
PH YSICAL RE VI EW B VOLUME 13, NUMB ER 10 15 MAY 1976

Low-field magnetoresistance in metals
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Low-fiield magnetoresistance and Hall coefficient are calculated in the anisotropic-relaxation-time

approximation. Simple results are obtained for Fermi-surface models which can be composed of spherical,

cylindrical, and planar surfaces. Influences of the Fermi-surface geometry and the scattering anisotropy on the

low-field magnetoresistance are discussed. With small modifications the method is applied to polyvalent metals

with nearly-free-electron Fermiwurfaces. Simultaneous magnetoresistance and Hall-coefficient measurements

combined with a three-group model calculation for the electronic mean free path are suggested as a means to

determine the anisotropy of the electronic scattering in nearly-free-electron-like polyvalent metals. In an

Appendix the results are extended to the longitudinal magnetoresistance.

I ~ INTRODUCTION

Magnetoresistance and Hall effect depend on the
geometry of the Fermi surface and on the scatter-
ing behavior of the electrons at lattice imperfec-
tions. Many efforts have been made in the past
two decades to investigate the Fermi surfaces of
metals. Since attention recently has turned more
towards the influence of the lattice defects on the
electronic properties, the interest in the low-field
galvanomagnetic coefficients has increased relative
to the previously dominant interest in the high-
field properties. However, while the low-field
Hall coefficient has been used successfully in sev-
eral investigations~ 4 of the anisotropy of the elec-
tronic mean free path, the behavior of the more
sophisticated magnetoresistance is barely under-
stood qualitatively.

For practical applications, the assumption of a
relaxation time' or mean free path as an approxi-
mate description of the scattering processes has
proved to be very useful, and several theoretical
methods "for the calculation of the galvano-
magnetic coefficients have been developed on the
basis of this assumption. These theories have
led to the useful Tsuji formula of the low-field
Hall coefficient ' applicable in the case of cubic
symmetry as well as to a great number of model
calculations ' assuming simple geometric
shapes of the Fermi surface and simple functions
for the variation of the relaxation time &(k). But
with few exceptions these efforts were also re-
stricted to Hall-coefficient calculations.

Using the method of Jones and Zener, e a new

type of model calculation is presented in this
paper. Simple formulas for the transverse mag-
netoresistance are derived in Sec. II, and the
qualitative understanding of the magnetoresistance
is discussed in Sec. III from the standpoint of
Fermi surface and relaxation-time anisotropy.
In Sec. IV the method is applied to nearly-free-

electron metals. Approximate formulas for the
Hall coefficient and magnetoresistance are de-
rived for Fermi surfaces of the nearly-free-elec-
tron type, and the influence of scattering anisot-
ropy is discussed in a three-group model for the
mean free path.

II. COMPUTATIONAL METHOD

If the approximation of the electronic scatter-
ing by an anisotropic relaxation time is justified,
the Boltzmann equation can easily be solved for
low magnetic fields by expanding the solution in
a power series of the magnetic field strength B.s
Then the components of the conductivity tensor
o are also obtained as a power series of B:

&(,(&) = Q &('g'(&), f,j =x, y, z
n=0

n+2
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where the z axis is chosen parallel to B. v(k) is
the velocity, &(k) the energy, and 7(k) the relaxa-
tion time of an electron at position k in reciprocal
space. fo(k) is the equilibrium electron distribu-
tion in k space in tne absence of external fields.

Introducing the coefficients

n

and the electronic mean free path
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In this expression the integral is reduced to a sur-
face integration using —Bfo/Be =|)(s—s),), where
Ey is the Fermi energy.

In the limit of low magnetic fields and for the
case that the tensor e&&' is diagonal, the resistivity
in zero magnetic field is given by

and

12ss f»(fs/~. ) dB
H (f fdic)2

1/j& is the mean curvature defined by

(9)

&o) 1/e(o&Pxx—

the Hall coefficient by

p.,(B) —p (B)
~(o) ~(o) y

and the transverse magnetoresistance by

np p .(B)- p (0)
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where K, and K2 are the two principal radii of
curvature. The zero-field resistance and the Hall
coefficient are independent of crystal orientation.
Since cr'„", vanishes for cubic symmetry, the low-
field magnetoresistance equation for cubic metals
can be expressed with the aid of Eqs. (7) and (8)
as

np Jrs fd&JF fs'Q ",'sfS&+[f s(sf'/ j() Bo]'

Po (JFS f dB)'

where the current j is perpendicular to B and by
convention parallel to the x coordinate. Equa-
tions (5) and (6) are obtained if one uses in each
tensor component only cr', &' and the next-higher-
order term which does not vanish under considera-
tion of the Onsager relation, &J&~(B) = —o&~( B)-

In the special case of cubic symmetry, the re-
sistivity in zero magnetic field is ps =1/&r&o&, withs'

&o)

~ FS

(10a)

or with Eq. (9) as

According to the definition (2), the Q coefficients
required for the evaluation of Eq. (10) or its gen-
eral form (6) are given by the expressions

The Hall conductivity and Hall coefficient in cubic
symmetry reduce to'3 Q&&o&)(k) =8(ss&, i =x, y, s (1la)

(&) e'B
~

l'
12s hs -~

(8) where && is the direction cosine of v with respect
to the j axis,

and

(&,')'$) = I; (i E,q
—a, i„q) ~ (QT'„—E„T)), ij =xj, x, (11b)

+ ~ [T„(f„ty —e e„)+(2T„'E —4T e„)(s„sf s )]

+Tyy —2E'~Ey + T„y + f +T (11c)

where the relation hv& = Be/Bk& and the abbreva-
tions e&

——Be/Bk& and T, = BT/Bk& are used.

A. Q on spherical energy surfaces

e= f(j(), (12)

First we consider the case in which the energy
surfaces in the vicinity of c~ can be represented by

where f is an arbitrary differentiable function, and
&(= ik —kol is the radius of a sphere with center ko.
Then the derivatives of a at the position k are

= —Q
Bk] dK

Be d f 1 df 1df
ekfek~ dK2 KdK ~ ~ KdK
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Bf
ek( 8k~8k,
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Using these relations and v =
I de/dkl, the Q coef-

ficients given by Eqs. (lib} and (llc), become

is now the cylinder radius. With the aid of an or-
thogonal coordinate system k, k2k, (with k, equal
to the cylinder axis and k2, k3 arbitrary) which is
related to the k„k„k, system by the rotation matrix
a«(l = 1, 2, 3; i = x, y, 2), a few algebraic steps lead
to

Qii y
K

d f l~d I df
e&f d 2 d iai+ d (Q2&Q2J+ Q3&Q3$)

dK K dK K dK
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and
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and
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Inserting these relations in Eqs. (11b) and (llc),
and considering that

+2»+33 —&3»Qt23 = +ig

B. Q on cylindrical energy surfaces

Cylindrical surfaces are treated in an analogous
way. We start out from Eq. (12}again, where &&

Qg]Qyg+ Qf2]Qf2g+ Q3)Q3g —5)y y

yields for the Q coefficients

and
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a„[a„(1—a&3) —3Q3(1 —n&,) —2Q„Q3Q&„Q,3] + 4Q„[a,a&,a&3+ Q3(1- a&„)]—

+ 30» Qf» ~+ 20»Qty 2 + + ~ + ~ (18}

C. Q on planar energy surfaces

For a set of planar energy surfaces again rep-
resented by Eq. (12), where && is now the compo-
nent of k normal to the surface, Eqs. (Ilb) and

(lie} become

Q&i (k) = —3Q&ni Q3 ~ —a„—(y
~ T T3&

and

Q&2&(k) = 3Q2 Q2 +»»»» T T» 3& TZ

2 7 T»» (20)

Only terms with derivatives of 7 contribute on pla-

nar Fermi-surface areas.
For special orientations with respect to j and B,

equations of similar simplicity can be derived for
certain other Fermi-surface models (e. g. , ellip-
soids with parabolic energy-momentum relation).
In general, however, the second and third deriva-
tives of t introduce considerable complexity into
Fermi-surface models other than the ones dis-
cussed here.

0. Small-hr approximation

It is assumed in the preceding calculations that
the Fermi surface consists of spherical, cylindri-
cal, or planar surfaces, and that the energy sur-
faces in the vicinity of the Fermi surface are
spherical with the same center, cylindrical with
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TABLE I. Summary of the Q coefficients on planar, spherical, and cylindrical energy-surface areas for k-independent
relaxation time.

Surface
area

planar

spherical

General

3~»
K

cylindrical —[a„+( n„a~a fg QgG fy)'~ fy)
K

Cubic
symmetry

1
K

1
2K

General

3 2t~»~y~ i» —~»~iyl ~ ig
K

Cubic
symmetry General

3A
2

K

3D~
2

K

(2)
Q»»

Cubic
symmetry

1
K

2 2

2
K

the same axis, or planar with the same normal
direction as the corresponding Fermi-surface
section. As a consequence, the models cannot
account for gradual variations of the length of the
velocity vector. Otherwise, the functional depen-
dence e =f(») is arbitrary; in particular, the cal-
culation is not restricted to a parabolic energy-
momentum relation.

Under this assumption, the higher-order de-
rivatives of E cancel on spherical, cylindrical,
and planar Fermi-surface regions. If in addition
r is constant over the Fermi surface, or if the
terms containing derivatives of ~ can be neglected,
the equations reduce and the calculation of the
magnetoresistance for these models becomes ex-
tremely simple. In general, only small variations
of ~ across the Fermi surface are permitted if
the terms in Q, &

containing derivatives of 7 are to
be neglected. A practical rule is that the mean
variation &~ be small compared to the mean value

This assumption of small 47 is used in the
following discussion. The accordingly reduced
equations are summarized in Table I.

In the case of cubic symmetry, further simpli-
fications can be introduced in the equations by
averaging the Q, &(k) over symmetry-equivalent
points of the Fermi surface. The resulting aver-
age Q's are also listed in Table I.

III. DISCUSSION

The relations between Fermi-surface topology
and Q coefficients are considered in this section,
and a few general consequences of Fermi-surface
geometry, of crystal orientation, and of the scat-
tering anisotropy on the magnetoresistance are
discussed. For specific Fermi-surface geom-
etries, the qualitative behavior of the rnagneto-
resistance may be estimated with the aid of a few
rules of thumb for the coefficients Q„",' and Q„'„'.

A. Topological coefficients Q(".& (k)
tI

The preceding calculations were based on the
local coefficients Q, &(k) which finally are to be

inserted into the integral equation (3). Alterna-
tively, the integral equation could have been partly
simplified by making use of the possible partial
integrations. This would have avoided the third-
order derivatives in Eq. (llc) which, however,
cancel anyway in the cases considered in Sec. II,
as do the second-order derivatives. The advan-
tage of the method used here is that the illustrative
meaning of the Q, ~(k) is maintained: The products
I"'~(k) Q&&'(k) directly reflect the local contribu-
tion of a point k on the Fermi surface to the con-
ductivity a,'&'[see Eq. (3)j. In the approximation
that the derivatives of 7' canbe neglected, the scat-
tering anisotropy enters in I""(k)only, while the
Q'Pj (R) contain the topological contribution of the
Fermi surface. 24 Hence Fermi-surface and scat-
tering contributions can be separated in the equations
for &p/pe and R» inthe small-Lr approximation. as

Extending the considerations of Sec. II to gen-
eral Fermi-surface geometries leads to the follow-
ing qualitative rules for the topological coefficients
Q„u' and Q„'„' (a) The coefficients Q,', ' and Q,', ' as
sume high values at positions k of strong Fermi
surface curvature. (On spherical anrl cylindrical
Fermi-surface sections, Q„"„'is proportional to
1/», Q„'a' to I/» . ) (b) Considering the orientation
of the Fermi surface with respect to 8, the cur-
vature along the cyclotron orbit is the crucial one,
while the curvature perpendicular to the cyclotron
orbit is of minor importance (c) Regard. ing the
orientation of the Fermi surface with respect to
j, it is clear that the component of the Eermi
velocity in the current direction is important for
the electric transport. Rules (b) and (c) relate
to the orientation dependence of R~ for noncubic
symmetry and of np/pe for both the cubic and non-
cubic cases. The validity of these rules for
spherical and cylindrical Fermi-surface regions
is directly obvious from the equations of Table I.
They are, in general, also valid for Fermi sur-
faces with more complicated curvature (e. g. ,
ellipsoidal, parabolic, or hyperbolic surface
regions). Then of course a simple dependence on
~ or I(; cannot be established.
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B. Influence of the Fermi surface on hp/p~

1. Compensation of the positive and negative terms in the
magnetoresisiance equation

In the magnetoresistance equation (6), the val-
ue of the first term is always positive, while the
second and third terms are always negative. The
negative terms tend to compensate the positive
term but can never exceed the positive term. For
a few singular cases of Fermi-surface geometries,
viz. , a single sphere, a single cylinder, or a
single ellipsoid, this compensation is complete.
The magnetoresistance of these Fermi-surface
models is zero. The simplest Fermi-surface
models with nonvanishing magnetoresistance are
theo-band models~ consisting of two spheres with

different carrier mobilities or multivalley models
consisting of cylinders 7 or ellipsoids with
different axis directions.

The other extremal case is that the negative
terms in &p/po may be neglected compared to the
positive term. This occurs on Fermi surfaces
with strongly varying values of ~ since the ratio
of the positive and negative terms is of the order
(I/z'}/(I/z )', where ( ) denotes the average over
the Fermi surface. Examples are the Fermi sur-
faces of polyvalent metals in the nearly-free-elec-
tron approximation as discussed in Sec. IV.

2. Consequences of the dependence on curvature

A simple single-band model which has been fre-
quently used in discussions of the properties of
the Hall coefficient is the planar-faced-energy-
surface model. "' '2 " To obtain proper low-
field results, a modified version of the model with
rounded edges" must be used. For one special
case (a cube with rounded edges) Allgaier also
calculated the magnetoresistance. 2 Since the
planar-faced-energy-surface models with rounded
edges can be composed of planar areas joined by
cylindrical areas along the edges and by spherical
areas at the corners, the computational method
described in Sec. II is quite suitable for this type
of model. With the aid of the equations of Table I,
&p/po and R„can readily be calculated for any
such model and for arbitrary orientation with re-
spect to j and B. A remarkable result which was
found by Allgaier, and which is also valid for any
other planar-faced-energy-surface calculation, is
the increase of np/po towards infinity as the
cylinder radius of the edges tends towards zero. '
This apparent contradiction requires a reconsidera-
tion of the low-magnetic-field condition.

It was pointed out in the discussion of the topo-
logical coefficients Q, &(k) that the local curvature
at each position k is the Fermi-surface quantity
which mainly determines the qualitative properties
of the low-field magnetoresistance and Hall co-

efficient (for comparison, the high-field galvano-
magnetic properties are determined mainly by the
toPology of the total electron orbit, e. g. , whether
the orbit is closed or open). Consequently, a
"local" lose-field condition must replace the
usually applied "orbital" low fiel-d condition,
~~«1, where ~ is the cyclotron frequency. The
true low-field condition is realized when

+ ~~
I
a. (k)/e l (k)

I (21)

for any position k of the Fermi surface. The ap-
plication of the Jones-Zener approximation or
any other lose-field solution of the Boltzmann
equation requires the observation of this relation.
The contradiction of infinitely increasing magneto-
resistance occurs if hp/po is considered as a
function of z for constant B. According to rela-
tion (21), however, B must be decreased simulta-
neously when the minimal values of z are de-
creased, if the condition of low magnetic field is
to be maintained.

In the "local" low-field limit, the magnetoresis-
tance of a Fermi-surface containing regions with
small values of ~ generally exceeds the value of
4p/po of a Fermi surface with only slightly curved
regions, with the exception of the cases where
compensation is effective. Comparing, for in-
stance, a polyvalent metal such as Al and a noble
metal, one finds in fact that the experimental val-
ues of hp/po in ' Al are about 10 to 15 times
larger than in 3 Cu for equal values of coT.

Another remarkable consequence of the influ-
ence of the local curvature is the different relative
contributions to np/po and Rs of va. rious Fermi-
surface regions. In many polyvalent metals,
edgelike regions of strong curvature alternate
with regions of relatively slight curvature. Though
the area covered by the edgelike regions is gen-
erally small, these regions contribute signifi-
cantly to RH, and may even predominate in deter-
mining the value of np/po. This will be demon-
strated clearly in the nearly-free-electron (NFE)
model considered in Sec. IV.

3. Orientation dependence of the low-field magnetoresistance

The values of the galvanomagnetic coefficients
depend on the orientation of the Fermi surface
with respect to j and B. In the equations of Table
I, the direction cosines n,. and o.„describe the
orientation dependence. For more general Fermi
surfaces, the influence of orientation is expressed
qualitatively by rules (b) and (c) for the topological
coefficients Q„',' and Q„'3'. As can be seen from
the orientation dependence of these local coeffi-
cients, np/po and R„can be sensitively dependent
on orientation. The effects of general Fermi-
surface shapes are to diverse to be discussed
here. We only want to give some consideration
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&p 1 (l) (I') —(I ) B
p, (ne)' (l}' p,

(22)

where (l") denotes the average of l" over the Fermi
surface. In the case of free electrons, where
k = mv/)I, Eq. (22) is equivalent to a similar equa-
tion already given by Bethe, '

&p (r)(r') —(7 ) eB
ps (r)' m

In order to obtain these equations, the second and
third terms of Eq. (14}(containing the derivatives
of 7) have to be neglected. This, however, is not
a good approximation if the magnetoresistance of
the Fermi surface (i.e. , for isotropic r) is zero.
As a consequence, Eq. (22) and the Bethe equa-
tion may give values of 4p/ps which are too low,
and they do not account for the orientation depen-
dence of n p/ps originating from anisotropies in

Without this restriction, the Hall coefficient
of a spherical Fermi surface and for cubically
symmetric l(k) is obtained as

1 (I'&
ne (I)' ' (23)

to the special case of cubic symmetry, where the
situation is simplified by averaging of the orien-
tation dependences: Resistivity in zero magnetic
field and Hall coefficient are isotropic, and the
magnetoresistance exhibits only a small depen-
dence on crystal orientation. Nevertheless, even
in cubic metals the orientation dependence of
hp/ps may be not as small as first expected.
Many Fermi surfaces consist of a major almost-
spherical area and smaller areas which are
strongly distorted (noble metals, nearly-free-
electron metals). The orientation-insensitive
contributions of the spherical part almost cancel
in the positive and negative term of np/ps so that
the distorted areas essentially determine the
magnetoresistance, and thus may create a still
considerable anisotropy. This is indeed con-
firmed by measurements of (110)-rotation dia-
grams in Cu and' Ag where relative anisotropies
(np —d,p ")/Ap "of 0. 6 to 0.9 were observed.

C. Influence of the electron scattering on Ap/po

If the Fermi surface is spherical and l(k) is cu-
bically symmetric, Eq. (10) reduces to

cients to be sensitively dependent on the anisotropy
of the electron scattering. One particular appli-
cation which may become of interest would be in
polyvalent metals, where the contributions of the
small but highly curved regions of the Fermi sur-
face are particularly enhanced. Therefore mea-
suring &p/ps and R» in weak magnetic fields pro-
vides a method for studying the anisotropy of l se-
lectively on these highly curved regions which,
owing to their small size, are less accessible to
other methods.

IV. APPLICATION TO NEARLY-FREE-ELECTRON (NFE)
METALS

With little modification the results of Sec. II can
be applied to NFE Fermi surfaces. In the NFE
model, the free-electron sphere is maintained in
the major part of the Fermi surface with the ex-
ception of the vicinity of the intersection circles
where the Brillouin-zone boundaries intersect the
free-electron sphere. The Fermi surface is corn-
posed of spherical regions with free-electron cur-
vature K~E and rounded edges along the intersec-
tion circles. We call the radius of curvature of
the Fermi surface along the edges Ki) and the ra-
dius perpendicular to the edges KJ. If KJ«
which is usually the case, we approximate the
edges of the Fermi surface and the energy sur-
faces in their vicinity by a set of concentric cy-
lindrical sections, where the cylinder axis changes
direction parallel to the edge direction. A suit-
able constant value KJ has to be assumed at the
Fermi energy. The corners where two or more
edges of different orientations join are corre-
spondingly approximated by small spherical re-
gions of radius KJ.

In this approximation the formulas of Table I
can be applied using the equations for spherical
surfaces with K= Kpg for the free-electron-like
areas and K= KJ for the corners, and the equa-
tions for cylindrical surfaces with K= KJ for the
edges. These relations are inserted into Eqs.
(3) and (6). Using ((rs»»~, the second and third
terms of Eq. (6) can be neglected, and in the first
term, the integrals over the free-electron-like
areas and the corner areas can be neglected com-
pared to integrals over the cylindrical areas along
the edges. The remaining expression is

where ne is negative for electrons and positive for
holes. &p/ps and I R» I increase with increasing
variation of E.

In the general case of anisotropic Fermi sur-
faces and arbitrary crystal symmetry, the con-
tributions of the Fermi surface, QI&'(k), have to be
weighted by the corresponding functions l '(k).
The second and third powers of l(k) appearing in

R» and 4p/ps cause the galvanomagnetic coeffi-

I .Q(."(k}&(s)dkS e B'
Ps f rs f(k) (f3

J,ss, Q~P(k)f (k}d$12» B
[frsf(k)d3]' e ps

(s),k, 3 as(k) a'„(k)
KJ

(24)
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where n„ is now k dependent and equal to the co-
sine of the angle between 8 and the tangent to the
intersection circle of the sphere and Brillouin-
zone boundary. Equation (24) is also valid for
noncubic symmetry since in the NFE model 0,,'
is approximately equal to the isotropic value of
0 for the free-electron sphere.

In the same approximation one obtains for the
Hall coefficient

12m J~g, Q,"„'(k)l (k) dS

Q~~~(k) =(3/g~}(n„(k)[1—ng~(k)]

(26)

+ n„(k}n,(k}n„(k}n„(k}3,
where Rsrs = I/ne is the free-electron value of Rs.

For NFE Fermi surfaces of polyvalent metals,
the low-field magnetoresistance is dominated by
the small cylindrical areas along the edges. In the
Hall coefficient, the contributions of the edges and
the free-electron-like areas are of the same order
of magnitude, and in the resistivity the contribu-
tions are proportional to the surface areas, i. e. ,
the free-electron-like areas dominate. This is
due to the enhancement of the contributions to the
Hall coefficient and magnetoresistance by I/z and

(I/e), respectively.

A. Three-group model for /{k)

The function f(k) depends on both the electronic
structure of the metal and on the scattering po-
tentials of the defects present in the lattice. The
lack of quantitative information about mean free
paths makes it as yet practically impossible to
evaluate Eqs. (24) and (25) for any combination of
defects and host metal. On the other hand, if sim-
plifying assumptions regarding f(k) are made, low-
field magnetoresistance and Hall effect can be ap-
plied to give a coarse measure of the anisotropy of
l or 7.

This has been done in the past with Hall-coeffi-
cient measurements alone. If it is reasonable to
divide the k states on the Fermi surface into two

groups so that l(k) in each of the groups can be de-
scribed by a constant average value, then from the
relatively simple measurement of the scalar quan-
tity R~ alone, the quotient of the relaxation times
can be determined. Dugdale and Fifth, for in-
stance, have determined r„,„/r~„ in Cu and Ag
for different types of lattice defects.

For the polyvalent metals, such a two-group
model is not realistic. The wave functions in the
NFE model are qualitatively different on the free-
electron-like regions of the Fermi surface, along
the edges with electronlike curvature, and along
the edges with holelike curvature43 (the curvature
of the Fermi surface is defined as electronlike if

the electron states on the inner side of the curva-
ture are occupied, and holelike if the electron
states on the outer side of the curvature are oc-
cupied). Thus at least three groups of electrons
have to be distinguished, even in the simplest
polyvalent metals. If such a three-group model is
used, and l is named l on the free-electron-like
Fermi surface areas, l on the edges with elec-
tronlike curvature, and l on the edges with hole-
like curvature, &p/po in the NFE approximation is

&p g l +l
Po KFE Ki 2l

KFE l + l
2l~ nepo

(26)

Re—- —1+git 2lane

where

(27}

g 3 ~Pi k ] ~2
7TKFE Kg ydge

+ n, (k)n (k)n„(k)n, „(k)jdS

for noncubic symmetry and

1
ga— dS

8gKFE Kq

for cubic symmetry.
In Eqs. (26) and (27), the Fermi-surface geom-

etry and the anisotropy of l enter separately in two
independent factors. The geometry factors g and
g„are of the order of unity. Thus the magneto-
resistance is directly proportional to the curva-
ture I/g~ of the edges while the Hall coefficient is
independent of K~ in this approximation.

Applying Eqs. (26}and (27) to real metals, the
Fermi surface of the metal is approximated by the
NFE Fermi surface with rounded edges of curva-
ture I/x„which is taken to be the average curva-
ture of the edges of the real Fermi surface. Then
g„and g„can be calculated from the NFE Fermi
surface, and the anisotropy of l, as given by the
ratios l /I and l /I, can be determined from
values of R„and &p/po.

Experimental values of low-field Hall coefficient

g =4 3n„(k)n~ (k)dS.
WK FE Kg ~garo

Equation (26) is obtained by approximating the in-
tegral in the denominator of Eq. (24) by the inte-
gral over the free-electron sphere and by taking
the length of the edges equal to the sum of the cir-
cumferences of the intersection circles of zone
boundaries and the free-electron sphere. In the
application to real metals, this assumption may
need a correction.

The analogous equation for R~ is
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and magnetoresistance can easily be obtained from
simultaneous measurements on a single sample.
This suggests such measurements for the deter-
mination of the anisotropy of the electronic mean
free path in a three-group model. Experimental
results in Al will be presented in another paper.

V. CONCLUSION

Low-field magnetoresistance and Hall coefficient
are experimentally easily attainable quantities.
However, the physical properties of the materials
to be studied by these electronic transport coef-
ficients are hidden in integral expressions of unin-
viting complexity. In particular, little qualitative
understanding of the low-field magnetoresistance
has been attained up to now. In this paper an at-
tempt has been made, on the one hand, to increase
this qualitative understanding, and on the other
hand, to stimulate more low-field magnetoresis-
tance experiments by the presentation of simple
formulas applicable to nearly-f ree-electron-like
metals.

Based on the series-expansion method by Jones
and Zener, it was shown that the higher-order
derivatives of E generally appearing in the mag-
netoresistance equation cancel on Fermi-surface
models which can be composed of spherical, cy-
lindrical, andplanar areas. Transparent equations
in terms of local Fermi surface contributions
QI&'(k} l '(k) are obtained. The essential results
are the following:

(i) The topological coefficients Q,",' and Q+', and
hence R„and particularly &p/p„are strongly de-
pendent on the local curvature of the Fermi sur-
face. The value of the low-field magnetoresistance
is predominantly determined from Fermi-surface
regions of high curvature.

(ii) Q,~" and Q„,' are strongly dependent on the
crystal orientation with respect to j and B. This
can give rise to a sensitive orientation dependence
of Rs and &p/p, for noncubic symmetry, while for
cubic symmetry the orientation dependence of Q„",'

and Q„'„' averages out to a large extent.
(iii) Rs depends quadraticly and &p/po cubicly on

the mean free path l(k}, and thus. they provide a
sensitive method for investigations of anisotropic

scattering probabilities.
(iv) For the nearly-free-electron model, very

simple formulas for Rs and &p/po are obtained,
because of the dominating effect of the Fermi-sur-
face edges. The application of a three-group
model for l(k) is suggested as an approach to de-
termine the anisotropy of l in simple polyvalent
metals from galvanomagnetic measurements.

Two assumptions have been used throughout this
paper: (a) The variation of r across the Fermi
surface is small compared to the average value of
r, and (b} the energy surfaces in the vicinity of the
Fermi surface may be approximated by spherical,
cylindrical, and planar sections. These are se-
vere restrictions. However, a large computation-
al step is required if these assumptions are not to
be applied since this brings us back to the com-
plexity of the general low-field magnetoresistance
equation. We therefore hope that a number of
semiquantitative investigations may be stimulated
on the basis of the formulas presented here.
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APPENDIX: LONGITUDINAL MAGNETORESISTANCE

In the limit of low magnetic fields, the longitu-
dinal magnetoresistance (j ll B}is

g~ 1Onij' (((( () ((((()
)0.(2) ~ x» + Q»

~(Q) «» g(0) (0)
Po «» XX

where the oI&' are given by Eg. (4). The calcula-
tions of the longitudinal magnetoresistance are
analogous to the transverse case. Corresponding
to Table I, Table II contains the Q coefficients re-
quired for the longitudinal magnetoresistance of
Eq. (Al) for planar, spherical, and cylindrical en-
ergy surfaces and for isotropic 7. Unlike for the
transverse case, all three coefficients Q,',", Q,',",
and Q,', ' are zero on spherical surface sections,
and hence spherical surface sections do not yield
a contribution to the longitudinal magnetoresistance.

TABLE II. Q coefficients on planar, spherical, and cylindrical energy-surface areas for the longitudinal magnetore-
sistance.

Surface
area

planar
spherical

General

Qm
(1)

Cubic
symmetry General

(i)
Qy«

Cubic
symmetry General

(2)
Q««

Cubic
symmetry

cylindrical
3 2

K

2

K
~~y~ ix —~so'y~ iy~ ~ i»

3 3
+»+i«~~»+i«2 t~ +«+i«~+»+1«



LOW- FIELD MAGNETOR ESISTANC E IN METALS 4235

4p "~ f,~„Q+'(k) l (k) dS e

pp fps l(k) dS (A2)

In a three-group model, this reduces in the same

(A special case of this result is that the longitu-
dinal magnetoresistance of the two-band model
is zero. ) Another remarkable difference is that
for cubic symmetry only the first term of Eq. (Al)
is nonzero. This simplifies calculations and qual-
itative discussions of the longitudinal magnetore-
sistance in cubic metals as compared to the trans-
verse case. Otherwise the qualitative behavior,
resulting from the dependence on g„(k) and l(k),
can be discussed by a straightforward extension
of the properties of the transverse magnetoresis-
tance discussed in Sec. III.

In the nearly-free-electron model, the formula
analogous to Eq. (24) is

way as Eq. (26) to

+~ion~ glonz g3 + Es e P

&O ]CFE gi 2l

where

l„g &FE l +l++ B
2l nepo

g""= 3 a, k e„k —1
WKFEKg

x n, (k) o.„(k)dS .

Since the scattering factor (f + l )/f is the same
in Eqs. (26) and (A3)i no additional information on
the anisotropy of l can be obtained from the longitu-
dinal magnetoresistance within the three-group ap-
proximation for the anisotropy of l.
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