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It is shown that two elastic constants in the hydrodynamic theory of *He- 4 as formulated by Graham are not
independent in a bulk system. Also, the symmetry permits additional terms to the fluxes and fourth sound has
a second dissipative part with a different angular dependence.

Starting from the thermodynamic identity, Eq.
(6) of Ref. 1, one may proceed by expanding Xs,
the new conjugate variable of the less-symmetric
phase:

Af=p§;v5+ Cy v+ py ot (1)
with all the three tensors again of the form
pi;= oL+ pi(85=1;)

to comply with the axial symmetry. But C, and C,
are not independent in the bulk system. Neglecting
the surface energy, i.e., requiring the thermo_gy-
namic identity, especially the term C;V;¢(V x1),,
to be invariant under partial integration, we have
the additional relation

C,=-C,=C. (2)

More precisely one may state that a generally uni-
axial C;;= C,l,l;+ Cu(6;; - 1,1,) can be rewritten as

a sum of C§; =3 (C, - C,)(5;,-21,1,) and C3,=3(C,
+C.)d;;. C3, only contributes to surface energy,
whose neglect is expressed by Eq. (2). Dealing
with a bulk system in the present hydrodynamic
theory, it is a convenient way to eliminate surface
effects. The elastic coefficients K; and K, have
been treated correctly along this line in Ref. 1.

C;; has been calculated microscopically to be pro-
portional to 6;; - 27,7, near T, and at zero temper-
ature.? This seems to indicate a generally vanish-
ing surface contribution to the energy at these tem-
perature ranges. 5“ = - pi; can now be deduced

by letting Graham’s first relation of Eq. (7) to un-
dergo a uniform Galilean transformation,

The following terms are permitted by the sym-
metry and may be added to the reactive part of the
stress tensor and the superflux, i.e., to oﬁ and
I®, respectively,

B0 == X VeAS = Qi Va0l (3)
with

Migur = Mp[€pa8 1+ (6,5 =5, 1)]
@ignr = {01[(040 = LTTp€ 5+ (80 = LiTy€ 0,
+(843 = Lil )€ pyn+ (87 = 1111 €10
+ Qo Lilaly€pgy + Ulelp€ g1y + Ll € o+ 111 y€01) )
and (4)
AJE = M€,V 105

Since any oy, leading to the same V; o;; is correct,
one can show the equivalence of the antisymmetric
A0y, = = My i,V A; and the symmetric Aoy,
= = N1,€,4, VA5 + (4,7 ~4,9)]. Because of this rela-
tionship, it is erroneous to require a vanishing 2,
on the grounds that, for a system of conserved
orbital angular momentum, o, is always symmet-
ric. In fact A=3. This is obvious from the def-
inition® Vo=~ VQ3, Q3 being the rotation angle
around the preferred z axis and for a rigid rota-
tion 3 =3(VxV";. The invariance under reflec-
tion at a plane which contains the preferred axis is
a symmetry element of the nematic crystals* and
not of the axial phase of *He. Therefore ¢, and ¢,
are vanishing coefficients in the hydrodynamics of
liquid crystals.®

With Egs. (7)-(11) of Ref. 1, fourth sound has
been recalculated and found to reflect the dissipa-
tive coupling to the orbital variables with an addi-
tional damping term

w2 = wo{wy — ik [£p°+n(2C sind c086)?/p*]} (5)

with p’f on cq.s29+ p$sin®0 and © as the angle be-
tween k and 1.
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