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Strain effect on the electronic density of states and dc conductivity of disordered binary alloys
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A single-band model calculation is developed for the effect of strain on the temperature variation of the
electronic density of states and the electrical conductivity of disordered binary alloys. Experimentally, strain

has only a small effect on the temperature variation of the conductivity. Shifts in the Fermi level and
distortions of the density of states under different strains are found from the calculations. The small change in

the temperature variation of conductivity under strain is a result of competition between these two effects.
Methods to extract physical parameters characterizing alloys from measurements of the strain and temperature
variation of the resistivity are discussed. Suggestions are also made about materials-selection criteria for strain-

gauge applications.

I. INTRODUCTION

The macroscopic electronic properties of alloys,
such as the dc electrical conductivity, have been
fruitful subjects for experiments. But the theoret-
ical interpretation of these properties has lagged
far behind the wealth of experimental information.
It is especially important to develop a theory for
the resistivity of concentrated alloys, because
many of the experimental methods that helped the
understanding of pure metals, e. g. , cyclotron
resonance, de Haas-van Alphen effect, etc. , do
not work at all in alloys. For disordered systems
many physical properties can be related to the con-
figuration-averaged Green's function. There was
a long search for a method to calculate this aver-
age Green's function, and the coherent-potential
approximation' has been found to provide a conve-
nient and accurate approximation for it. Chen,
Weisz, and Sher (CWS) have performed a model
calculation of the temperature dependence of the
electronic density of states and the electrical con-
ductivity of disordered binary alloys, based on
Velicky's' coherent-potential-approximation solu-
tions by introducing thermal disorder in the single-
band model. They found that the effect of thermal
disorder is to broaden and smear the static-alloy
density of states. The electrical conductivity in
weak scattering alloys always decreases with tem-
perature. However, in the strong-scattering case,
the temperature coefficient of conductivity can be
negative, zero, or positive, depending on the loca-
tion of the Fermi energy. Brouers and Brauwers'
have extended the calculation to an s -d two-band
model that accounts for the general behavior of the
temperature dependence of the electrical resistiv-
ity in concentrated transition-metal alloys.

In this paper we generalize Chen et al. 's worg
to include the effect of uniaxial strain on the terp-
perature variation of the electronic density of

states and the electrical conductivity of disordered
concentrated binary alloys. Experimentally strain
has a small but measurable effect on the conduc-
tivity, and our model calculations reproduce this
general trend. %e find that the major effect of the
strain is to introduce an effective scattering
strength 6,«=6+s"-s, where s" and s are the
strain deformation energies of the A and B atoms,
respectively.

D= n e„n

represents the "static-disorder" Hamiltonian with

&„either &" or z, according to whether an A or
B atom is on site n;

~ =Q In)e„&nI (4)

is the electron-phonon interaction; and

s=g In). „&nI

is the strain deformation Hamiltonian due to an
externa. l force (see Appendix A). The phonon op-

II. MODEL

The simplest possible model electron Hamilto-
nian that includes substitutional impurities, ther-
mal disorder, and strain deformation, is that of
a single-band model,

H =Ho+D+9+S,

where

(2)
m, n

represents the part of the Hamiltonian off diagonal
in site indices, and the transfer integrals h „are
assumed to be periodic and independent of alloy-
ing and lattice distortion;
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erator O„depends on which ion occupies site n and
on the phonon energy, while the deformation oper-
ator s„depends on which ion occupies site n and
the strain deformation energy.

Following the method of CWS it is easy to show
that the appropriate generalization of their Eq.
(66) for the single-site self-energy Z when the
strain energy is included is

(((&„+8„+s„-Z)/[1-(~„+8„+s„-Z)P]))=0, (6)

where as usual F(z) = (0 IG(z) 10) is the site-diagonal
average Green's function, and the double average
denotes averages over configurations and thermal
lattice displacements.

In order to calculate the conductivity and density
of states, a method to compute the averages in the
self-energy equation, Eq. (6), is needed. This
has been accomplished for the electron-phonon in-
teraction in CWS's paper, ' and our attention is now

directed to its generalization to include the strain
deformation of the alloy.

where

&.(n) = 2—f s~ ""(.(&),
~ OO

(i2)

(14)

Following the procedure developed by CWS, ' the
distribution function becomes

P„(q —s ) =(2)/a, )-1/2e-(n-sn) / nn (15)

where n„, related to the Debye-Wailer factor, is
roughly estimated' at high temperature to be

and the characteristic function (/r„(X) is defined as

y„(A) = Tr,„(o,„e' ) .
Under uniaxial strain, it is assumed that each lat-
tice site stores the strain deformation energy s"
or s, according to whether an A. atom or B atom
is located at that site, so the infinite range of the
integral Eq. (11}permits it to be rewritten

III. DISTRIBUTION FUNCTION n„= 0. 2T/T (16)

In the spirit of previous calculations that treat
only random diagonal terms, we can incorporate
all off-diagonal contributions from phonons and
strains into the hopping integrals. Then following
the usual practice of dropping lowest-order effects
of strain and phonons on the electron effective
mass, we neglect them. The remaining electron-
phonon and strain terms do not conserve crystal
momentum and are represented in our model [Eqs.
(4) and (5)] by the local Hamiltonian

and T is the melting point for pure crystals con-
sisting of the type of atom located at the rnth site.
The derivation of Eq. (16) assumes that the Fermi
level is at the center of the band. From Eq. (15),
the strain can be seen to shift the center of the
distribution function while the temperature broad-
ens it. Consequently, the higher the temperature
the less important a given strain is to the elec-
tronic properties.

The scalar integral equation for Z now becomes

a„,=e+s=P ln)(8„+s„)(nl . (7) dg 2ra -1&2 -&g-sn& /2nn + ~ =0
n

I
e

I I 2

1 —(e„+q —Z)E

(f(8„+s„)) = Tr,„[o,„f(8„+s„)],
where

(6)

The phonon average of any function f(8„+s„)of the
operators 8„and s„ is

(17)
Define a local distribution P„(r/), which is the av-
erage of P„((7) over all configurations with an /1

atom at the nth site, and define Ps(ri) similarly.
Then Eq. (17) becomes

p,.=e '"n"[».(e '"n")1', (9) J &"+n-~
dg xP~ q-s

and the trace is over all states of the lattice mo-
tion. B» is the Hamiltonian describing the atomic
motion of the alloy in a given configuration and is
defined by

(16}

Again following CWS, we take

Pz s((7-s ~ ) =(2so~ s)~ ze n +' nr(. s . (19)
1

3N

ff,„=P k(d, (-,'+ b,'b, )
s=1

in the harmonic approximation, where b~ and b,
are the creation and destruction operators for a
phonon in the state with frequency +,.

The average (f(B„+s„))~can also be written in
terms of the probability distribution P„(q} as

(10)
The input parameters n„and nB are linear in tem-
perature at high temperatures. At low tempera-
tures the n's are proportional to T, rather than
the Bloch T' behavior arising because momentum
scattering rates enter for pure crystals. ' We
speculate that since impurity scattering, for mod-
erately large scattering strengths 5 and impurity
concentrations x, broadens the electronic momen-
tum states to widths that exceed the Debye energy,

(r(& .)), = f & r( 9' n(n. )n, ~ .
OO
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all electron-phonon scattering events correspond
to large-angle scattering so the T' law may be the
correct low-temperature limit.

IV. MODEL CALCULATIONS

In order to calculate the density of states p(E)
and the conductivity o; we must first review the
procedure for finding the self-energy Z. Once
the self-energy is obtained the density of states
p(E) can be computed. However, since in this
paper we are investigating only the general trends
introduced by strain, it is neither convenient nor
profitable to start the calculation from a detailed
e(k). Instead, a simple model form for the pure
crystal density of states pu(E) will be used. Fol-
lowing Velicky and CWS, we have adopted the
Hubbard ellipse model

(20)

where the energy is in units of the half-bandwidth
w. Define the origin of the energy and the scatter-
ing strength 5 by

uniaxial strain at each temperature can be found

by solving the equation

6F
c=2 p(s) ds,

e cc

where c is the average number of electrons per
alloy atom and is given by

C =XCA PCB (26)

where c„and CB are the numbers of electrons per
atom for pure A and 8 crystals.

V. NUMERICAL EXAMPLES

In what follows we pick some typical values of
each parameter for numerical illustration of the
results. In Fig. 1 the self-energy is plotted as a
function of energy in units of the half-bandwidth.
The alloy has a constant concentration x =0. 5 and
scattering strength D =0. 8, but four different
strains are chosen: the strain potential energies
are s"=0, 0.025, 0.045, and 0.095 denoted, re-
spectively, byA, 8, C, D. In this figure nA is
set equal to aA =0.0075, which represents a tem-
perature near room temperature for typical crys-

A B (21)

p'(ss) 6&(ss)' d (&s) sp(ss)
(23)

in units of the half-bandwidth.
To solve for Z from the integral equation, Eq.

(18) or Eq. (6), rewrite it in a form that is useful
for iteration (once again see CWS for details)

Z =z ——,
' Z —(([z —(s„+e„+5„) ——,

' Z]-')&-' . (22)

This relation can be reached more directly by
combining S and D instead of combining 8+S (see
Appendix 8), but then the insights gained from Eq.
(19) are lost. Comparing Eq. (22) with Eq. (118)
in Ref. 2, it is clear that if s"=s, the self-energy
and the density of states are identical to those of
an alloy without strain except for a shift of the en-
ergies e" and & by the strain potential energy s".
In general it can be seen from the form of Eq. (22)
that the effect of the strain on the self-energy is to
introduce an effective scattering strength 5,« = 6

+S —S
To compute the conductivity, we assume a cubic

lattice, so the averaged conductivity is isotropic.
Then CWS were able to derive a simplified con-
ductivity formula

0.30 ~

0.24.

0.18.

0.12

0.06.
C9
K
LLj

5
I

LLJ

~o.o6-

-0.12

-O.18

-0.24.

-1.2 -0.8 -0.4

i i'r I
y

/

y &/
/

0 0.4 0.8
ENERGY

1.2

if the Fermi level &F is not too close to a band
edge, or other singularity, and where

cn---s e tv /120, , (24)

with v being the maximum velocity in the band.
Thus the conductivity is a function of the density of
states at the Fermi level. The Fermi level under

FIG. 1. Self-energies for an alloy at a finite tempera-
ture characterized by ns = )os = 0.0075 under four differ-
ent strains: A curves, s = s = 0; B curves, s = ass
=0.02 6; C curves, s =ps = 0.04 g; D curves, s =sB
=0.09 5. The figure is for an alloy with & =0.5, p =0.8,
and the energy is in units of half-bandwidth. The real
part of the self-energy is denoted by the solid line and
the imaginary part by the dashed line.
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FIG. 2. Density of states under strain corresponding
to the four cases in Fig. 1.

tale. The ratios ns/n„and ss/s" are both set
equal to 2. The choice ns/n„=ss/s" was made
because the n's and the s's both depend on the
same restoring forces so their ratios should be
approximately equal. The real part of the self-
energy (solid line) is shifted toward higher ener-
gies as the strain energy increases and the posi-
tion of the valley in the imaginary part of self-en-
ergy has that same trend. The depth of the valley
in the ImZ decreases as s" increases. This is a

A. B Areflection of the decrease in 5,« = 6+s —s = —s
as s" increases. The tilt of the ImZ from high to
low energy is a consequence of the choice ns/n„
= 2. The iteration procedure yields unreliable re-
sults for ImZ near singularities, i.e. , band edges.
However, in these regions ImZ is small so the
density of states can be found from the relation
p(Z) -=n, (z —fez(E)). '

The densities of states for the strain energies
corresponding to the alloy of Fig. 1 are shown in

Fig. 2. Increasing the strain energy contracts the
band slightly and shifts it to the right. The density
of states also becomes more unsymmetric, with
the upper-energy part contracted more than the
lower-energy part.

Once the density of states and the imaginary part
of the self-energy are known, the conductivity as a
function of the Fermi level is easily obtained from
Eq. (25). Figure 3 depicts the conductivity for an
alloy with the same parameters as shown in Figs.
1 and 2. The small change in the temperature
variation of the conductivity under strain is a re-
sult of a competition between distortions of the
density of states and a shift in the Fermi level.
The strain distorts the density of states which af-
fects the conductivity by changing the effective car-

rier concentration and the density of final states
into which electrons can scatter. However, as the
density of states distorts, the Fermi level also
changes in such a way that it tends to fall on the
density of states of the undistorted crystal.

As discussed in previous papers practical cal-
culations of the conductivity of an alloy are most
easily pursued as a function of the number of elec-
trons per atom instead of fixing the Fermi level.
In Fig. 4 we present this kind of plot for different
temperatures. The three curves correspond to the
temperatures: aA=0. 00375, 0.0075, 0.015.
Overall the change in conductivity is proportional
to the strain potential energy. It is clear from the
analytical expression [Eqs. (15), (19)]as well as
the numerical results that the sensitivity of the
conductivity to strain decreases as the tempera-
ture increases. This can be seen by comparing
the spacing between two adjacent curves at each
temperature. The explanation of this phenomena
is that the thermal motion averages out the co-
herent strain displacements.

Figure 5 shows the corresponding resistivity as
a function of strain potential energy s" at various
temperatures for the two cases: (a) the number of
electrons per atom per spin is 0.25, (b) the num-
ber of electrons per atom per spin is 0. 5. It is
interesting to see that in case (b) the strain affects
the resistivity much more than in case (a). This
indicates that the strain effect on the electrical
resistivity is sensitive to the location of the Fermi
level.

0.7.

06

B
C

D

0.5
~O

I 04

O
~op.

O
O

0.2

O. l

t

t
t

I 2 08 04 0 04

FERMI ENERGY

0.8 I.2

FIG. 3. Electrical conductivity 0 as a function of Fer-
rni energy under the different strains corresponding to the
four cases in Fig. 1.
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FIG. 4. Electrical con-
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the numbers of electrons
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alloy with@ =0.5, p = .8
and e~/nA=s /s =2 under
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VI. CONCLUSIONS

In these concluding remarks wwe wish to address
three (luestions: (a) How can the analysis pre-

d to help extract information
about a oys rllo s from experimental data? b W a

'
n do the insights gained from this s u ydirection o e

'

hnolo ical ap-su est to those concerned about tec n g'sugges o
strain gauges? (c)plications of alloys, e. g. ,

dd'tions need to be made to the theory so i
can be expected to apply to interesting cia
materials?

' it isThe major e ec off t f strain on the conductiv' y
'

in stre ththat it intro uces at d es an effective scattering streng
tal= 5+s - s =—5+s. Thus straining the crystaeff

modulates the scattering streng th and for a given
of the variation of the con-alloy it permits a study o

of 5. Note that while a eductivity as a function of
+)ss ( iven gnumerical examples are for s s g'

n to ex ect this inequal-there is no a priori reason p
ity to be true for a all alloys. Thus the strain can

to increase or decrease depending oncause eff
ic ro erties.of the alloy constituents atomic p p

The ink d of information that can be carne
var i the strain and the temperature can be seen

mini the analytic expressions
d b CWS for p, 4 and o in the specia case

a 50-50 alloy with 5 (1, nA = n~ = e, an
(See their Appen md' G ) These results are sum-
marized in the expressions

s inc(5, ~~, 0)
(2?)~(n.„, ) = (((.„,0)(( ~

eff~0 3 g2 +& off

where it is un ers ood t d that all quantities are eval-
uated at the Fermi energy. Since thethe n and strain

f 0 is seen from our numericalenergy variation o o i
examples to be nearly linear even for the rela-
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tively large values of s used, a good approxima-
tion to Eq. (27) is

o(50f55 o)

8 lno(5, 0) a 1no(5, 0)
l

8 lno(5, 0) 8 lno(5, 0) 8 lno(5, 0)
85 Ba Bn95

(3o)
The strain energy s is proportional to the stress
(see Appendix A), and at high temperatures n is
proportional to T. Thus there are four measur-
able quantities in Eq. (30): the conductivity at

zero strain and temperature, o(5, 0); the slope of
the conductivity variation with the stress P at zero
temperature, o(5, 0)[sino(5, 0)/85](s/P); the vari-
ation of the conductivity with temperature at zero
stress, o(5, 0)[sino(5, 0)/aa](n/T); and finally the
change in the last quantity with stress

alno(5, 0) alno(5, 0) 8 lno(5, 0) s n
ee a~ ' a~Bc I T'

There are also four unknowns in these expressions.
They are 5, o' (or u„), s/P, and o(/T. Since
there are four measured numbers, in principle all
the unknowns can be determined. For example,
the ratio of the measurable quantities

sins(5, 0) sins(5, D) 5'lns(5, 0) s 0 sins(II, D)

s 5( s(5, 0)
( ), 5'ln sins(5, 0) alas(5, 0))

depends only on 5 as can be seen from Eqs. (27)-
(29). While Eqs. (27)-(29) are valid only for a
50-50 alloy Eqs. (30) and (31}are correct, in gen-
eral, but they would have to be evaluated numeri-
cally in other cases. Thus for alloy systems
where the approximations of this theory hold, the
combination of the temperature and strain varia-
tion of the resistivity will yield the scattering
strength, the maximum electron velocity in the
band, and the temperature and strain coupling con-
stants (o(/T, s/P). Once these parameters are de-
termined then the density of states, the electron
scattering rate, and other interesting quantities
can be calculated for comparison against other ex-
periments. While this analysis is correct within
the context of the model treated, and it may even
be useful to experimenters in the interpretation of
trends in their results, the approximations are
such that its detailed application should be ap-
proached with some caution. These questions will
be discussed in more detail presently.

The sensitivity of strain gauges' is measured
by the gauge factor G which is the fractional change
in resist*nce divided by the fractional change in
length l of a resistor

l

values typically near 0.3.
Wiaterials are chosen for gauges' that have es-

sentially temperature-independent gauge factors
because a temperature variation of the resistance
will mask a strain variation. Although techniques
involving several gauges in bridge arrangements
exist to separate strain from temperature varia-
tions of the resistance, the ultimate limit to the
sensitivity of gauges in many applications remains
those caused by temperature changes. Thus, to
optimize gauge performance one wants [ao(5, 0)/
85]s large and negative, and 8 lno(5, 0)/aa -=0. Us-
ing the general theory one can hunt through 5 and
g parameter space to find the best values, and
then try to find a material that behaves in the pre-
scribed fashion. In the special case of the 50-50
alloy no one choice satisfies both requirements.
From Eq. (29) it is clear that 5 =0. 5 yields
8 1no(5, 0)/an =0 so with this choice there is no
first order temperature variation of the gauge fac-
tor; From Eq. (28) it is easy to show that

8 lno(5„„0) 8 lno(5) as
alnl a5 alnl

-'. o5'+2(1- 5'} as
y 2+-'&g2 y

(32)

where g is Poisson's ratio which for typical ma-
terials varies from q=0. 25-0. 5. A Poisson ratio
of 0. 5 corresponds to an incompressible solid, one
for which the length and width change in such a way
that the volume does not vary with applied stress.
Materials near their melting point seem to have
Poisson ratios near 0.5. Hard materials, e. g. ,
refractory metals near room temperature, have g

or, for 5=0. 5,

8 lno(5„„0) as
8lnl '

Blnl
'

From Appendix A an estimate of as/8 1nl is

@+K ) g Cg+%

=(o-o.5),

(33)

(34}

(35)
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with the variation depending mostly on the location
of the Fermi level and how close ~z and eel are to
one another. So for 5=0.5, q=0. 3, and Ss/Slnl
= 0. 2 we find

s =--,'(cy+ w) n, (Al)

where (e~+w) is the Fermi energy relative to the
bottom of the band, 6 is the dilation of the crystal

G =2.0, n ='V/V —=e„,(1+2') =c&'P(1+2)), (A2)
a fairly typical value for gauge materials. From
this estimate it is fairly clear that while 5=0. 5
minimized the temperature variation of the gauge
factor it may not enhance it much relative to geo-
metric dominated gauge factors.

On the other hand as 5-1 it is evident from Eqs.
(32), (33) that the gauge factor can become large.
However, in that case from Eq. (29) it can be seen
that the temperature coefficient will also be quite
large. We have not attempted a thorough search
though the parameters 5 and x to optimize the sig-
nal to error ratio for a strain gauge, but this kind
of detailed analysis may be worthwhile based on
the improved theory described below. However,
the general trend is that small temperature and
strain variations of the resistivity occur when the
Fermi energy lies in regions where the impurity
scattering rates 4 are large enough so the elec-
trons are quasilocalized. Large variations with
temperature and strain occur when the Fermi en-
ergy falls near band edges, or between two bands
as they begin to split, where the scattering rates
are small but so is the density of states, hence
both are influenced by small changes.

The problem with this single band model is that
alloys to which it might be expected to apply, e. g. ,
noble metal alloys, do not have large enough scat-
tering strengths (5&0. 5) to correspond to the inter-
esting cases. The transition metal alloys, which
do exhibit large scattering strengths, are not well
represented by a one-band model. Thus, while
the theory developed in this work is a necessary
first step, it must be generalized, following the
work of Brouers and Brauwers, to a two-band
model to be compared against experiment. In ad-
dition the effects caused by random transfer in-
tegrals need to be incorporated into the formal-
ism. "' Once these two first-order corrections
are made, the theory should be realistic enough to
predict the major trends of experiments, though to
be sure, many secondary effects, e. g. , scattering
from magnetic clouds, impurity clusters, etc. ,
will have to be included to complete the treatment.

APPENDIX A

"=X"P, n= (A3)

where

X = —3(Ep+K)Cgg(1+27/) (A4)

Hence, the strain potential energies s" and s~ are
directly proportional to the stress or the strain.

To estimate the relative size of s„and 5 examine
some typical parameters, ' e„„=—10 ', g=0. 3,
e~+w=10 eV=1.6x10" erg, 5=5 eV=8x10"
erg, then s"= 0.025. The numerical results dis-
played in the figures are for strain deformation
energies around the typical value arrived at here.

APPENDIX B

The average shown in Eq. (22) can be reached
in a more straightforward way by combining $ and
D in the simple band model Eq. (1). Let

D'=D+S= n E„+s„n

=P ~n&.„(n~, (B1)

where

~n ~n+Sn t (B2)

so the strain only changes the scattering strength.
Following the procedures in CWS's paper, Eq. (40)
is reached by substituting

g is Poisson's ratio, c,~ is an elastic stiffness co-
efficient, and e„„is the strain in the x direction re-
sulting from a stress P in the x direction. For
an alloy Poisson's ratio g and the stiffness coeffi-
cients are dependent on the ion configuration
around each site. However, the configuration av-
erages can be found for these quantities so dila-
tions 4" and 4~ can be assigned depending on which
type of atom occupies a given site. Thus it is pos-
sible to write

For a pure metal the deformation energy per
atom s can be approximated by'3

=E +S
gt = Eg+s (B3)
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