(4)

Comment on "Hydrodynamics of ³He in anisotropic A phase"

Mario Liu

Physik-Department der Technischen Universität, München, Germany (Received 29 September 1975)

It is shown that two elastic constants in the hydrodynamic theory of ³He-A as formulated by Graham are not independent in a bulk system. Also, the symmetry permits additional terms to the fluxes and fourth sound has a second dissipative part with a different angular dependence.

Starting from the thermodynamic identity, Eq. (6) of Ref. 1, one may proceed by expanding $\overline{\lambda}^s$, the new conjugate variable of the less-symmetric phase:

$$\lambda_i^s = \rho_{ij}^s v_j^s + C_{ij} v_j^r + \tilde{\rho}_{ij} v_j^n , \qquad (1)$$

with all the three tensors again of the form

- - >

$$\rho_{ij}^{s} = \rho_{\parallel}^{s} l_{i} l_{j} + \rho_{\perp}^{s} (\delta_{ij} - l_{i} l_{j})$$

to comply with the axial symmetry. But C_{\parallel} and C_{\perp} are not independent in the bulk system. Neglecting the surface energy, i.e., requiring the thermodynamic identity, especially the term $C_{ij}\nabla_i\varphi(\nabla\times\tilde{\mathbf{l}})_j$, to be invariant under partial integration, we have the additional relation

$$C_{\perp} = -C_{\parallel} \equiv C . \tag{2}$$

More precisely one may state that a generally uniaxial $C_{ij} = C_{\parallel}l_il_j + C_{\perp}(\delta_{ij} - l_il_j)$ can be rewritten as a sum of $C_{ij}^B = \frac{1}{2}(C_{\perp} - C_{\parallel})(\delta_{ij} - 2l_il_j)$ and $C_{ij}^S = \frac{1}{2}(C_{\parallel})$ $+ C_1 \delta_{ij}$. C_{ij}^s only contributes to surface energy, whose neglect is expressed by Eq. (2). Dealing with a bulk system in the present hydrodynamic theory, it is a convenient way to eliminate surface effects. The elastic coefficients K_1 and K_2 have been treated correctly along this line in Ref. 1. C_{ij} has been calculated microscopically to be proportional to $\delta_{ij} - 2l_i l_j$ near T_c and at zero temperature.² This seems to indicate a generally vanishing surface contribution to the energy at these temperature ranges. $\tilde{\rho}_{ij} = -\rho_{ij}^s$ can now be deduced by letting Graham's first relation of Eq. (7) to undergo a uniform Galilean transformation.

The following terms are permitted by the symmetry and may be added to the reactive part of the stress tensor and the superflux, i.e., to σ_{ij}^{R} and \mathcal{J}^{R}_{ω} , respectively,

$$\Delta \sigma_{ij}^{R} = -\lambda_{ijkl} \nabla_{k} \lambda_{l}^{s} - \varphi_{ijkl} \nabla_{k} v_{l}^{n} , \qquad (3)$$

with

$$\begin{split} \lambda_{ijkl} &= \lambda l_p [\epsilon_{pik} \circ_{jl} + (i, j \rightarrow j, i)] , \\ \varphi_{ijkl} &= \left\{ \varphi_1 [(\delta_{ik} - l_i l_k) l_p \epsilon_{pjl} + (\delta_{jk} - l_j l_k) l_p \epsilon_{pil} \\ &+ (\delta_{il} - l_i l_l) l_p \epsilon_{pjk} + (\delta_{jl} - l_j l_l) l_p \epsilon_{pik} \right] \\ &+ \varphi_2 (l_i l_k l_p \epsilon_{pjl} + l_j l_k l_p \epsilon_{pil} + l_i l_l l_p \epsilon_{pjk} + l_j l_l l_p \epsilon_{pik}) \right\} , \end{split}$$

1.

and

$$\Delta \mathcal{J}^{R}_{\omega} = \lambda l_{\mu} \epsilon_{\mu i j} \nabla_{i} v^{n}_{j}$$

Since any σ_{ij} leading to the same $\nabla_j \sigma_{ij}$ is correct, one can show the equivalence of the antisymmetric $\Delta \sigma_{ij} = -\lambda l_{p \in pij} \nabla_k \lambda_k^s$ and the symmetric $\Delta \sigma_{ij}$ $= -\lambda [l_p \epsilon_{pik} \nabla_k \lambda_j^s + (i, j \rightarrow j, i)].$ Because of this relationship, it is erroneous to require a vanishing λ , on the grounds that, for a system of conserved orbital angular momentum, σ_{ij} is always symmetric. In fact $\lambda = \frac{1}{2}$. This is obvious from the definition³ $\vec{v}^s = -\nabla \Omega_3$, Ω_3 being the rotation angle around the preferred z axis and for a rigid rotation $\dot{\Omega}_3 = \frac{1}{2} (\nabla \times \vec{v}^n)_3$. The invariance under reflection at a plane which contains the preferred axis is a symmetry element of the nematic crystals⁴ and not of the axial phase of ³He. Therefore φ_1 and φ_2 are vanishing coefficients in the hydrodynamics of liquid crystals.⁵

With Eqs. (7)-(11) of Ref. 1, fourth sound has been recalculated and found to reflect the dissipative coupling to the orbital variables with an additional damping term

$$\omega_4^2 = \omega_0 \left\{ \omega_0 - ik^2 \left[\zeta \rho^s + \eta (2C\sin\Theta\cos\Theta)^2 / \rho^s \right] \right\}, \qquad (5)$$

with $\rho^s = \rho^s_{\parallel} \cos^2 \Theta + \rho^s_{\perp} \sin^2 \Theta$ and Θ as the angle between k and 1.

I would like to thank Professor R. Graham for his helpful correspondence. I am indebted to Professor H. Schmidt and Professor P. Wölfle for numerous illuminating discussions.

4174

¹R. Graham, Phys. Rev. Lett. 33, 1431 (1974).

²P. Wölfle, Phys. Lett. <u>47A</u>, 224 (1974); M. C. Cross, J. Low. Temp. Phys. 21, 525 (1975).

³P. G. De Gennes, Phys. Lett. <u>44A</u>, 271 (1973).

⁴F. Jähnig and H. Schmidt, Ann. Phys. (N. Y.) <u>71</u>, 129 (1972).

⁵D. Forster, T. C. Lubensky, P. C. Martin, J. Swift, and P. C. Pershan, Phys. Rev. Lett. 26, 1016 (1971).