„= z,

n /y 2z2e(4/II4r) (3.'I)

+ /y 8&a&(sT/&r)
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FIG. 9. Same as in Fig. 7 after i.15 x i06 exchanges.

IV. CLUSTER KINETICS

As mentioned in Sec. I the coarsening of the bi-
nary alloy by the aggregation of clusters (or
grains) into larger regions involves two different
mechanisms: "cluster coagulation" which occurs
when two "large" clusters encounter each other in
their wanderings and merge and "cluster evapora-
tion-cluster condensation. " These lead to dif-
ferent power laws for the growth of the grains.
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To study the importance of the different mecha-
nisms we have marked the "centers of mass" of
all clusters greater than size ten and followed
their evolution in time. The center of gravity
moves diffusively (i.e. , by short steps) until there
is a coagulation of two clusters or a dissociation
of the cluster into two clusters. In Figs. 8-10,
we present snapshots of an 80 F80 system with
20% concentration (T =0.59 T,) at three successive
times of observation during the evolution of the
system. The clusters are labeled and the marks
are placed at the centers of gravity (remember
the periodic boundary conditions. ) The surface
A-atoms are joined by lines while the interior A-
atoms are not shown. Small clusters (monomers,
dimers, . . . , etc. ) denoted by circles are not
labeled. Table I contains information about these
clusters at the three different times.

From these pictures we observe various mecha-
nisms taking place during phase separation. The
cluster labeled 11 in Fig. 8 has dissociated into
two clusters labeled 11 and 20 in Fig. 9. They
have again recombined in Fig. 10. The cluster
labeled 19 clearly shows the process of evapora-
tion, while the cluster 7 shows the process of
condensation probably by capturing atoms evapo-
rated from 10 which disappears. Other clusters
like 8, 5, etc. , show a tendency toward becoming
compact by surface rearrangement. There does
not thus appear to be a well-defined succession of
various stages when different mechanisms are

TABLE I. Size (l) and surface to volume ratio (E/l) of
various clusters shown in Figs. 8-10.

dominant but instead we observe all processes at
the same time.

We have computed the diffusion constant from
the mean-square displacement of the centers of
gravity of all those clusters which do not change
in size by more than five atoms between succes-
sive observations. This then only describes the
motion of the center of gravity while the cluster
remains more or less intact as envisioned in the
coagulation mechanism. In Fig. 11 we present
this diffusion constant plotted against size of the
clusters averaged over four statistically indepen-
dent evolutions. Even though the fluctuations are
very large in individual evolutions, the diffusion
constant seems to obey a power law as a function
of size. The best fit gives"

D-l ", v=1.3'7 (4.1}

quite close to Binder and Stauffer's prediction of
v =1.5. The line in the figure indicates the theo-
retical prediction.

V. CONCLUSIONS

We have studied the evolution of the energy of
the system and the structure function S(k, t) fol-
lowing quenching of a two-dimensional model bi-
nary alloy. The peak position of S(k, t}, the peak
height and the energy of the system seem to follow
power laws, in their asymptotic time behavior.
We have also studied the cluster properties and
cluster kinetics during phase segregation. These
clusters were characterized by a mean size,
mean energy, and a mean surface to volume ratio.

Time

Cluster
i.d.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

11222.06

l ~/l

41 0.83
37 0.76
76 0.71

144 0.43
120 0.70

86 0.60
22 1.00

159 0.57
93 0.54
17 1.29
54 0 ~ 70
29 0.90

53 0.64
44 0.73

115 0.49
64 0.72
80 0.58
22 1.18

12 494.46

l e/l

43 0.84
35 0.86
83 0.63

149 0.47
115 0.49

89 0.63
29 0.90

158 0.57
90 0.51

42 0.90
34 0 ~ 82

57 0.57
40 0.80

116 0.50
63 0.67
75 0.61
17 1.18
18 1.11

17 098.70

l ~/l

39 0.87
25 0.96
84 0.52

168 0.43
119 0.50
100 0.50
20 1.10

164 0.51
95 0.53

65 0.58

15 1.47
53 0.60
56 0.82

127 0.46
55 0.69
71 0.59
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FIG. f i. Plot of cluster diffusion constant vs size of
cluster.
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These quantities may also follow power laws in
their time behavior. We have computed the diffu-
sion constant for the center of gravity motion as
a function of cluster size.

While some of our results agree well with the
predictions of Binder and Stauffer others do not.
This is not surprising since these are based on
the assumption that a single mechanism is domi-
nant in the late stages of evolution, while we ob-
serve many different processes, e.g. recombina-
tion, disassociation, evaporation, condensation,
and surface rearrangement to take place during

the entire course of observation. There is thus
much room for further theoretical developments.
The observation that there is an early segregation
into a vapor phase and "fluidlike" droplets should
be helpful in understanding the process of phase
separation in alloys.
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