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The molecular-dynamics tenchnique is applied to the study of a classical system of anharmonic oscillators

interacting via a nearest-neighbor coupling plus a coupling which is infinitely long range in character. Such a
system undergoes a second-order phase transition at a finite temperature which depends upon the strength of
the long-range coupling, The overall features of the transition are seen to be fairly well described by the self-

consistent phonon approximation and evidence is found that the system as a whole fluctuates between a
displaced and an undisplaced phase in the vicinity of the transition.

I. INTRODUCTION
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Here u, represents the displacement of each par-
ticle from its equilibrium position in the 1D linear
array. S is a short-range nearest-neighbor cou-
pling constant, whereas y(/ l') represents an all-
neighbor coupling constant which is long range in
nature. Specifically, we choose y(l I') to be infi-
nitely long range and infinitely weak in character;
i.e.,

lt (l I ') = (I/N)}t, N- ~ (2)

There has been considerable interest of late in

the study of interacting anharmonic oscillators as
prototypes of displacive and order-disorder ferro-
electrics. " These models have been treated by
the molecular-field approximation, "'~ ' the self-
consistent phonon approximation, "' the mean-
field approximation, 's'&" transf er-matrix tech-
niques, ""' and numerical simulation'"' by the
molecular-dynamics (MD) method Ther.e was no

long-range interaction in the last, which precluded
a phase transition in one dimension (1D). The
present work" is concerned with the MD treatment
of a 1D classical system of interacting oscillators
in the presence of an infinitely-long-range inter-
action, which permits a second-order phase tran-
sition at finite temperature. The MD results,
which are in principle exact, will be compared
with those obtained from an approximate tech-
nique —the self-consistent phonon approximation.

In the model to be considered, the interaction
potential has the form

where N is the number of particles and X is a con-
stant. Equation (1}represents an interaction which
consists of a set of local anharmonic quartic
potentials together with a harmonic potential
which has been divided into a short- and a
long-range part. The ansatz (2) has the effect of
replacing the Hamiltonian (1) by

Xu ~ XQ
Z u& +N

t

where u(t)=N genug(t). The order parameter is
then (u(0)), the ensemble average of u. In replac-
ing (1)by (3), we have effectively treated the long-
range interaction in a molecular-field approxima-
tion while leaving the short-range correlations
intact. Each quartic anharmonic potential well in
Eq. (3) possesses a single minimum and hence is
applicable to purely displacive phase transitions.

II. MOLECULAR DYNAMICS

Assuming the interaction (3), the equation of
motion for the displacement, u„ takes the form

ug ggg ug S(ug ug g)+S(upg ug)+g Xu (4)

Here the mass of each particle has been chosen
equal to 1 and a dimensionless time unit has been
used. A phase transition ((u)gg 0) is only possible
when a displaced solution is stable at zero tem-
perature. According to Eq. (4}this requires
X)2.

The equations of motion were solved numerically
using a standard molecular- dynamics technique. "
A system of 1000 particles was considered, and
the displacements of the particles were determined
at 200000 time steps with a time-step size of 0.1
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in order to achieve reliable statistics. The system
was aged for 10000 time steps initially in order to
elim inate nonrandom initial conditions. Per iodic
boundary conditions were applied to the linear
chain. The two quantities of prime importance
which were evaluated using the MD technique were,
firstly, (u) and, secondly, the syace-time Fourier
transform S(q, u&) of the displacement-displacement
correlation function (s, (t)uo{0)). In computing the
S(q, +) some smoothing in &g has been carried out
employing a numerical technique described else-
where. "

III. SELF4:ONSISTENT PHONON APPROXIMATION

The details of the application of the self-consis-
tent phonon approximation (SPA) to the treatment
of a system of coupled anharmonic oscillators are
given in Ref. 8. The model considered here differs
somewhat from that treated in Ref. 8 owing to the
presence of the nearest-neighbor coupling in (3}.
However, the formalism is identical. In the SPA
one constructs a displaced oscillator trial density
matrix which is quasiharmonic in form and which
depends on a set of variational force constants. A
free energy is then constructed from the inter-
action (3) and the trial density matrix. This free
energy is subsequently minimized with respect to
the trial force constants and the mean displace-
ment (u), thus yielding a set of self-consistent
equations for the optical phonon frequency +, and
(u). Omitting the details of the calculation, we
merely present the results. We find that the min-
imization procedure yields two solutions, an un-
displaced solution with

This is basically because the spatial Fourier
transform of an interaction, which is independent
of particle indices, vanishes identically except for
q =0. As we shall see in Sec. IV, &, is to be iden-
tified with the soft mode which vanishes at the
second-order transition temperature.

At the second-order transition temperature,
both the order parameter (u) and the soft-mode
frequency eo vanish. Thus setting (u) =0 = ~o in

(6) we immediately obtain an expression for the
SPA transition temperature,

1 -1
Q =(X —2) 3 —g [X+4S(l —cosq)] (8)

For the particular case which we treat in Sec. IV,
this expression has been evaluated numerically.

IV. RESULTS AND DISCUSSION

In utilizing the MD technique and the SPA in the
treatment of our model system, we have employed
the set of parameters S =-,' and g =4. This choice
assures that a transition occurs at finite tempera-
ture and that the SPA transition is second order.

The results of our calculations for (u) are sum-
marized in Fig. 1. The SPA transition tempera-
ture as calculated from (8) is T, =0.820. In the

I.O

A significant feature of (5) and (6) is the fact tha. t
a finite gap exists between u,' and &,' evaluated at
the smallest nonzero wave vector. Indeed,

(lim u),'}-(uo= -,'}(.

1~' T(N}=0, (u') = —7 M

z'

~l = 3(a') + I - 2 X,

&g~, = u,'+-,' X + 2S (1 - cosq),

and a displaced solution with

(u)' =-,')( —3(u') —1,
2-1 'T

(u') = —Q —,,N ~

(g,'=3(u') i+3(u)'+I ——,'}(,

&u~, = &o,'+-,' y +2S(1 —cosq}

(5)
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The above equations may be solved self-consis-
tently for uo or (u'). The details are given in Ref.
8. In both (5) and (6), the high-temperature (clas-
sical) approximation has been used for (N'). From
(6) we see that since (u') =0 at T =0, the require-
ment that(aa}&0 at T=O requires X &2, as we de-
duced prev iously.

0 I I I I I i I I

0 .IO .20 .X) .40 .50 .60 70 .80 .90
TEMPERATURE E,'REDUCED UNITS)

FIG. 1. Temperature dependence of the mean dis-
placement as predicted by the SPA and the MD treat-
ments of the system of coupled oscillators.
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MD simulation it was found that there are two dif-
ficulties in establishing the transition tempera-
ture. First, the MD temperature is determined
statistically from the mean kinetic energy and one
expects fluctuations in this quantity. Second, near
the transition temperature the decay time is large
enough so that(u) will not vanish for a finite-
length run even when it should. We found (u) e 0
in runs for which there was an obvious long-time
decay in(u(I)u(0)). From the MD data of Fig. l,
the extrapolated transition temperature is approx-
imately 0.90; however, this is misleading. Exam-
ination of the correlation function showed that the
transition obviously occurred between the two

points at 0.83 and 0.87. For the most part, the
agreement between the MD data points and the
SPA curve is quite good. We did not carry out
MD simulations below T= 0.30, because we know
that the order parameter must approach the satu-
ration value of unity at T =0 and the general low-
temperature trend is toward that.

The MD simulation yields plots of S(q, &u) as
functions of q and & and as a function of T. In
Figs. 2(a)-2(d), we summarize some of our re-
sults for S(0, ~). The choice of temperatures is
such that two temperatures lie below the transi-
tion and two above. The narrow central peak which
appears in Figs. 2(a) and 2(h) is an indication that
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FIG. 2. (a)-(d) Plot of S(q =0,~) vs cu at the four temperatures T =0.647, 0.833, 1.084, and 1.232.
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FIG. 3. Particle displacements at 1000 lattice sites
for T =0.833, and four different time steps.

the phase transition has occurred.
At the lowest temperature (T=0.64 I}and at the

highest temperature (T =1.232}, the results in

Figs. 2(a)-2(d) are unambiguous. The resonances
at these two temperatures are well defined and the
positions of these resonances may be identified
with the p =0 soft-mode frequency. In the region
just below the transition (T =0.833), however, a
double peak structure appears. This same effect,
although less dramatic, is apparent just above the
transition (T =1.084). We postulate that the two-

yeak structures arise from the fact that in the re-
gion near the transition the system is fluctuating
between a displaced state and an undisplaced state.
The times when u is oscillating with small amyli-
tude about a displaced minimum give rise to the
higher of the two peaks in Fig. 2(b), whereas the
times when the system is oscillating with larger
amplitude about u =0 give rise to the lower of the
two yeaks.

In partial support of our speculative explanation
of this two-peak structure we have plotted out the
actual displacements of the 1000-particle system
at four time steps in Fig. 3. It is clear that the
lower figure corresponds to a displaced state,
while tc= 0 for the upper figure. Further evidence
is the fact that the calculated rms value of u is
typically an order of magnitude larger than (u) in

the vicinity of the phase transition. Thus, because
the phase transition is driven by a long-range
interaction, the system as a whole fluctuates be-
tween alternate states rather than breaking uy in-
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FIG. 4. Temperature dependence of the soft-mode
frequency cu 0 as predicted by the SPA and MD treatments
of the system of coupled oscillators.

to the domains which have been studied in Refs. 9,
10, 13, and 1V. In these models each particle
moves in a double well potential obtained by chang-
ing u,' +1 to u,' —1 in (1) and setting X =0. Then the
tendency toward a phase transition is driven by the
double minima. We attempted to treat such a mod-
el with X w 0, but found the transition to occur over
such a narrow temperature range that we could not
obtain meaningful numerical results for any prop-
erty of interest.

In Fig. 4, we present the results of a determina-
tion of the "soft" optical yhonon frequency as a
function of temperature. The solid line denotes the
SPA calculation, whereas the solid dots represent
the results of the MD determination of the phonon
frequency as the peak of S(p =0, &u). There are no

MD data points between T=O.V5 and T = 1.0 owing
to the difficulty of unambiguously identifying the
resonance in the region where S(0, &u) develops a
multipeak structure. It is apparent, however,
that over the temyerature region considered the
agreement between the MD calculation and the SPA
calculation is reasonably good, at least when con-
trasted to the yredictions of the traditional har-
monic approximation, where cg0 would be a con-
stant independent of temperature. Of course, the
SPA is incapable of reproducing the multipeak
structure in S(0, &u} near the phase transition, since
within the context of the SPA S(0, +) is represented
by a 5 function at the soft-mode frequency.
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