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The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The

generalization of the Hohenberg-Kohn-Sham scheme to an SDF formalism is presented in its thermodynamic

version. The ground-state formalism is extended to more general Hamiltonians and to the lowest excited state

of each symmetry. A relation between the exchange-correlation functional and the pair correlation function is

derived. It is used for the interpretation of approximate versions of the theory, in particular the local-spin-

density (LSD) approximation, which is formally valid only in the limit of slow and weak spatial variation in

the density. It is shown, however, to give good account for the exchange-correlation energy also in rather

inhomogeneous situations, because only the spherical average of the exchange-correlation hole influences this

energy, and because it fulfills the sum rule stating that this hole should contain only one charge unit. A

further advantage of the LSD approximation is that it can be systematically improved. Calculations on the

homogeneous spin-polarized electron liquid are reported on. These calculations provide data in the form of
interpolation formulas for the exchange-correlation energy and potentials, to be used in the LSD
approximation. The ground-state properties are obtained from the Galitskii-Migdal formula, which relates the

total energy to the one-electron spectrum, obtained with a dynamical self-energy. The self-energy is calculated

in an electron-plasmon model where the electron is assumed to couple to one single mode. The potential for

excited states is obtained by identifying the quasiparticle peak in the spectrum. Correlation is found to
significantly weaken the spin dependence of the potentials, compared with the result in the Hartree-Fock

approximation. Charge and spin response functions are calculated in the long-wavelength limit. Correlation is

found to be very important for properties which involve a change in the spinpolarization. For atoms,

molecules, and solids the usefulness of the SDF formalism is discussed. In order to explore the range of
applicability, a few applications of the LSD approximation are made on systems for which accurate solutions

exist. The calculated ionization potentials, affinities, and excitation energies for atoms propose that the valence

electrons are fairly well described, a typical error in the ionization energy being 1/2 eV. The exchange-

correlation holes of two-electron ions are discussed. An application to the hydrogen molecule, using a
minimum basis set, shows that the LSD approximation gives good results for the energy curve for all

separations studied, in contrast to the spin-independent local approximation. In particular, the error in the

binding energy is only 0.1 eV, and bond breaking is properly described. For solids, the SDF formalism

provides a framework for band models of magnetism. An estimate of the splitting between spin-up and spin-

down energy bands of a ferromagnetic transition metal shows that the LSD approximation gives a correction

of the correct sign and order of magnitude to published Xa results. To stimulate further use of the SDF
formalism in the LSD approximation, the paper is self-contained and describes the necessary formulas and

input data for the potentials.

I. INTRODUCTION

At the heart of understanding bonding, magne-
tism, and many other central features of electronic
structure is an adequate description of exchange
and correlation, i. e. , the interaction between the
electrons. The Kohn-Sham density functional (DF)
formalism and its generalization to a spin-density-
functional (SDF) formalism provides a formally
exact framework to treat these effects. The pur-
pose of this paper is (a) to advocate the usefulness
of the SDF formalism in applications to atoms,
molecules, and solids, (b) to generalize the scheme
to some classes of excited states and to more
general Hamiltonians, (c) to provide formulas and

data for the homogeneous spin-polarized electron
liquid to be used in, e. g. , the so-called local-
spin-density (LSD) approximation, and (d) to apply
the scheme to a few simple cases, concerning va-
lence electrons in atoms, molecules, and ferro-
magnetic metals. The latter is primarily to il-
lustrate the simplicity and relative accuracy of the
LSD approximation, thus exploring the extent of
applicability.

The separation of interaction effects into ex-
change and correlation is defined by the Hartree-
Fock (HF) method' which treats exchange only.
The appeal of the HF method is its conceptual
simplicity as an independent particle scheme. Its
basic shortcoming is that correlation effects are
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not taken into account. This deficiency was
pointed out at an early stage for atoms, mole-
cules, ' and solids, and many ideas for including
correlation have been presented. ' For small
electronic systems there exist methods which can
treat correlation with a high accuracy. For large
systems, on the other hand, practical constraints
create a need for simple procedures.

The SDF formalism has the capacity to include
all correlation effects retaining the conceptual
simplicity of an independent-particle framework.
Owing to this independent-particle form, the SDF
formalism provides a theoretical foundation of
some commonly used models, such as the band
theory of magnetism and the molecular-orbital
(MO) description of molecules, '0 which in turn
provides a framework for the Woodward-Hoffman
rules for concerted chemical reactions. " A HF
description of, e. g. , molecules and transition
metals implies too high a weight on ionic (polar)
configurations. "~ Owing to its inclusion of cor-
relation, the SDF formalism, already in the LSD
approximation, suppresses these configurations.
Consequently, the SDF formalism bridges the gap
between the MO-HF' and the valence-bond" meth-
Ods.

The main advantage of the SDF over the DF for-
malism is that the greater flexibility of the SDF
formalism introduced by the spin dependence al-
lows us to build in more of the actual physics into
the approximate functionals. Other useful features
are that the SDF scheme can give a proper descrip-
tion of bond breaking in molecules and simplifies
the description of open electron shells of atoms,
thereby providing a basis for Hund's rules. ' The
SDF scheme makes feasible a specification of both
orbital and spin degrees of freedom, which allows
us to extend it to a large class of excited states.

The original Kohn-Sham density-functional for-
malism uses the fact that all ground-state proper-
ties are functionals of the electron density p(r).
The generalization to the SDF formalism'" " is
straightforward and the proof" is essentially re-
peated with a more general external potential,
which breaks an earlier degeneracy. Similarly,
a whole class of functionals of more general order
parameters could be generated. '

Exchange and correlation effects are usually in-
cluded via nonlocal potentials, i. e. , potentials of
the form v(r, r'). In the SDF formalism, however,
they can be exactly described by a potential which
is local, i. e. , of the form v(r). In principle, this
potential should have a nonlocal dependence on the
density, i. e. , the potential v(r) in one point should
depend on the spin densities at all other points.
Knowing the exact functional of the spin density
would require knowledge about the exact solution
of the many-electron problem (in which situation

we would have no reason to worry about schemes
for exchange and correlation whatsoever). There-
fore, one has to resort to approximate functionals.

In most of the applications of the DF scheme a
local dependence on the density has been assumed
for the exchange-correlation functional [the local
density (LD) approximation]. In the SDF formal-
ism this corresponds to a local-spin-density (LSD)
approximation. This approximation is exact in the
limit of slow and weak spatial variations of the
spin density. '" ' In the DF scheme various at-
tempts to improve the LD approximation have been
suggested, such as gradient corrections. It is
doubtful whether gradient corrections can be
viewed as improvements in practical calculations.
For instance, inclusion of the two lowest gradient
terms gives wrong corrections for spatial varia-
tions with characteristic wave vectors of the order
of or larger than the Fermi wave vector and,
therefore, gives no improvement where the LD
approximation actually needs to be corrected. "

The parameters to be used in the LSD approxi-
mation have to be calculated from the results for
the homogeneous spin-polarized electron liquid.
We have performed calculations on this system
and have parametrized the results in order to give
easy to use formulas. Our approximate calcula-
tion is a direct generalization of a method used
earlier on the paramagnetic electron liquid. Our
results for the exchange-correlation potential show
a much weaker dependence on the degree of spin
polarization than both the Slater" and the Dirac-
Gispir-Kohn-Sham potentials, ' '-' i. e. , than any
Xa potential. The main features of our results
agree with the findings in the random-phase ap-
proximation (RPA). " We find, however, a slight
correction to the RPA correlation energy, which
is known to represent an improvement in the para-
magnetic limit. '2' In addition, our electron-
liquid calculation includes the computation of one-
electron spectra from which we obtain local po-
tentials for one-electron-excitation spectra of al-
most-homogeneous systems.

We will give some attention to the properties of
the homogeneous spin-polarized electron liquid.
The range of direct application of this model sys-
tem is limited, as most almost-homogeneous sys-
tems in nature are unpolarized. However, rare-
earth metals and doped rare-earth chalcogenides,
in which the conduction electrons are spin polarized
by exchange interaction with the localized mag-
netic moments, are suggested as possible areas of
application. Perhaps more important is that the
homogeneous electron liquid helps us understand
the relative importance of exchange and correla-
tion effects, especially when the spin polarization
is varied. We have computed the correlation en-
ergy, the compressibilities at constant magnetiza-
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tion and at constant magnetic field, respectively,
the screening constant, the induced charge around
a point charge, the differential magnetic suscepti-
bility, and the one-electron self-energy and spec-
tral functions. The main conclusion of our calcu-
lation is that correlation is important for most of
the mentioned properties, in particular, for the
dependence on the magnetization.

We have made a few simple applications to va-
lence electrons of atoms, molecules, and transi-
tion metals, using the LSD approximation. We
have calculated ionization potentials and aff inities
for a few atoms. As an illustration for molecules,
we have computed the energy curve of the hydrogen
molecule. Good results are obtained for the dis-
sociation energy and the bond breaking is properly
described. For transition metals we find that the
theory should give reasonable results for the spin
splitting of the energy bands. More systematic
applications to molecules and to chemisorption'
will be reported elsewhere. The SDF formalism
has also been applied to give a basis for a band
theory of magnetism, and the LSD approximation
has been used to calculate the relative stability
of some magnetic phases. "

In Sec. II the SDF formalism is described as a
generalization of the Kohn-Sham scheme in Mer-
min's thermodynamical version. We derive an
expression for the exchange-correlation energy to
provide a basis for the physical interpretation of
approximate functionals, in particular, the LSD
approximation. The theory is also extended to
certain excited states and to more general Hamil-
tonians. In Sec. III we present our calculation on
the homogeneous spin-polarized electron liquid.
The general features of applications to atoms,
molecules, and solids are discussed in Sec. IV,
where illustrative applications and some implica-
tions thereof are presented also. Finally, in Sec.
V, we discuss the broad applicability of the SDF
formalism, attempt to assess the accuracy of the
LSD approximation, and make a comparison with
other methods.

II. SPIN-DENSITY-FUNCTIONAL FORMALISM

In this section we will first briefly review the
generalization of the original Kohn-Sham scheme'
to spin-dependent systems. As a reference for
later applications we list the central equations in
two versions. For, e. g. , magnetic systems, the
thermodynamic version of Sec. IIA should be use-
ful, while the special zero-temperature case with
one uniform direction for the spin polarization is
of interest for, e. g. , atoms and molecules. Some
attention is also paid to excitation potentials of
almost-homogeneous systems. Next, we general-
ize the scheme to certain excited states. We fur-
ther prove a general relation between the exchange-

correlation energy functional and the pair distribu-
tion function, useful for our discussion of the ex-
change-correlation hole in the various applications.
Finally, we define the LSD approximation.

Hohenberg and Kohn' have proven that, for an in-
teracting inhomogeneous electron system in an ex-
ternal potential vier, there exists a functional of
the density F[p(r)], independent of v(r), such that

E—= vrpr dr+E pr

is minimum and equal to the ground-state energy
when p(r) is the ground-state density. Mermin ~

has shown the analogous theorem for an electron
system in thermal equilibrium. He proved that
there exists a functional F'[p(r}], independent of
v(r), such that

0= vr pr dr+E'pr

is minimum and equal to the grand potential,
when p(r) is the equilibrium density.

A generalization to an SDF formalism is de-
sirable in order to include effects of external mag-
netic fields and to allow a greater flexibility in the
construction of approximate energy functionals.
The extension of the Hohenberg-Kohn theory to this
case amounts to a rather trivial generalization,
first used by Kohn and Sham' and discussed exten-
sively by von Barth and Hedin' and Rajagopal and
Callaway. '

A. Thermal properties

All thermodynamic properties of an electron
system in an external potential are known as soon
as, e. g. , the grand (Kramers's) potential 0 is
known. Mermin" has derived a variational prin-
ciple for 0 of a paramagnetic system. Here we
want to emphasize a few steps in the generalization
of his derivation to the spin-dependent case and to
introduce the necessary notations.

The Hamiltonian of a system of N electrons may
be written

H=T+ U+ V,
where T is the kinetic energy, U the Coulomb in-
teraction between the electrons, and

(4)

where w, ~(r} is an external potential, g~ and g are
electron creation and annihilation operators, re-
spectively, and the indices a and P denote a Pauli
2 && 2- matrix notation.

The difference from Ref. 32 lies in the form of
the external potential a),6 (r), which allows coupling
to the electron spin. This potential can describe,
e. g. , the interaction with an external magnetic
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+— —,d rd r —]» d rp(r),
e' p(r)p(r'}. . . s

2 lr —r'
I

(6)
where p(r) = Trp(r), and where Tr means the trace
over spin indices. Just like in the DF case, ' it
follows that (i) when p(r) is the correct equilibrium
spin density in the potential w(r), then Q„[p] equals
the grand potential Q, and (ii) the correct spin
density minimizes Q„[p] over all spin-density func-
tions that can be associated with an external po-
tential w(r).

Following Kohn and Sham, ' we apply this varia-
tional principle to Q„[Eq. (6)] and put

G[p] = Gal.p]+ F*.[pl

where Go is the functional form of G for noninter-
acting electrons. Variation of" p k(r} so that Q„
becomes minimal with V, T, and p, constant gives
the spin density as

(r)(j)»"
»»

(r)
p(k(»( } ~ (k» )r)»kr8 +1

where [))»,,Cr) and e» are given by the solutions of
the equation

(&)

2m lr —r'
(

x())», (»Cr) = &»())», (r), (9)

where v"'k(r) = |)F„,[p]/5p~»»(r). Thus to obtain the
equilibrium spin density of an inhomogeneous elec-
tron system in an external potential w(r), we have
to solve a system of Hartree-like Schrodinger

field.
We have to prove that the equilibrium statistical

density matrix po is a functional of the spin density
2x2 matrix p(r), defined by

p, (r) = (())t»(r)()) (r)), (6)

( ~ ~ ) meaning the statistical-average value. The
proof is performed by introducing two different
sets of external potentials w(r) and w'(r), both as-
sumed to give the same spin density p(r) T.hen
there are two different possibilities, either pa= po
or poW po. In the first case there is already a
unique relationship between po and p(r), and no-
thing more needs to be shown. " In the other case
one has to go through a proof which is an immediate
generalization (cf. Refs. 16 and 17) of Mermin's
proof. The proof implies that either the assump-
tion w(r)4w'(r) is wrong or pa=pa. In both cases
po is unique, i. e. , it is a functional of p(r}.

Then all statistical averages at equilibrium are
functionals 6f p(r) too Th.us it is shown that we
can write'"'

()„[r]=T fw(r)r( ) d' G[r]

equations [Eq. (9)] and then sum up the various
contributions as for independent electrons [Eq. (&)].

To make this. a useful scheme, we are forced to
introduce approximations for the exchange and cor-
relation contribution to the free energy. A non-
empirical approach to the construction of such a
functional of the spin density is to use the form
for the almost-homogeneous case (the LSD approxi-
mation). Then the functional can be calculated
from homogeneous-electron-liquid data and sys-
tematic improvements are possible.

For a homogeneous system there are only two
nonzero components of the spin density with di-
rections given by the external uniform magnetic
field H, introduced to stabilize the spin-polarized
state. These components can be combined to give
the density p = Trp -=p„+p and the fractional mag-
netization or spin polarization r = Tr(po, )/p = (p„
—p )/p, where o are the Pauli spin matrices.

The LSD approximation is defined by

w "[r]=fr(r) j„(r( ), »(r))r('r, (10)

where f„, is the exchange-correlation free energy
per particle of the homogeneous electron liquid.
The approximation is formally exact in the limit
of slow and weak spatial variations of the density.
The local spin polarization may be defined as

C(r) =
l
Tr(xp(r) I/p(r),

which in the case of only one spin direction simpli-
fies to

K(r) = [p..(r) —p (r)]/p(r) . (i2)

In this way we assign the indices o and 13 in Eqs.
(8) and (9) to some global spin-quantization direc-
tion and define the local magnetization according
to Eq. (11). This seems to be the common way of
notation in works on, e. g. , antiferromagnetism. '

The exchange-correlation potential in Eq. (9) be
comes in the LSD approximation

v "()(r) = [pQr f"'(p(r), f(r))] .
[»p„r

Equations (11) and (12) are sufficient in many cases,
although they are not spin invariant. Spin states
that are sufficiently simple to be described by
Eqs. (11) and (12) can often be prepared by apply-
ing a suitable magnetic field. In a ferromagnet,
for instance, a homogeneous magnetic field is ap-
propriate. In an antiferromagnet, a spatially
varying magnetic field can stabilize one of several
degenerate states. To obtain spin invariance one
has to go beyond Eq. (11). There is, however, no
simple spin-invariant expression for f(r) in terms
of the spin density, since the invariance requires
f(r) to relate to quadratic forms in the spin-density
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p, (r) =gn, „~y„(r) ~',

where n„( O~n„~ 1) are occupation numbers, to
be discussed in Sec. IIC. The potential V, is the
sum of an external, spin-dependent potential and
the Coulomb potential from the electrons,

1

V (r) = V:")r) + e'f d r

v,"'(r) = 5E"'[p]//6p, .
The total energy is obtained by evaluating the en-
ergy functional

2 Ir- r')

+E "[p]+g V;~(r)p, (r)d'r
8

(18)

with the spin density (15}, where Ts[p] is the kinetic
energy of noninteracting electrons with spin density
p(r) and E*'[p] is the exchange-correlation energy
of an interacting system. These equations may be
viewed as a special case of E|ls. (6), (8), and (9).

In the LSD approximation [Eq. (10)]

„,( s[p(r)e"'(p(r), t(r)}]

where d" is the exchange-correlation energy per
particle of the homogeneous spin-polarized elec-
tron liquid and p",' is the corresponding contribu-
tion to the chemical potential.

The equations above and in all but one" of the
earlier discussions of the Kohn-Sham scheme in
the literature' ' ' have been based on the
Hamiltonian (3). There are, however, ranges of
important applications where additional terms are
needed in the Hamiltonian, like spin-orbit-coupling
and relativistic correction terms. Mostly, these

operators rather than linear ones as e.g. , in Eq.
(11}.

B. Uniform spin direction

There are situations, when we know that there
are only diagonal terms of p z, and when it is thus
sufficient to consider the two spin densities for up-
and down-spin electrons, p, (s =+ or -}, measured
along some possibly infinitesimal external magnetic
field, introduced to stabilize the direction. For
zero temperature the ground-state properties can
then be obtained by solving the two sets of Schro-
dinger equations'" '

[- (I /2m) V'+ V, (r) + v,"'(r)] )}„)(r)= c„P„(r),
(14)

and calculating the spin densities

are represented by one-electron operators. With
the spin-orbital interaction as an illustration, we
will show that such one-electron operators can
easily be included in the scheme.

The spin-orbit interaction of a many-electron
system is commonly written3'

Hz, s = Z &(rs}is ss (20)

x y„(r') d'r'= E„)}„,(r) . (21)

In this equation E„ is the quasiparticle energy of
a state labeled k with spin s, |t)», is the amplitude
of that state, and Z,(r, r'; E„) is the spin-dependent
nonlocal quasiparticle self-energy.

For a system with a slowly varying spin density
one can make a local-spin-density approximation
for Z, . 's Further, by a WKB type of approxima-
tion, ' ' ' which sets still stronger restrictions
on the spatial variations, one gets the self-energy
characterized by the local spin density p(r), as
determined by the ground-state scheme, and the

where l~ and s~ are the orbital and spin angular
momenta, respectively, of the kth electron and
where $(r„) is a prefactor related to the radial de-
rivative of the potential of the electron k.

According to Kohn and Sham's original derivation'
[cf. Eq. (7) in the thermal case], the ground-
state-energy functional G[p„p ] should be sepa-
rated into the kinetic energy for noninteracting
electrons, Ts [p„p ], and the exchange and corre-
lation energy E*'[p„p ]. When the term H~s [Eq.
(20)] is added to the Hamiltonian (3), we have just
to generalize Ts[p„p ] to include the spin-density
functional for the corresponding operators in a
system of noninteracting electrons. Application
of the variational principle then gives the spin
density according to Eqs. (14) and (15); however,
with a spin-orbit-coupling operator added within
the brackets of Eq. (14). Basically, the functional
E"' should depend on H». In the LSD approxima-
tion, however, there is no such dependence, as
the spin-orbit coupling is absent in a homogeneous
system.

The Kohn-Sham' scheme is devised to get the
density and ground-state properties. Sham and
Kohn' have also devised a method to obtain excita-
tion energies, which focuses on the self-energy of
the electron. When interactions among the elec-
trons in, e. g. , solids are considered, ordinary
energy bands have to be interpreted as the excita-
tion spectra of quasiparticles. To obtain these
spectra, one has to find the solution of the Dyson
equation corresponding to the quasiparticle
branch 3e, 39

[- (8 ')v's/2m) + V,(r)])})»(r)+Jt Z, (r, r'; Es,)
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local momentum p(r) of the quasiparticle excita-
tion. We suggest that, in analogy with the para-
magnetic case, "p(r) should be determined by the
condition

(22)Ea. —p =E.(P; p} p-.(p),
where E,(p; p) =E,(p) is the quasiparticle energy
for electrons with momentum p in a homogeneous
electron liquid of spin density p. p,, equals the
quasiparticle energy on the Fermi surface for
electrons with spin s, P, =E,(k~, ) with ks,
= (6v'p, )' ', and p is the chemical potential of the
inhomogeneous system. Once the local momen-
tum is thus determined, the exchange-correlation
potential V",' to be used in the inhomogeneous
problem,

[- (g /2m)V + V, (r) + V",'(r)]])]»(r) =E»](]», (23)

is given by the self-energy of the quasiparticle in
the homogeneous system,

V",'(r}= Z»(pCr); pCr)) . (24)

C. Excited quantum states

The method for calculating excitation energies,
described in Sec. IIB, should be useful for almost-
homogeneous electron systems, but the approxi-
mations (22)-(24) should not apply to localized ex-
citations where relaxation effects are important.
Such effects could in principle be included in the
self-energy of Eq. (21}. In practice, however, a
probably simpler method is to obtain excitation
energies by performing Kohn-Sham calculations
for both the initial and the final states and then to
take the energy difference. By this method relaxa-
tion effects could be included in the electrostatic
term which is treated exactly. The original Kohn-
Sham scheme can in this way give us ionization
energies by applying it to the ground states of the
neutral atom or molecule and the ion, respectively.

It would be desirable to be able to apply the
Kohn-Sham scheme to excited states as well. The
original proof of Hohenberg and Kohn' applies,
however, only to the ground state. In this subsec-
tion we will show that this proof can be generalized
to a large class of excited states, namely the
(energetically) lowest state of each symmetry.
For instance, it can be applied to the lowest state
of a light atom with specified quantum numbers
L„S, M, and M, of the total orbital and spin angu-
lar momenta.

To show the validity of the Kohn-Sham scheme
for the lowest state with a specified symmetry,
we first have to prove that this state is a functional
of the spin density. This is done essentially along
the same lines as in Ref. 18. A new feature is that
a set of observables {0}should be constants of mo-
tion restricting the potentials w(r) and w'(r), in-

troduced in a proof like that in Sec. IIA, to a class
C]e] of potentials for which [H, 0]=0. For these
potentials we only consider the lowest state which
has the specified eigenvalues {]]}of {0}. In this
way we prove that the wave function of the lowest
state is a functional of the spin density. Conse-
quently, the total energy is also a functional of the
spin density.

E, „[p]= I f ] )p, tr)d'r
OB

e' p(r)p(r')
+2 ~- -

~

««+&.'Pi. (25)

p.,(r}= Zp, „Cr}n,])]&*,(r), (26)

where the occupation numbers n, (0 ~n, ~ 1) are
chosen to give the quantum numbers {X}of the total
system. These occupation numbers are not neces-
sarily integers. The form of the density in Eq.
(26) prevents us from going outside the class of
densities for which G„[p] is defined when applying
the variational principle. "

In summary, we have shown that the Kohn-Sham
scheme can be generalized to apply to the ener-
getically lowest state for each symmetry.

D. Exchange-correlationwnergy functional

The Kohn-Sham scheme is made useful by intro-
ducing approximations for the exchange-correla-
tion-energy functional E"'[p]. The adequacy of
such approximations may be discussed in terms of
their representation of the exchange-correlation

Unlike the ground-state functional (8), E„„is not
universal but depends on the quantum numbers {]]}
because of the symmetry requirement. The func-
tional G„[p] is defined only for densities which can
be realized with potentials w(r) in the class C&e].

As usual, we divide G„[p] into two terms, To,[p]
and E*„'[p], the kinetic energy for noninteracting
electrons with the density p (r) and the exchange-
correlation energy, respectively, assuming' that
the appropriate densities p(r) can be realized by
some external potential w(r). In this procedure it
is essential that {X}are well defined for the non-
interacting case as well as for the interacting sys-
tem. We can now apply the variational principle
to Eq. (25) and find that it is sufficient to look at
the reduced problem for noninteracting electrons
in an effective potential, i. e. , we get an equation
analogous to Eq. (9). To ensure that the total sys-
tem has the quantum numbers X, we sometimes
have to go beyond the simple product state original-
ly used by Kohn and Sham. ' The procedure of con-
structing proper linear combinations giving these
quantum numbers is well known in, e.g. , atomic
physics. ' The spin density is then given by
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a(g)=T+Q v(r, )+ —Q
~~~f r (as)

The kinetic energy of the system is denoted by T,
and v(r) is an external potential (it suffices for our
discussion to study the paramagnetic ground-state
case). Let p(r} be the density for g= e', the physi-
cal value of the coupling constant. According to
the proof of Hohenberg and Kohn there existsawell-
defined, external potential V[p, g] such that the
ground state of

If(g) =Z(g)+ V[p, g] (29)

has the density p(r}. Define

E(g) = &c (g)
l
&(g) l@(g)&, (so)

where C (g) is the eigenvector of Jf(g). Then4'

PpgE(g)=E(0)+ dg(C(g) ' 4'(g))
0

c~f E
0

where

(sl)

E...(g)=&@(g) 2Z (- -
(

e(g)).
2 «& Ir, —r& I

As V[p, g] = g, V[p, g; r, ] is a one-electron opera-
tor, and as p(r) does not depend on g owing to our
construction,

dV p, g
0 dg

e2

dg d3rd P, g;r pr
0 dg

dr V p, 0;r pr (32)

We have here used that V[p, e; r] =0 by definition.
Equations (29) and (30) may be written

hole, i. e. , the depletion of electron charge around
a particular electron owing to the Coulomb repul-
sion and the Fermi statistics. A quantity describ-
ing this hole is the density-density correlation
function &)}(r)p(r'}},which is directly related to the
interaction energy

2 d3 d3
E„,—= &U} =—,[(p(r)p(r )) —5(r —r')(p(r})] .

(27)

It is well known how to get the relation to E"for
a homogeneous system. by the integration-over-the-
coupling-constant method. ' In the inhomogeneous
case a few precautions have to be taken. In the
following we derive a relation between E"' and

(pp) in a manner which is a slight modification of
a derivation given by Harris and Jones. ~

Let us write the Hamiltonian (3) like

d(0)=r, [p]+f d'r[ (r)+V[p, Q;r]]pCrl, ($$)

where To[p] is defined in Sec. IIB. Equations (18),
(31), (32), and (33) now give4~'

"' dg e' p(r)p(r'}E—„,( g) —- , d rd'rint

I 2

dg pr pr, ~

E*'[pl =

—5(r —r')p(r)],

We will now show that the exchange-correlation
energy is rather insensitive to the details of this
hole. The energy contains only certain averages
over the hole and these imply a systematic partial
cancellation of errors in the LSD approximation.
Let the exact hole be represented by

oo &I

p (r r ig)= 2 2 p] (» lr r
I ig}yr ~).

(35)
Then the exchange-correlation energy is given by

82 OO

d*'[p]= (d )" fd'rp[r)f—'ddf'r" dr'
0 0

Xp,.(r, r';g) —, . (37)r'

where (. ~ .},, means that the expectation value is
taken for a density p(r) with the Hamiltonian (28),
and where p™=p-p. We thus see that it is possible
to express E" in terms of the density-density cor-
relation function at the physical density. This is
a great simplification, as the alternative would

have been to consider the correlation functions at
a range of densities corresponding to the varying
strength of the coupling constant g.

The LD approximation may now be written

[.] ', f-f;;"='-;:",f
x [(p(r)p(r')),"[-,

&
—5(r —r')p(r)], (35a)

where ( ~ ~ }," means that the correlation function
is that of a homogeneous electron liquid with the
density p and the coupling constant g. Thus the
LD approximation means that in the expression
for E"' one replaces the pair correlations locally
by those of a homogeneous electron liquid of the
local density. This approximation may be written

(p(r)p(r')), —5(r —r')p(r)

= p'(r)[g(lr- r'l; p(r))-1], (35b)

where g (r; p) is the pair distribution function of the
homogeneous electron liquid with density p.

Using Eq. (34), the exchange-correlation energy
can be interpreted as the interaction between an
electron and its exchange-correlation hole charge,

p„(r, r';g) =[1/p(r)]&p(r)p(r')), ,—6(r- r') .
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Thus only the spherical symmetric part contributes
to the energy. Although the exact hole in general
may be strongly aspherical, it is thus not necessary
in approximate versions to describe the nonspheri-
cal parts. A proper description of the spherical
part requires that the sum rule

(38)

is fulfilled. This sum rule expresses the fact that
the hole should contain one charge unit I el. It im-
plies that an approximate p„will have too large
values in some regions and too small in others.
Equation (37) shows that such misrepresentations
will partially balance each other.

Another way of treating this aspect is to view the
last integral in Eq. (37) as an average of (r') ' with
the normalized weighting factor (r')'p„(r, r; g)
This average is then roughly given by the inverse
"size" of the hole, the size being the value of r'
for which p„(r, r';g) starts to get small. However,
if the sum rule (38) is fulfilled, the size of the
hole has to go as (p„) '~', where p„ is some typical
value of p„. Thus the average ((r') ') goes rough-

ly as (p„}'~', and the relative error in this aver-
age is about a factor three smaller than that of
p„. In addition, the first integration in Eq. (37)
gives important cancellations of errors, as il-
lustrated in Refs. 29 and 45.

The LSD approximation involves a spherical
hole, which is not a shortcoming, as only the
spherical average of the hole influences the ener-
gy. Further, it fulfills the sum rule (38). Finally,
the LSD hole is localized, and its size varies with

the density in a physical way. Thus the LSD ap-
proximation may give good results also for systems
where the density variations are so strong and

rapid that this approximation has little formal
justification. These features ought to be consid-
ered in attempts to improve the LSD approxima-
tion.

Although the hole arguments given above are
most useful for the exchange-correlation energy
E", the implications for the potentials v",' require
further investigations.

In the rest of this subsection we will show that
it is sufficient to use T=O data for f"'(p, g) in the
I SD approximation, Eq. (10), at least for typical
solid state applications. The reason is, as usual,
that the temperatures T in common applications
are much lower than the Fermi temperature of
the electron liquid.

The proof follows steps similar to those of the
Kohn-Sham discussion of the specific heat. '

Luttinger4~ has shown that

sf*'(p, L)(

~ ~) ..(:,v

(40)

where (T/T&) is typically 10 ' at room temperature
and metallic densities. The prefactor of the right-
hand member of this equation is of order of 1-10,
using typical values for the parameters like f"'(T
= 0)- (0. 1-l}e~ (see Sec. III} and"

I g(p. ) - go(po}l /go(po) -0 1

at metallic densities. In the small r, (high densi-
ty) limit the prefactor goes like Inr„using e"'
- r, ' and I g —go I /go- r, Irn, "A.s TI,

- x, , the
quotient (40) is negligible at laboratory tempera-
tures in this limit too.

III. SPIN-POLARIZED ELECTRON LIQUID

The major aim of this section is to report on a
calculation on the homogeneous spin-polarized
electron liquid, performed to provide input data
for the computational schemes mentioned in Sec.
II. As this model system has not been studied
extensively in the literature, we also calculate
some other properties of the system and discuss
how correlation affects these properties.

Commonly used local approximations for the
exchange-correlation potential in Eq. (19) are the
Dirac-G6, sph, r-Kohn-Sham potential" '"

v„,=- (e'/v)[3v'p(r)]'~'= p"(x), (41)

the Slater potential, ' which is a factor —,
' larger in

magnitude, and the Xo. potential, which is ob-
tained by multiplying the Slater potential with a
constant factor a. For spatially slow and weak
variations, however, where a local approximation
has a formal justification, the factor n should be
density-dependent and determined from homo-
geneous-electron-liquid data. A simple interpola-
tion formula for such a prefactor P, defined by

v xc P~x (42)

is given in Ref. 21.
The potential (42) applies to paramagnetic sys-

tems, where the density is the only fundamental vari-
able. In this section we will produce interpolation
formulas for the exchange-correlation potentials
[Eq. (19)] and energy [Eq. (10)] which have two
fundamental variables, the density p and the frac-
tional spin-polarization f. While the density de-
pendence of P is a rather undramatic effect, the
spin dependence introduces significant deviations

=- sv'I 'T[g(pa(p L)) g-o(PD(p, t})1,
where p,„(p, l') and p, o(p, f) are, respectively, the
chemical potentials of an interacting and noninter-
acting homogeneous electron liquid of density p
and spin polarizations g, and g and g0 are the re-
spective densities of states. We see that
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from an Xn potential.
The homogeneous spin-polarized electron liquid

is an idealized system with N electrons in a con-
stant compensating, positive background charge,
characterized by the density and spin polarization
parameters, r, =(3/4mp)'~' and f =(p, —p )/p, re-
spectively. This system was first studied by
Bloch" in the Hartree-Fock (HF) approximation. "
The HF approximation is kinematic by its nature,
as it only considers the Fermi hole, i. e. , the ef-
fects of the indistinguishability of electrons with
the same spin. Until recently, the only considera-
tions of the dynamic effects involved in correlation
have been a few attempts in HF-like approxima-
tions, "using staticly screened exchange, an ap-
proximation that has shown to be unsatisfactory in
the paramagnetic state. ' ' At metallic densities
it is necessary to include correlation in the treat-
ment, i. e. , to consider that the Coulomb repulsion
keeps the electrons away from each other. This
has recently been done by von Barth and Hedin in
the ground-state random-phase approximation
(RPA). " We are including correlation effects in
a different approximation. Our method uses a
relation between the total energy and the one-
electron spectrum. ' To calculate the one-elec-
tron spectrum we have used an approximation for
the electron self-energy that treats exchange exact-
ly and considers correlation in a linear-response
type of approach. The electron under considera-
tion introduces charge fluctuations in the medium
of the other electrons, which react back on the
first electron. As this process does not occur
instantaneously, our approximation allows for a
dynamic interaction between the electrons. We de-
scribe the charge fluctuations in a plasmon mod-
el. "' This approximation means that we de-
scribe all the charge fluctuations, to which the
electron couples, in an average way, by one sin-
gle "plasmon" mode. In the paramagnetic case
this gives one-electron spectra in close agreement
with more extensive characterizations of the charge
fluctuation spectrum" and also values for the cor-
relation energy in good agreement with other meth-
ods. This agreement is primarily due to the
importance of the long-wavelength mode in this
context, and this mode should be the plasmon.

The charge fluctuations in the random-phase
approximation are not radically changed when the
liquid is spin-polarized. In Fig. 1 we have drawn
the spectrum for these excitations in the RPA at
r, =4. The paramagnetic case (f =0) is compared
with the ferromagnetic case (&=1). Owing to
charge conservation, "the plasmon frequency ap-
proaches co~, the classical plasma frequency, in
the long-wavelength limit for all values of the frac-
tional magnetization g. On the other hand, the
plasmon dispersion law varies with f and is for

0

6

3

0
0

0/kF

FIG. 1. Charge-density fluctuation spectrum of the
electron liquid; plasmon mode and electron-hole exci-
tations in the random-phase approximation for different
degrees of spin-polarization. The dot-dashed lines
show the dispersion law Eq. (45) used in the plasmon
model for g =1 (upper) and / =0 (lower).

small q given by

S~, '
Scop

' 3 1+&''+ 1-&'' q

where

e~=h k~/2m=1/(nr, ) Ry

(45)

(44)

4&+ 4&+ 1+) ' + 1-f ' 2k+

(45)

The coefficient in front of the q term of Eq. (45)
is chosen to give the Thomas-Fermi screening at

and n = (4/9~)'~'= 0. 521. The increase of the dis-
persion coefficient with growing f is connected with
the increase in the average electron velocity. For
the same reason, the electron-hole pair excitation
frequencies in the continuous part of the spectrum
increases with f. The increase in all these fre-
quencies reduces the static polarizability, weak-
ens the response, and the system can be said to
become stiffer.

In the figure the simplified description in the
plasmon model is also indicated. We take the dis-
persion law for the single plasmon mode as
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large distances, "and it gives a description of the
stiffening of the charge fluctuations with increas-
ing g. The dispersion is weaker than in the pre-
viously mentioned RPA result. The coupling be-
tween the electron and this mode is the same as
in the paramagnetic case. " The possibility to op-
timize the plasmon model by a suitable choice of
the q' coefficient (for instance along the lines given
by Overhauser "}ought to be investigated further.

Technically, we have calculated the electron
self-energy in an approximation which considers
only the lowest order term of an expansion in the
dynamically screened interaction. In the plas-
mon model this approximate self-energy can be
expressed

2 2 co

1.0

Total energy

E/(5 EF)

Hartree

fg= 2

HF With correlation

r+
~ ~

~ ~
~ 0

~ ~
~ 0

~ ~ ~
gOyO

~ 0~y ~
~ ~ ~ ~yy0~~ s ~ ~ ~ ~ ~ ~ ~~~ s ~ ~+~

-)0— 's= &

e(k, —k) 6(k —0, )
ii —a(k)+ii, —'ll Ii —a(k) —Ii,+ilt) 0 0.2 0.4 0.6 0.8 1.0

(45)
i. e. , as an exchange term plus a correlation term
describing virtual plasmon excitations. From the
self-energy one directly gets the electron spectral
function as

X.(p e~) = (I/&}l 1m[a~+ i.—e(p}

—z,"(p, p,,+h(u)] '~,
where e(p) =h p /2m is the free-electron energy.

We have calculated the potentials for excitation
energies V,"' from the energy E,(p; p„p ) of the
quasiparticle peak in the spectral function (47)
(for broad quasiparticle peaks actually from the
point of gravity of the peak),

(47)

V,*'=E,(p; p„p )- e(p) . (45)

The exchange-correlation potentials for ground-
state properties in the LSD approximation are
given by Eq. (19). In terms of the electron-liquid
parameters r, and f these potentials for majority
spin (+) and minority spin(-) electrons can be ex-
pressed

Q ~XC Bf,~xc eiic 8 y (lpt)
3 7 (49)

d'piia= gf ~
i. fii ~ g. ~ a(p)l-

&&A, (p, e(u) d(a&u) . (51)

where 8', the exchange-correlation energy per
particle, is the difference e"'= &- c between the
total energy e and the Hartree (kinetic) energy

e"= (2/10a'r, ')[(I+ I')' '+ (1 —I')' '] Ry . (50)

First we have calculated the total energy from the
Galitskii-Migdal" formula

FIG. 2. Total energy of spin-polarized electron liquid
as a function of the spin-polarization f, without any in-
teraction (Hartree), with exchange included (HF), and
with both exchange and correlation included.

Then we have obtained the derivatives giving the
potentials in two ways. The virial theorem

2(T)+(V) =-r,
S

(52)

where (T) and (V) are the expectation values of
the kinetic and potential energies, respectively,
gives &e"'/&r„while &e*'/8$ has been obtained by
numerical differentiation.

A. Exchange-correlation energy and potentials

e* = —(8/4vnr, )[(1+g} + (1 —t') ] Ry.

As a consequence, there is an inflection point

(52)

The calculated quantities are illustrated in Figs.
2-9. We first give some ground-state properties
and then some excitation results.

Figure 2 illustrates how the total energy per
electron e varies with r, and g. The results of
three different approximations are presented. The
Hartree (kinetic) energy [Eq. (50)] has a strong,
increasing dependence on f. We can in this ap-
proximation obtain any degree of spin polarization
f by just applying the proper, stabilizing magnetic
field H. The equilibrium condition relating H and

f is e- @~AH being minimal, where p~ is the Bohr
magn eton.

In the Hartree-Fock (HF) approximation there is
a strong counteracting f dependence coming from
the exchange energy,
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[a'e(r„ l')/a/'=0] in the HF curve for each r,
This implies that in the HF approximation there is
for each r, a P range which cannot be reached by
satisfying the above-mentioned equilibrium condi-
tion. When S~e/8$' is smaller than zero, the sys-
tem prefers to be completely spin polarized (f = 1}.
Thus, there is an instability region in the HF ap-
proximation.

The correlation contribution e'= e- c"-d' is
substantial for all r, and g, as illustrated by our
results in Fig. 2. In addition, the f dependence
of d" is significantly weaker than that of e". As a
result, with correlation included there is no in-
stability region in the studied metallic density re-
gime, and any f value can be obtained as in the
Hartree approximation. In particular, our calcu-
lations predict the ground state of the electron
liquid in the absence of external magnetic fields to
be paramagnetic at all metallic densities.

Our data for the exchange-correlation energy
can be summarized in the interpolation formula

0.0

-0.2

-0.4

-0.6

—0.8—

0.0

S +=~~ ~~ .%eggy
%e~

%a~~
I II I I I I

I
I

I
I

I
I

I
I

I

e"'(r„f)= e~'(y, ) + [ez'(r, ) —eJ,'(r, )]f (f) Ry,

where

f (f) = [(1+f) + (1 —f) —2]/[(2)4 —2]

(54)

FIG. 3. Characteristic behavior of the exchange-cor-
relation potential p~~ for ground-state properties. The
solid curve is calculated from the total energy Eq. (51);
the dashed curve is the self-energy on the Fermi surface;
and the dot-dashed curve is the result of von Barth and
Hedin (Ref. 16). The Hartree-Fock result is given as a
comparison.

p', = —(2/mar, )(1+ f)'~ Ry (55)

has a very strong dependence on the fractional
magnetization f. For instance, at r, = 2 the dif-
ference in potentials for down- and up-spin elec-
trons is 0. 8 Ry = 11 eV in the ferromagnetic limit
(r =1). The vanishing exchange potential of a
minority-spin electron in this limit just reflects
the fact that a minority electron has no other
electrons to exchange with. Even a single elec-
tron will, however, interact dynamically with the
medium, polarizing it and creating a correlation
hole. Our calculation illustrates that this is an

ef'(r, ) = d,'(r, ) —c,[(1+x,') ln(1+ 1/x, )

+ —,x, —x, ——,] Ry, i=P, F,
with x, = r, /r„d~(r, ) =- 3/2n&r, Ry, 'and eF(r, )
= ( )2'~'d~(r, ). We get the parameters c~ = 0. 0666,
c~ = 0.0406, rI, = 11.4, and r+= 15.9, with an ac-
curacy of Eq. (54) of about I%%up of the calculated
values. The functional dependence on p in Eq.
(54) is the same as in the HF approximation. It
has been suggested by von Barth and Hedin. "
However, it should not be used when a higher ac-
curacy is needed. For instance, the values for
the derivatives mentioned below have been taken
directly from the original data.

The potentials p,"[Eq. (19}]for the calculation
of ground-state properties are illustrated in Fig.
3. The HF result for these potentials

important effect, lowering p.
"' for r, = 2 by about

0. 5 Ry = 7 eV in the & = 1 limit. Quite generally,
the effect of correlation is to reduce the drastic
HF variations with P substantially and to make p,,"'
more attractive. Although weaker than in the HF
approximation, the tendency to favor parallel
alignment of the spin is obvious.

For computational purposes it is convenient with
a parametrized representation of the potential.
We have found the interpolation formula

p", = p,'(r, )[ (Pr, )+ ,'5(r, )f/(I+—yf)] Ry,

with

P(r, ) = 1+0. 0545r, ln(l+ 11.4/r, ),
5 (r, ) = 1 —0. 036r, + 1.36r, /(1+ 10y,),

(56)

where y = 0. 297 and p~(r, ) = —2/var, to reproduce
our g,"data for r, = 1-9 within 2%%up. In Fig. 4,
P and 5 are shown as functions of r,. The inter-
polation formula has the required symmetry p,",'(f)
= v*.'(- L)

A calculation' of the potentials p.",', using the in-
tegration-over-the-coupling-constant method and
the RPA dielectric function for E"' gives similar
results (Fig. 3}. These values, however, lie
typically slightly lower in energy. Similarly, the
RPA results for the correlation energy E' are sys-
tematically lower than ours for r, greater than



13 EXCHANGE AND CORRELATION IN ATOMS, MOLECU LES, . . . 4285

1.5 B. Other properties

1.4—

1.3

1.2

1.0

0.9

0.8

0.7

06—

0.5

BH
~a~

I I

2 Is 3

FIG. 4. Parameters P and g in Eq. (56). The para-
magnetic potential is obtained by multiplying the HF re-
sult by P, and 0 describes the reduction of the splitting
of the spin-up and spin-down potentials from the HF
value due to correlation. The BH result is taken from,
Ref. 16 and the SSTL result from Refs. 21 and 50.

unity. As the RPA result should be lower than the
exact result, owing to the failure of the RPA to
give a non-negative pair correlation function at
small distances, 7 our correction to the RPA re-
sult for e' has the right sign.

Figure 3 contains also an illustration of our ap-
proximation not being completely self-consistent.
With exact Green's functions the potential p,",',
given by differentiating the exchange-correlation
energy [Eq. (19)], should equal the self-energy of
a quasiparticle on the Fermi surface for electrons
with spin s. As shown in Fig. 3 there is a dis-
crepancy between these and our values for these
two quantities, being typically 0.01-0.02 Ry.
This is a shortcoming of our perturbative ap-
proach, truncating the expansion for the self-
energy.

By comparing with other results and studying
trends, we estimate 0.01-0.02 Ry to be a reason-
able uncertainty of our potentials for r, greater
than unity. When extrapolating formulas (54) and
(56) to smaller r, values, larger errors are in-
troduced, Eqs. (54) and (56) giving too attractive
results. An adjustment of the interpolation formu-
las to what is known about the small r, behavior ~

is recommended in this density range.

In the following we will present some derived
formulas and give some results which require sec-
ond derivatives of the exchange-correlation energy
d" to be taken. Owing to the mentioned numerical
uncertainties, some of these numerical results
should be considered to be only semiquantitative.
(In practice we have calculated derivatives of the
self-energy instead of calculating second deriva-
tives of d". ) Our main point is to illustrate the
importance of the correlation effects, which in
some cases give drastic corrections to the HF re-
sult.

The compressibility ~ is obtained by differentiat-
ing the total energy twice with respect to density.
The inverse compressibility or bulk modulus at
constant magnetization M= Ng can be expressed as

KF =1 1
ey' 1

8P B~E
(5V)

where p, = e~(1+ f)' '+ p, ",' and v~ = 2vn'r, ' is the
compressibility for noninteracting electrons in the
paramegnetic state. In the Hartree approximation,
i. e. , for p,",'=-0, the bulk modulus has a strong f
dependence; the electron gas getting stiffer and
the compressibility decreasing as the magnetiza-
tion g increases. The exchange contribution ob-
tained for p,",'= p,," gives important changes. As
in the paramagnetic limit, the correlation ef-
fects on this compressibility are small, as il-
lustrated in Fig. 5. We note that the instability
due to density-density fluctuations, signaled by
K~ being zero, occurs at higher r, values when P

increases.
The compressibility at constant magnetic field,

Kg, can be written

(56)
Our results for this quantity are shown in Fig. 6.
We have normalized the results against the para-
magnetic value. The figure illustrates that differ-
ent approximations give very different & depen-
dence. The strange behavior in the HF approxima-
tion vanishes when correlation effects are in-
cluded.

By studying the linear response to an external
perturbation V, we get expressions for the dielec-
tric function and the magnetic susceptibility and
also for the nondiagonal responses X

' and y', the
spin response to an electric perturbation and the
charge response to a magnetic perturbation, re-
spectively. The induced charge for a static per-
turbation can be obtained by linearizing Eqs. (14)-
(1V). Completely general results with the same
functional form as given below can be obtained if
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I

Bulk modulus
P(q) = (1+C) 'P (q), P = (P, , P ),

&!(0)=(,") (&~K)" (q'i2k„),
(el)

10

o
oe

e
~ +

~1
~ 0

~ ~

~O

~ oo ~ ~ 0 Hart yee—- Hartree -Fock
With correlation

where

s(~) =[l+ (1/2X)(1 —x'/4)»~ (~+ 2)/(x —2) ~] .
The matrix C, can, in the general case, be related
to the exchange-correlation functional E*'[p„p ]."
In the LSD approximation [Eq. (19)], its elements
are defined by

rs=
C„,(q)= —P,'(q) "' .

a
(e2)

0.5
rs

0 0.2

0.0
rs=

0.4 0.6 0.8

These matrix elements describe how the density
response of electrons with spin s is related to that
of electrons with spin s' via exchange and correla-
tion forces. If only exchange effects were con-
sidered, the matrix C would be diagonal, as only
electrons with the same spin can be exchanged.
As both exchange and correlation effects are im-
portant, the nondiagonal elements of the matrix
C are neither zero, as in the HF approximation or
as assumed in Ref. 65, nor equal to the diagonal
elements, as assumed in Ref. 28.

A screening parameter X(q) can be defined by

e(q) = 1+x'(q)/q2 . (es)

FIG. 5. pulk modulus at constant magnetization accord- For general reasons, it should satisfy a compres-
ing to Eq. (57) in various approximations. sibility sum rule, as in the paramagnetic case.

This sum rule can be expressed as a relation be-

the linearization is based on the general functional
E"[p„p ] for the exchange-correlation energy. "
However, the explicit results for the correction
to the RPA of noninteracting electrons are given
in the LSD approximation Eq. (19) which gives re-
sults accurate for long wavelengths (small q).
Comparisons with other calculations indicate,
however, that the results may be applicable for q
values up to P~ or 2'~. ' ' '

The linearization is performed just as in the
paramagnetic case. " As the two components of the
spin density are different, a matrix notation is
conveniently used. The dielectric function giving
the potential felt by a test charge is defined by

1.5
I

5J'
r~

~.0 -~

/ I/ /
g HF
/

3/ /

Hartree

&(&)
h. (o}

0.5—

SCREENING PARAMETER

v(q) = v, (q)/e(q), (e9)

where Vo is the external electrostatic potential.
It can be written

e(q}= 1-v(q)P(q); P(q) = P, (q)+P (q), (e0)

0.0
0.0

I

0.2
I

0.4
I I

0.6 0.8 1.0

where v(q) =4&e /q is the Coulomb interaction.
The polarization P(q) is the sum of the spin-up
and spin-down components P, and P given by

FIG. 6. Screening parameter and, according to Eq.
(64), the bulk modulus at constant magnetic field. The
numbers at the curves give the values of r~.
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where p.~ is the Bohr magneton
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small momenta, the dip a little below 2k~, and the
weak tailing-off at higher momenta. The k de-
pendence is thus completely different from that in
the Hartree-Fock equation. The effect of the
magnetization is primarily a P dependence of the
"constant" level and of the position of the dip. The
former is essentially described by the potential
p", in E|I. (66), while the latter is connected with
the g dependence of the Fermi momentum of the
particular spin k~, .

We have not been able to find any convenient in-
terpolation scheme for V (r„f,p) as a function of
the variable r„f, and p. ' In some calculations,
however, all the details of these potentials are not
necessary. Knowledge of their general features,
such as the weak dependence on p for moderate
momenta may in some applications suffice. "

C. Role of correlation

~ 0.4

g
~+ 0.2

I I

-2 -I 0 I 2 -2 -I 0 I 2
Energy 4)1~

P

FIG. 9. (a) Characteristic behavior of the electron
self-energy in Eq. (46). (b) The corresponding spectral
function in Eq. (47).

y '(q) (1+C )P, —(1+C,.)f"
(q) det(1 + C)a

(69)

We see that it is not only in the HF and HF-like
approximations ' that y„'=X' .

The central quantity in this calculation is the
electron self-energy Z,"(k, e). The typical behavior
of the self-energy in the approximation (46) and the
corresponding spectral function (47) is illustrated
in Fig. 9.

There is the same characteristic energy and mo-
mentum dependence as in the corresponding calcu-
lation for the paramagnetic case. "'" Indeed, for
t' close to unity, the sharp satellite peak in A (k, ~)
is present even for k larger than k~ . The strength
of the satellite peak goes, however, to zero when

P approaches unity. It is not clear to us whether
this effect is just a result of the approximations
made or not.

The quasiparticle self-energy that is needed to
get the excitation potential V",' is illustrated in
Fig. 10. As in the paramagnetic state" the main
features are the relatively constant potential for

The results for some of the electron-liquid prop-
erties, like the total energy and the magnetic sus-
ceptibility, show large effects of correlation while
those for others, like the compressibility at con-
stant magnetization, deviate only little from the
Hartree-Fock result. In this section we will dis-
cuss brieQy the effects of correlation on various
properties.

In the Hartree approximation the interactions be-
tween the electrons are exactly compensated by the
positive background of ionic charge, and the po-
tential energy vanishes. Owing to the Pauli prin-
ciple, electrons with the same spin are kept apart
and, therefore, in the HF approximation each
electron is surrounded by an exchange hole with
a positive charge le I. Interaction between an
electron and this hole gives a negative potential
energy, the exchange energy, which depends on
the density of electrons with the same spin. When

f is increased, the density of the majority elec-

Quasiparticle self- energy

CD

—-0.5
LU

JC

CL

0

n.

2 3

Wave vector k] k

FIG. 10. Quasiparticle self-energy which gives the po-
tential for excitation energies [Eqs. (21)-(24)].
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trons increases, so that for each of these elec-
trons the exchange energy becomes more negative.
The opposite is true for minority electrons. Owing

to the growth in the number of majority electrons,
the total exchange energy goes more negative, as
can be seen in Fig. 2. When correlation effects
are included, we get an exchange-correlation hole
which describes that, in addition to the exchange
repulsion, there is the Coulomb repulsion which

acts between electrons of both spins. This means
that majority (minority) electrons contribute to the
hole around minority (majority) electrons. There-
fore when f increases and electrons are trans-
ferred from the minority to the majority spin
group, the potential energy will not change as
much as in the HF approximation. This is shown

in Fig. 2.
The susceptibility describes the change in mag-

netization due to a small change in the magnetic
field. In equilibrium there is equality between the
chemical potentials of both spins, being p, + p~H,
where II is the external field required to establish
equilibrium. When the magnetic field is increased,
the chemical potential of the majority electrons
is lowered, compared to that of the minority elec-
trons. In the Hartree approximation spins are
flipped until the changes in the Fermi energies E~,
of the two spin systems match the increase in the
magnetic field. These changes in kinetic energy
are partially compensated for in the HF approxi-
mation. When a minority spin flips, it ceases to
contribute to the exchange part of the minority
electron chemical potential, and instead, it con-
tributes to the lowering of the majority one. There-
fore, more spins must be flipped before the new

equilibrium is reached and the susceptibility is ac-
cordingly enhanced [cf. Eq. (68)]. When correlation
is taken into account, this enhancement is smaller be-
cause the minority electron contributes to the majority
chemical potential as well, and after it has flipped
its spin, it will still lower the chemical potential
of minority electrons. These qualitative trends
are illustrated in Fig. 8.

The compressibilities at constant magnetization

z„(Fig. 5) and at constant magnetic field za (Fig.
6) show great differences in the influence of ex-
change and correlation on the g dependence. This
can be qualitatively understood by extending the
arguments from the previous paragraphs. In Kg

the spins are flipped under the compression, and
thus the HF result deviates from the result with

correlation, while in K„ the number of spins of
each kind are kept constant, thereby avoiding the
strong exchange-hole effects mentioned earlier.

In a similar way, the effects of exchange and
correlation on other properties, like the total in-
duced charge [Eq. (65)], can be understood in a
qualitative way.

The advantages of the SDF formalism in applica-
tions to atoms are (i) the spin-orbital description,
(ii) the local potential, and (iii) the possibility of
including correlation effects in approximate ver-
sions. The first feature is shared with e. g. , the
the HF method, which, however, lacks the other
features. As shown in Sec. IIC, the SDF scheme
applies to the lowest state of each symmetry, i.e. ,
for light atom states characterized by the quantum
numbers I.SM~M~ or UJM, if spin-orbit interac-
tions are considered. " The inclusion of the spin-
orbit coupling is straightforward, as shown in
Sec. IIB.

For open-shell atoms the simplest way to con-
struct the Kohn-Sham state with the specified quan-
tum numbers is provided by the well-known Slater's
rules. As an illustration of the occurrence of
nonintegral occupation numbers in Eq. (26), we
can use one of the 'D states of the p configuration.
For M~ = M ~

= 0 we get the proper symmetry using
a Kohn-Sham wave function on the form

6 ' '[(1', —1 ) —(1,—1') + 2(0', 0 )], (70)

where, e. g. , (1',- 1 ) means a determinant con-
structed from two orbitals with m, =1, m, =

& and

m, = —1, m, =--,', respectively. The spin density
is then

8 'P1, 1(r) + 8 0 1,-1(r)+ 3 0 1,0(r) ~

where y, (r) is an orbital with the quantum num-
bers l and m, . It is obvious that nonintegral occu-
pation numbers are introduced because more or-
bitals than the number of electrons have to be used
to construct the state with the proper symmetry.
If we alternatively use the Roothaan method for
open shells, "we again obtain Eq. (Vl) for the
density but now with a slightly improved equation
for radial wave functions.

As mentioned in Sec. III, the exchange-correla-
tion energy favors spin alignment already in the
LSD approximation. As a consequence, Hund's
first rule follows, according to the following argu-
ments. Suppose that for an open-shell atom the

IV. APPLICATIONS

In this section we will discuss a few simple ap-
plications of the SDF formalism. Our aim is (i)
to illustrate the broad applicability of the scheme
and (ii) to gain experience about the ability of the
LSD approximation to describe the physics in
these and geometrically more complex structures.
For each field of application we will first show
some general features, then give a few explicit
results, and finally discuss the LSD approxima-
tion for the exchange-correlation hole.

A. Atoms

1. General consi derafions
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TABLE I. Results in the LSD approximation for the
energy of some states of the hydrogen atom.

State Energy (eV)

Exact
—13.39
—3.79
—3.63
—1.86
—1.78
—1.76

—13.61
—3.40
—3.40
—1.51
—1.51.
—l.51

total spin is increased by flipping the spin of one
electron without any change in the spatial part of
the orbitals. Then the kinetic and electrostatic
energies will not be changed, while the exchange-
correlation energy will be lowered. According to
the variational principle, the energy of the new
state would be still lower if the orbitals were al-
lowed to relax. Thus for a given configuration,
the state with the maximally allowed spin has the
lowest energy.

2. Results in LSD approximation

The I SD approximation [Eq. (10)] has a formal
justification only in the limit of weak and slow
variations in the density (Sec. II). Good results
have, however, been obtained for rather inhomo-
geneous systems. Atomic calculations may illus-
trate the practical range of applicability, as re-
sults with other methods are easily available for
a comparison.

In the first application to atoms, Tong and Sham'~
found that, while the calculated exchange energies
for various atoms a.re about 10% too small in mag-
nitude, the correlation energies are too large by a
factor of about two, the errors partially balancing
each other. The relative accuracy for both quanti-
ties improves for large atoms. The error in the
exchange energy is surprisingly small, considering
the nonlocal nature of the exchange forces and the
strong inhomogeneity of the system. As has been
pointed out by Tong, "the major source of error in
the correlation energy is that the discreteness and
the nonzero spacing of the low-lying levels of a
finite system, in principle, would not be well de-
scribed by expressions derived from an infinite
electron liquid. A reason for the increased rela-
tive accuracy for larger atoms is the decrease of
the exchange-correlation hole compared with the
inhomogeneity length, as an electron shell is get-
ting filled. All these results and arguments sug-
gest the LSD approximation to be less satisfactory
for a detailed description of tightly bound core
electrons, while it is likely to give useful results
for valence electrons. In this section we will
give results supporting that view.

TABLE II. Total energies of some states of two-
electron ions. The accurate results are taken from
Ref. 78.

Energy (eV)

Atom

H

He

Li+

State

3S

—14.4
—77.8

—58.4
—195.2

Exact

—14.4
—79.0

—59.2

—198.1

In Ref. 45 we have calculated the ground-state
energy of the hydrogen atom and the hydrogenlike
ions and discussed the way in which the LSD ap-
proximation, to a large part, subtracted the self-
interaction of the electron. Table I gives additional
results for some excited states of an H atom. The
effects of the deviation from spherical symmetry
in the approximate scheme have been included by
perturbation theory. These results show a good
agreement with the exact numbers. The excited
states of the H atom have a successively reduced
characteristic density and, according to Table I,
a successively more negative difference between
the LSD and the exact results. This was argued in
Ref. 45 and used there for extrapolations to Li
and Na. Table I also illustrates that the approxi-
mate functional can produce energies lower than
the exact ones.

In Table D we give results for some two-elec-
tron atoms. The difference between our (- 77. 8
eV) and Tong-Sham's value (- 76. 9 eV) for the
energy of the He 'S state can be traced back to the
use of somewhat different electron-gas data as
input for the potentials. There is a slight uncer-
tainty in the last figure of our H value, owing to
slow convergence towards self-consistency.

To illustrate the reasonable account of exchange
and correlation for valence electrons in the LSD
approximation, we present results for the first-
row atoms and some noble-gas and alkali atoms
in Table III. The ionization potential of an atom is
obtained as the difference between the ground-state
energies of the neutral atom and the singly ionized
ion. In Table III our results are compaxed with
those of Tong and Sham, "based on the LD ap-
proximation, those from the HF-~SCF method
[n SCF is a method in which the threshold energy
is taken as the difference in total energies of two
self-consistent-field (SCF) calculations], 79 and
with experimental results. We see that the de-
viation from the experimental results is on the
average smaller and has a smoother variation
from atom to atom in our calculation than in the
other ones. As a matter of fact, the LSD values



13 EXCHANGE AND CORRELATION IN ATOMS, MOLECULES, . . . 4291

Atom

H

He
Li
Be
B
C
N

0
F
Ne
Ns
Ar
K

13.4
24. 5
5.7
9.1
8.8

12.1
15.3
14.2

18.4
22. 6
5.6

16.2
4.7

LD

12.0
26.4
5.4

16.5

22. 5
5.3

16.1
4. 5

HF-Lh, SCF

5.3
8.0
7.9

10.8
14.0
11.9
16.2
19.8
4.9

14.8
4. 0

Expt.

13.6
24. 6
5.4
9.3
8.3

11.3
14.5
13.6
17.4
21.6
5.1

15.8
4.3

TABLE III. Ionization potentials in eV of some light
atomscalculatedinthe LSD, LD (Ref. 76), and HF-6SCF
(Ref. 79) approximations and compared with experimental
results (Ref. 80).

between contributions f rom various misrepresen-
tations.

In Ref. 45 we have discussed the LSD hole in
the hydrogenlike atoms. In these systems, the
role of the hole is to cancel the self-charge of
the electron. Here we discuss another cl.ass of
extreme systems, the two-electron ions. For
these ions the LSD hole has to model not only the
cancellation of the self-charge but also the corre-
lation between two electrons having opposite
spins. This correlation can be described by the
distribution function for interelectronic distances
f(r,a) which gives the probability of finding two

electrons at the distance x&2 from each other and
which is related to the interaction energy

(72)

for the ionization potentials would systematically
become smaller if our interpolation formula (54)
had been improved for r, smaller than one, as
suggested in Sec. III A. We estimate this reduc-
tion to be about 0. 2 eV for He and 0. 4 eV for 0
and of similar size for the adjacent atoms. The
reason for the HF method being worse for 0, F,
and Ne is that opposite spin correlations are im-
portant in more than half-filled electron shells.
We want to attach significance to the substantial
improvement between our results for H, He, and

0 and those in the LD approximation. For in-
stance, in the ion 0' the three outermost 2p elec-
trons have their spins lined up according to Hund's

rule, and in neutral 0 there is a substantial spin
polarization too. The improved value for the ion-
ization potential shows that the LSD approxima-
tion models this spin-polarized situation better
than the LD approximation. ' The similarity of
the LD and LSD results for Ne and Ar reflects
primarily the smallness of the spin polarization
of the corresponding ions.

The results given in Tables II and III have been
computed within the central-field approximation. 8

Such an approach does not make full use of the
flexibility of the SDF formalism, and it gives
only some average over the energies within one

configuration.

3. Exchange-eorrela jion hole

To get a feel.ing for the LSD approximation and
for how to get improved approximations, it is
useful to discuss the exchange-correlation hole,
defined in Sec. IID. The approximations are
bound to misrepresent the hol. e in some regions
of space, and the degree of success of the approxi-
mations depends on the weights attached to the
various spatial regions and on the cancellations

The correlation effects are made explicit by the
definition ' &f(r,a) =f (r,a) f»(-r, a), where f»(r, a)

is the HF result.
To calculate &f(r,a) in the LSD approximation,

we have used the interpretation discussed in Sec.
IID. We have separated out the correlation func-
tion for different spins,

(P.(rs) P-(ra) ) =P.(ri) P (ra) + P, (rg) P (r1)

&& [g. (
~
r, —ra, p(r)) —I ], (73)

TABLE IV. The change of the average inverse inter-
electronic distance due to correlation effects, 4 (r&2),
in a.u. for some two-electron systems. The accurate
results are from Ref. 87.

Atom

H

He
Li'

—0.083
—0.122
—0.145

s(~»)
Exact

—0.069
-0.080
-0.084

from the total correlation function (38). In this
way we can discuss the account for correlation
separately from the description of the cancella-
tion of the self-charge. The pair-correlation func-
tion g, of the homogeneous electron liquid has
been constructed from dielectric and susceptibil-
ity functions with local field corrections. The
results obtained are shown in Fig. 11 and com-
pared to the accurate calculation of Banyard and
Seddon, The LSD approximation tends to keep
the electrons too far apart but gives a semiquan-
titative account for the correlation. The quantity
&(r,z'), the change of the average inverse elec-
tronic distance due to correlation, is shown in
Table IV. The agreement with the accurate the-
ory ' is best for H, the deviation increasing with
increasing atomic number. This illustrates that
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the description of the correl. ation gets worse when
the electrons get more tightly bound.

In this way, we have seen that correlation be-
tween different spins makes greater demands up-
on approximate treatments of E"' than the cancel-
lation of the self-charge, In the LSD approxima-
tion, however, the total energies of H and He
(see Table I) are close to the experimental results.
This depends to some extent on a cancellation of
the errors in the exchange, in these cases the
cancellation or self-charge, and correlation en-
ergies.

We expect the semiquantitatively good descrip-
tion of correlation for H, He, and Li to be im-
proved for the valence electrons of bigger atoms,
according to the argument given in Section IV A2.

0

0,02

0,04

0,0

0,02

0,04
hf(r)

r 006

B. Molecules

1. General considerations

The standard approaches for molecules are the
molecular-orbital-Hartree-Fock (MQ-HF)' and
Heitler-London (HL)" methods. The MO-HF de-
scription emphasizes the delocalized electron-
sharing aspect, but its neglect of correlation
implies too much weight in ionic configurations.
The HL approach, on the other hand, stresses the
resonance between degenerate states involving
localized electrons but neither does it include
electron hopping between the nuclear sites nor al-
low charge transfer. The SDF formalism provides
means to bridge the gap between these two methods.

The MO method provides a conceptually simple
description. Its fundamental basis has been the
HF method. 9 Many of the shortcomings of the
MO-HF method, such as inaccurate values of dis-
sociation energies and improper description of
bond breaking, stems from the absence of correla-
tion effects. However, the orbital concept is well
defined for all forms of the exchange-correlation
functional in the SDF scheme as well, as can be
seen from Eq. (14). Therefore the SDF formalism
provides a basis for a one-electron MO description
with correlation included.

For instance, the SDF formalism gives a general
framework for the Woodward-Hoffman rules for
concerted reactions. A helpful device in applying
these rules is a correlation diagram which is a
generalization of the Hund-Mulliken united-atom-
separated-atom correlation diagram, and in which
one draws the orbital levels of the reactants and
the reaction products and then connects the levels
of the same symmetry. Although the energy param-
eters e;, in Eq. (14) are not excitation energies,
they are useful quantities anyhow. When calculating
the density in Eq. (15), we populate the energy
levels from below until we have used up all the
electrons of the system. This implies that the

0,0

0,02

0,04

0,06

0,08

2
r

3 4

FIG. 11. Change ~(r&2) due to correlation effects in
the probability of finding the two electrons a distance r&2
apart for some two-electron ions. This quantity is given
as a function of the reduced distance rZ, where Z is the
nuclear charge. The accurate result is from Ref. 87.

energy parameters z;, correspond to the orbital
energy levels of the correlation diagram. Thus
the SDF formalism provides means for calculating
complete correlation diagrams and state diagrams
for reactions, including the determination of
reaction heat, energy barriers, and promotion
energies.

To describe dissociation and chemical reactions
properly, it is important that the theory gives the
right separation products. The HF approximation
has well-recognized difficulties in this respect
and the conventional restricted Hartree-Fock
closed-shell solution, which satisfies the sym-
metry requirements, frequently does not dis-
sociate properly. ' With increasing nuclear separa-
tion it may become instable towards solution with
broken symmetry, described by the unrestricted
HF solution, where each electron is allowed to
move in a different potential. ~ This electronic
instability corresponds to the Mott transition in
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solids. + The solutions with broken symmetry
are described as spin- or charge-density waves. "

In the LD and similar approximations, the DF
formalism has difficulties similar to those of the
restricted method. The SDF formalism, on the
other hand, provides the possibility of having dif-
ferent orbitals for different spins. It can easily
describe, e. g. , the typical situation, where the
equilibrium state of the molecule is a singlet,
while the molecular constituents, once isolated,
have a net spin, and the gradual transition in be-
tween. In the LSD and similar approximations,
however, the solution at large nuclear separations
will break the symmetry, like in the unrestricted
method, while the true solution should involve a
resonance between degenerate states, like in the
HL method. '~ For the class of problems to which
the SDF formalism is limited, such as the calcula-
tion of the total energy, this might not be a serious
limitation, as one can formally introduce a sym-
metry-breaking magnetic field to stabilize the
spin-density wave.

With the generalization mentioned in Sec. II, the
SDF scheme applies not only to the absolute ground
state but to the state with the lowest energy for
each completely specified symmetry of the mole-
cules as well. In this way many of the molecular
states of chemical interest might be studied. The
scheme allows vibrations and rotations of the
molecule and the corresponding contributions to
the thermal properties, to be treated within the
Born-Oppenheimer approximation. ' Further, it
can be used for calculations of the free energy of
activation of chemical reactions and the equilibrium
rate constant. 6

There are in the literature several calculational
schemes that can be used for the SDF formalism,
as the scattered-wave method, ~ the method with
linear combinations of muffin-tin orbitals, ~ and
the discrete-variational method. ~ The formalism
is also useful in, e.g. , the linear combination of
atomic orbitals representation, such as our cal-
culation in Sec. IV B2. While being a simplifying
feature in the first class of methods, the local
exchange-correlation potention v",'(r) in Eg. (14)
might, in this case, introduce some additional
computational complications.

Z. Application to H2 molecule

As a simple illustration, we apply the SDF
formalism with the LSD approximation to H~,
in a linear combination of atomic orbitals treat-
ment with a restricted basis set. This calculation
shows the major features of the exact solution. ~

As a matter of fact, the use of a small basis set
is less restricting in this case than in, e.g. , a
conf iguration-interaction calculation. In the latter
method many functions are needed to describe the

E„=2x( [1 —y(K+ S)]—2x)(2 —J —2yK)

+x $(~4+ J'+4yI-+ 2y IP)+E„, {75)

where x= (1+c2)/(1+ c~+ 2cS) and y= 2c/(1+c') for
the ground state (~Z ), and x= (1 —S ) t and y = —S
for the lowest excited state (~Z„).

The energy integrals K, J, J', L, and K' are
defined in Table 8-1 and Eq. (4-5) of Ref. 89,
and E"' is evaluated with the spin density from
Eqs. (15) and (74}.

The results of our calculation for the 'Z, state
are shown in Fig. 12. The LSD energy curve fol-
lows the accurate result closely, significantly
closer than the HF and HL' results. Unlike
the HF method, the LSD approximation gives dis-
sociation properly into neutral hydrogen atoms.
This is, however, not the case in the LD approxi-
mation, corresponding to c = 1, as shown in the
figure. The proper bond breaking is thanks to the
flexibility of the SDF formalism and of the ansatz
(74), which allows a symmetry breaking spin-
density-wave state to give lower total energy for
separation distances R greater than 3. 2 a. u. The
degree of spin polarization is shown by the curve
for the constant c in Fig. 12. The spin-density-
wave solution is similar to what is obtained in the
unrestricted HF method. ~'94 The small energy dif-
ference between the LSD and accurate solutions
is an indication that the flipping between the two
denerate spin arrangements, stressed to be im-
portant in the HL method but left out in our spin-
density-wave solution, might give only a small
contribution to the binding for R greater than 3. 2
a. u. It is obvious that the method is inadequate
for phenomena where this flipping plays an im-
portant role.

For the 3Z„state, the ansatz (74) is too restrict-
ed (requiring the same exponents for the bond-
ing and antibonding orbitals) to allow any definite

effects of correlation, while in the SDF formalism
correlation effects are built into the functional.

The two orbitals contributing to the spin density
(15}are described by the ansatz g; =4';}(, where

is a spin function and

4';(r) =[p,(r)+ cy, (r)]/( I+2cS+c )~~~,

i, j =a, b, zw j, (74)

with y, (r)= p(r, ), y(r) = (]~/w)'~me ~", r, = }r-Q,},
8, being the position of the proton a, and S
= fd'r p, (r)y, (r). In the ground state, the two
electrons have opposite spins. Then the ansatz
(74) allows the spin polarization around proton a
to be opposite that around b, provided that the
constant c is different from unity.

With the ansatz (74), the total-energy expres-
sions (18) and (25} become, after some simplifica-
tions,
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FIG. 12. Energy of the hydrogen molecule as a function
of the internuclear distance. The full curves show the
results in the LD and LSD approximations, which differ
for R & 3.2. The dashed curve gives the accurate result
of Ref. 99. The upper part of the figure shows the quan-
tity c in Eq. (74), which gives the degree of spin polari-
zation. For c=1 the system is unpolarized.

than the value 4 of the HF-MQ method and for R
smaller than 3 a. u. slightly smaller than in the
HL method. This implies a strong suppression
of charge fluctuations. The LSD exchange-cor-
relation hole gives this result, however, by in-
adequately cancelling the self-charge.

A measure more intimately related to E„,[Eqs.
(34) and (72)] is the average (r~~~), defined in Eq.
(72), for which there exists accurate data in the
literature. ' In Fig. 13 results obtained with
restricted basis sets are compared with the ac-
curate result. The LSD result lies close to but slightly
below the accurate curve for all the indicated
nuclear separations R. The HF average is con-
sistently too high. The HL result is good at in-
termediate separations, including the equilibrium
distance. This indicates that it is not due to ex-
treme correlation but rather to its extreme avoid-
ance of interference (hopping) that the HL method
is inaccurate. The LSD approximation, on the
other hand, includes both correlation and hopping.

In this context it should be stressed that ex-
change and correlation often have different rela-
tive importance for the molecule than for the con-
stituting atoms. The latter have often a net spin,
and the Pauli principle plays an important role in
keeping the valence electrons apart. As the atoms
are brought together, electrons with different
spins can form pairs in which there are strong

conclusions about the LSD approximation. The
energy curve has roughly the same accuracy as
the MQ-HF and HL results however.

3. Exchange-correlation hole

Qur calculation on the H~ molecule illustrates
how the inclusion of correlation in the LSD ap-
proximation suppresses ionic fluctuations, in
particular at large separations. A study of the
exchange-correlation hole shows this in more de-
tail.

As in the atomic case, there is no point of mak-
ing too detailed a comparison between the LSD
and exact holes. The exchange-correlation hole
enters the theory only through Eq. (34), and it is
only through cancellations of error in the averag-
ing occurring in this expression that an approxima-
tion can be successful. The probability for two
electrons to be in the same half of the molecule,
e.g. ,

0.6

0.4

0
P= d &gd'v2 rg p rp

g~ &Op g~ &0

p r~ p {76)

is considerably smaller in the LSD approximation

R ao

FIG. 13. Average inverse electronic distance (y&2)
for H2 in various approximations as a function of the in-
ternuclear distance R. The HE, HL, and LSD results are
obtained using a minimal basis set. The accurate result
is from Ref. 100.
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correlation effects. This greater importance of
correlation in the molecule is quantitatively very
significant, accounting for typically (25-50)% of
the binding energy for simple molecules. While
it seems very unlikely that such differing behaviors
can be described with a single n value in the X~
method, ~~ the more flexible LSD approximation
seems well suited for modelling the situa-
tions.

C. Solids

For simple metals, the density-functional for-
malism has been used for a long time in pseudo-
potential theory. In such a theory, the density,
the total energy, etc. , are treated to the lowest
order in the effective electron-ion interaction,
the pseudopotential. '+ A conservative estimate
of the error of the pseudopotential and the elec-
tron-liquid dielectric function, as known presently,
is 0. 1-0.2 eV. The LSD approximation is not
expected to increase this uncertainty when the
density variations have wavelengths longer than
v/kr, where kz = (3v n) Ia is the Fermi wave vectorat
thedensityof the metal. ~~ Inaddition, there have
been successful applications of the LSD approxima-
tion to the calculation of cohesive energies, "4'

of transport coefficients, and of activation en-
ergies for hydrogen diffusion. ~~ The calculated
spin susceptibility is also in accord with experi-
mental results. ' The rather successful applica-
tions to metal surfaces have been reviewed recent-
y by Lang F09

Noble and transition metals are rather more
demanding owing to the more rapid spatial varia-
tions of the d electrons. The approximation seems
to have some difficulties withstanding a detailed
comparison with experimental Fermi-surface
data for Cu. The discrepancy may, however,
be reduced when the Fermi surface is properly
considered as an excitation property.

The applications to solids, mentioned so far,
have all been on paramagnetic phases. The SDF
formalism has been used only for the atomic state
in the cohesive-energy calculations. "' Among
the transition and rare-earth metals, however,
there are naturally spin-polarized phases.

The SDF formalism should provide an ideal
framework for describing the thermodynamics of
magnetic systems. For instance, the one-electron
nature of the central equations (9) makes it an
obvious basis for a band theory of magnetism
which owing to its inclusion of correlation, is
more general than the HF method. "' Provided
that one could find a representation that does not
utilize the Bloch condition, the SDF formalism
should allow a description of paramagnets with
local moments too. The central issue is the con-

struetion of the exchange-correlation-energy func-
tional E„,. That the LSD approximation already
contains much of the essential physics is illustrated
by its modeling of Hund's first rule in atoms (Sec.
IV A) and by its ability to suppress polar fluctua-
tions, illustrated for molecules in Sec. IV B.
With the local spin polarization defined by Eq. (11),
the SDF formalism in the LSD approximation
should be applicable to antiferromagnets.

Although only a full-scale calculation could give
a proper picture of the effect of correlation on
spin-split energy bands, we will, with an example,
give a rough indication of the trend in the local
spin-density approximation. Average d-electron
spin densities in Fe, Co, and Ni correspond to
P values between 0.05 and 0. 3 roughly, which are
in the region where p, ",' and V,

"' depend almost
linearly on l'. Correlation gives here a (15-20)%
reduction of the HF value for the difference be-
tween the potentials for up- and down-spin elec-
trons and thus of the band splittings. This sup-
ports the experience from, e. g. , accurate fitting
of energy bands to Fermi-surface data by Zorn-
berg. ' While a calculation using the Kohn-Sham
potential (41) on Ni has given splittings of about
0.8 eV, empirical fitting of an interpolation scheme
has given splittings ranging between 0. 4 and 0.6
eV, depending on the experimental criteria used. "
Similar results have been obtained for Fe, ' and
the same experiences have been drawn in full-
scale band calculations with the X~ method. '
While an ~ value around 0. 8 was found suitable
for the energy bands, a value as small as 0. 5 was
required to fit the magnetic moments. ' We con-
clude from this that realistic energy bands are to
be expected from the application of the exehange-
correlation potential proposed in this paper. This
conclusion is supported by recent band calcula-
tions. Use of calculated Stoner parameters
and published densities of states in the Stoner
criterion has shown the LSD approximation to
give systematically the right prediction about the
relative stability of para- and ferromagnetic
phases of V, Fe, Co, Ni, Pd, and Pt, which
shouM be considered as a support for the sound-
ness of the LSD approximation, Eqs. (19) and
(55).

One possible application of the homogeneous
electron liquid is as a model for the conduction
electrons in rare-earth chalcogenides. The lower
parts of the conduction bands have ellipsoidal en-
ergy surfaces with not too different transversal
and longitudinal masses. ~~5 The wave functions of
the low-lying conduction-electron states are rather
extended'" and, thus, a free-electron description
should be reasonable. Measurements of the spin
splitting of the conduction bands~~6 indicate that by
suitable doping 7 one can vary g over the whole
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range between 0 and 1, with typical values of the
effective r, around 0. 5. However, the d charac-
ter of the wave functions might introduce large
enough inhomogeneities in the spin densities to
make this application less ideal.

V. SUMMARY

In this paper we have reviewed and extended the
spin-density-functional formalism. We have found

the formalism to apply to the lowest state of each
symmetry, i.e. , also to some classes of excited
states of the system under consideration. The
extension to more general Hamiltonians, such as
those including the spin-orbit interaction, has been
shown to be trivial.

The SDF formalism owes its interest to its
simplicity, with its basic equations being one-
electron Schrodinger equations with local potentials,
and its inclusion of correlation effects. The latter
enter the scheme through a functional for the ex-
change-correlation energy E„,. We have expressed
this functional in terms of the pair correlation
function at various strengths of the interelectronic
coupling. This expression has been used to show
that it is sufficient for the approximate exchange-
correlation hole to give the spherical average right
but necessary for it to include only one electronic
charge unit. These are clues to why simple ap-
proximate functionals, such as that of the local-
spin-density approximation, can give useful re-
sults for large classes of systems.

Another advantage of the spin-density version
of the scheme is that it allows greater flexibility
in the construction of E„,than does the density-
functional formalism, the simplest extension being
the replacement of the local-density approximation
with a function depending on the local spin density.
The latter LSD approximation has been shown to
give quantitative improvements when spin-polar-
ization plays a role. For instance it gives im-
proved results for ionization potentials of atoms, for
the dissociation energy of small molecules,
and the cohesive energy of simple metals. "' '
Examples of qualitative improvements are the
modeling of Hund's first rule for atoms and the
description of dissociation of molecules into proper
separation products, thanks to the spin-density-
wave solution allowed by the greater flexibility.

A commonly used local functional of the spin density
is that of the X~ method. a Some advantages of
the LSD approximation compared with the latter

method is that (i) it is formally exact in the limit
of slow and weak spatial variations; (ii} it is
described by one simple formula, the same for
all systems; and (iii) it has shown to give better re-
sults in several applications to valence-electron
systems, in particular significantly better results
for spin band splittings in transition metals. As
discussed in Sec. IV, the LSD approximation does
not give good results for tightly bound electrons,
such as core electrons in atoms. Judging from
calculations performed so far, the accuracy of
the LSD approximation for valence electrons
should be in the range 0. 1-0.5 eV for energies.
This is the range of errors found in Sec. IVA2
for the ionization potentials of the first- and second-
row atoms. From the molecular calculations,
typical values for the error in the binding energy
of 0. 5 eV and in the nuclear distance of 0. 05 a. u.
have been extracted. The cohesive-energy calcula-
tions' ' indicate a smaller error, with the rather
large error (0. 5 eV} for Al illustrating the sdditiv-
ity of the errors (three valence electrons) and
those of Ca (0. 3 eV) and Cu (0.6 eV) signaling dif-
ficulties connected with the d electrons. From
the calculation of spin splittings of the d electrons
in transition metals, an uncertainty of at most
0.3 eV can be inferred for the calculation of
Stoner parameters.

To provide data for the exchange-correlation
functionals, extensive calculations on the spin-
polarized homogeneous electron liquid have been
performed. Compressibilities, susceptibilities,
and dielectric response of this system have been
calculated and discussed. For several of these
properties, and in particular for those involving
a change in the magnetization, correlation effects
are found to play a much more prominent role
than in the paramagnetic electron liquid.
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