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Critical properties of two tensor models with application to the percolation problem
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Two models having p-dimensional Cartesian tensor order parameters are introduced. In the first the tensor is
constrained to be symmetric and traceless, and in the second it is constrained to be diagonal and traceless.
The three-dimensional form of the first can be used to describe the isotropic to nematic phase transition in
liquid crystals. The second model is a continuum generalization of the Ashkin-Teller-Potts model, which
describes the percolation problem when p = 1. Both models have cubic invariants which according to Landau
mean-field theory, give rise to first-order phase transitions. These models are studied near four dimensions
when the cubic invariant is small using the e expansion. A new fixed point, stable in 6 —e dimensions, is
located and its properties studied. The percolation exponents to second order in e' = 6 —d follow from
perturbations about this fixed point for the p = 1 Ashkin-Teller-Potts model and are

q = —(1/21)g —(206/3 7 )& and 1/y = 2 —(5/21)e —(23/7 3 2 )e .

I. INTRODUCTION

According to the hypothesis of universality, '
critical exponents should depend only on the sym-
metry of the order parameter, the dimensionality
of space, symmetries of the Hamiltonian, and not
on numerical values of interaction strengths. The
renormalization group' ' provides an impressive
theoretical justification for this hypothesis. In-
deed critical exponents have been calculated for
a wide variety of Hamiltonians for n-component
vector order parameters. '~ Order parameters
of other than vector symmetry are possible. In
this payer, we consider two closely related mod-
els with nonvector order parameters which find
their motivation, respectively, in the nematic-to-
isotropic phase transitions in liquid crystals""
and in the Ashkin-Teller-Potts'4" (ATP) model.
In both models, the fundamental variables are
p-dimensional symmetric-traceless tensors. In
the first, all n= —,'(p+ 2)(p —1) independent tensor
components are allowed to fluctuate. %e call this
the Q model; it describes fluctuations in a nematic
liquid crystal"" when p= 3. In the second, the
off-diagonal components are constrained to be
zero leaving n' =p —1 independent components.
This model is a continuum generalization" of the
p-state'"" ATP model, "and describes the per-
colation problem'"" when analytically continued
to p= 1. A preliminary report of the Q-model
results appears elsewhere. " The three-dimen;
sional version of the ATP model has already
received some attention in the literature. '""

The fundamental difference between p-dimen-
sional vector and tensor order parameters is that
the latter have more invariants with respect to

the p-dimensional rotation group than the former.
Thus both vectors and tensors have one quadratic
invariant, but tensors have one cubic invariant
instead of zero, and two quartic invariants in-
stead of one. Hence, the symmetry of the tensor
order parameter alters the symmetry of the Ham-
iltonian in much the same way that externally
imposed conditions alter the symmetry of Hamil-
tonians with vector order parameters. In partic-
ular, the Q and ATP models with no cubic terms
will be very similar to the vector model in a
hypercubic environment ia-20

Landau mean-field theory, as it is usually ap-
plied, implies a first-order transition whenever
there is a cubic invariant. "'" Thus on the basis
of Landau theory, one would expect phase transi-
tions in the Q and ATP models to be first order.
On the other hand, it is known that in two dimen-
sions, the ATP model exhibits a continuous tran-
sition for p ~ 4.'2'" Furthermore, series expan-
sions for the three-state Potts model in three
dimensions predict a continuous'4 or nearly con-
tinuous" phase transition. The situation for the
Q model is similarly ambiguous. Monte Carlo
calculations~ on the rotationally invariant Maier-
Saupe model" (p = 3 Q model) yield a latent heat
for the nematic-to-isotropic transition substan-
tially lower than predicted by mean-field theory.
Experiments" also yield a lower latent heat than
predicted by mean-field theory on the Maier-Saupe
model though this may be due to interactions
present in a real system that are not included in
the model. ~

The work presented here was initiated in the
hope that the renormalization group and the &-ex-
pansion might shed some light on these contra-
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dictions. Our program has met with only partial
success. Using the renormalization group, we
have not been able to provide a global picture of
the behavior of the Q and ATP models noradefin-
itive understanding of why the transitions in these
models are more continuous than expected. We
have, however, been able to analyze properties
of these models in the vicinity of easily located
fixed points and to obtain some new information
which may provide the key to an eventual more
complete understanding of their global behavior.
Our principal results fall into two categories:

(a) Both the Ijj and ATP models have stable fixed
points in 6 —e' dimensions for p &p, = 4+ O(Me')
and —', +O(v e ), respectively. For larger values
of p, the fixed points become stable in 6+ &'

dimensions as in the usual Q' field theory. " We
call these the Q' fixed points to emphasize that
they are determined solely by the cubic invariants
to lowest order in &'. Their stability in less than
six dimensions is a new feature of the Q and ATP
models which results from the internal degress
of freedom of symmetric traceless tensors. The
interpretation of the Q' fixed points is open to
some question. It appears, as discussed further
in Sec. V, that different interpretations are need-
ed for p& 2 and p& 2. For p&2, it is almost
certain that the Q' fixed point for the p = 1 ATP
model gives the critical exponents which we cal-
culate to second order in q' for the percolation
problem. " For p&2, the situation is less clear.
It seems unlikely that the Q' fixed point has any-
thing to do with the continuous transitions in two
dimensions in the ATP model. We conclude this
because, on the basis of the & expansion, it ap-
pears virtually certain that the region of existence
of the Q' fixed point when extrapolated to two
dimensions could not include all p between 2 and
4. Other interpretations for the Q' fixed point
for p & 2 are (i) it describes metastable behavior,
(ii) it is completely inaccessible for physical sys-
tems and is merely a reflection of a singularity
that occurs at p = 2, (iii) it describes the critical
behavior of some unknown physical system. As
yet no connection between the Q' fixed point for
the Q model for any value of p and a physically
interesting problem has been established. In
analogy with the ATP model, however, it is pos-
sible that there is some problem which corre-
sponds to the p=1 Q' fixed point and that the region
2&p&p, is open to the same interpretation as for
2 &p &p, for the ATP model.

(b) If the coefficient f of the cubic invariant is
zero, the fixed-point structure in 4- & dimen-
sions of both the Q and ATP models is similar
to that of a ferromagnet in a hypercubic environ-
ment. " All of these fixed points are unstable with

respect to t. The interpretation of this instability
depends on the existence of a stable physical Q'
fixed point. If there is no stable Q fixed point,
as certainly must be the case for large enough p
in all dimensions, the instability represents a
crossover" to first-order behavior for nonzero
t. In this case, the usual Landau mean-field the-
ory"'" provides an adequate description of the
first-order transition for large initial values of
t. If on the other hand, t is small, pretransitional
effects are important even though the transition is
first order. In this case, linearization in t near
the t = 0 fixed points provides a description of the
transition. This treatment can in principle deter-
mine the effect of critical fluctuations on the con-
tinuous isotropic to biaxial transition in mixtures
of rodlike and platelike molecules discussed by
Alben" using mean-field theory. If there is a
stable physical Q' fixed point, the instability in
t could represent a crossover to this fixed point.
Alternatively, the Q' fixed point could be inacces-
sible to systems whose potentials flow to the most
stable t = 0 fixed point when t = 0. In this case, the
instability in t would still lead to a first-order
transition. A final possibility is that the acces-
sibility of the Q' fixed point depends on the sign
of t. We have been unable to determine which
alternative is correct, though our prejudice at
the moment is that the instability with respect to
t for p & 2 leads to a first-order transition.

The outline of this paper is as follows. Section
I is the introduction. Section II presents the mod-
el and treats the mean-field theory. Section III
discusses diagrammatic rules peculiar to the Q
and ATP models and deals with the E expansion
for the t = 0 fixed points in the isotropic state.
Section IV treats the equation of state of these
fixed points for states with uniaxial symmetry.
Section V analyzes the Q' fixed points for short-
range forces, calculates the percolation expo-
nents to second order in e', and discusses briefly
the Q' fixed points for long-range forces. Finally,
Sec. VI is a brief summary with some comments
on the possibility of any of the a expansion fixed
points corresponding to the continuous transitions
for the ATP model for p= 3 and 4 in two dimen-
sions.

II. MODEL AND MEAN-FIELD THEORY

The model we consider has the reduced Hamil-
tonian

—y'Q)~Q)~+ V~Q]~V~Q]~ —tQ]~Q~~Q

+ Q( ~@j jjjj) + H j jQ jj+ VQ j jQ

jhow

lilac

j]j
(2.1)
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(A)= f DQAe Jf DQe (2.2)

The solution of this model for general 8 is cum-
bersome. We will consider only the case for
which H does not change the symmetry of the
spontaneous symmetry breaking state. Also we
do not consider the other type of gradient term
&,Q,~V&Q~„. This is anaj. ogous to the dipole term
in the vector model. It couples the rotational
properties of the space variables to the rotational
properties of Q.

The connection between the Q and ATP models
and the vector model can be seen most clearly
by introducing an appropriate decomposition of Q:

Here d is the dimension of space and Q„=Q,~(x)
is traceless, symmetric, and of dimension p. The
dependence of Q on the position coordinates x, is
suppressed for notational convenience, and the
Einstein convention with respect to repeated in-
dices is understood. To complete the definition
of the model we define the average of a quantity
A, which is a functional of Q as the functional
integral over Q:

0 if j&o.,

—1/(p —n) if i & n,

b&g = 2 v 2 (5)~ 5~q+ 5 )85~~).

There are p —1 a's and ',p(p ——1) b's. The a'sandb's
form a basis set for the traceless symmetric p xp
matrices. The normalization is chosen such that

(2.4)

If the coefficients of the TrQ' and TrQ' terms in
Eq. (2.1) were zero, the Q model would be iso-
morphic to the n-dimensional vector model with
n=~(p —1)(p+2). Since B &=0 for the ATP mod-
el, the ATP model would be isomorphic to the n'-
dimensional vector model with n'=P -1. The Tr@'
and TrQ' terms however have a more complicated
representation in this basis set. This is a reflec-
tion of the fact that they are invarient with respect
to a p-dimensional rotation group instead of a
n- or n'-dimensional group.

The above decomposition is the logical generalization of that used by Freiser" and Alben" for three-
dimensional traceless tensors. The connection is easily established by setting B 8 =0 and Ay A cos8 and

A, =Asin8, then

Q;~=A

(-', )' 'cos8

—~( —',)'~' cos 8+ —,
'

M2 sin 8

--,'(-', )'h cos8--,' M2 sin8

(2.5)

When 8= 3', Q, &
is uniaxial; otherwise Q, z is

biaxial. In particular, if 8= —, m, Q, &
is purely bi-

axial. For the p-dimensional case, the A 's can
similarly be expressed in terms of an over-all
amplitude and p —2 independent angles. "

The connection between the model of Eq. (2.1)
and the ATP model may be established as follows.
The p-state ATP"'" model consists of (p —1)-di-
mensional vectors A(x) on lattice sites x, that are
constrained to be at one of the vertices of a ( p —1)-
dimensional unit simplex. Thus, the vectors A
must be at one of the vertices of an equilateral
triangle inscribed in a unit circle in the three
state Potts model and at one of the vertices of a
tetrahedron inscribed in a unit sphere in the 4-
state Ashkin-Teller model. The Hamiltonian for
the p-state Potts model is

neighbor pairs. It is easy to verify that if v= 0,
Eq. (2.1) for diagonal traceless tensors has
minima for A such that the corresponding vector
points to one of the vertices of a p-dimensional
simplex. Thus by letting r, t, and u tend infinity
in the appropriate way, it is possible to restrict
the A such that the corresponding vector can
point only to the vertices of a p-dimensional sim-
plex. This is the same technique used by Wilson'
to regain the Ising model from a continuum model
and by Golner" to obtain the three-state Potts
model from a continuum model. Thus Eq. (2.1)
is the correct continuum generalization of the
p-state Potts model described by Eq. (2.6). After
one iteration in a renormalization scheme, TrQ'
terms are always generated. We therefore allow
for v t 0 from the beginning.

H= -J g Agx A(x'), (2.6) A. Simple cases

where (x,x ) signifies a sum over the nearest-
A few cases for which the structure of the TrQ'

and TrQ' terms is simple can be identified. First,
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for the case p = 2, TrQ'= 0 and TrQ'= —,'(TrQ')'.
The Q and Potts models for the case p = 2 are
completely isomorphic to the superfluid and Ising
models, respectively. The Q model and ATP
models for the case p = 3 correspond to the de Gen-
nes liquid crystal model and to the usual Potts"
model, respectively. For this case, the relation
TrQ'= &(TrQ'}' is not obvious but is true. For
this reason, the liquid crystal model and the Potts
model have only one type of quartic interaction.

The ATP model with t = 0 is of special interest
in the limit p- ~. In this limit the constraint on
the trace of Q becomes unimportant. The ATP
model becomes isomorphic to the vector model
with a hypercubic perturbation. '"" The analogy
between these models will be discussed further in
Secs. III and IV.

B. Mean-field theory

To study the mean-field theory for the Q and
ATP models, we regard Eq. (2.1) as a free energy
and Q, ~ as the average value of the order para-
meter. As usual, we assume r to vary linearly
with temperature: r=a(T-T*), where T* is not
necessarily the transition temperature T,. In
equilibrium in the mean field, Q assumes the val-
ue that minimizes Eq. (2.1). Since the minimum
is independent of x, the rotational independence of
Eq. (2.1) allows Q to be taken as diagonal. There-
fore, in the mean-field theory, there is no dif-
ference between the Q and ATP model.

In this paper, we will consider only equations
of state for uniaxial systems. To do this, we
single out the uniaxial component of Q, &

from Eq.
(2 3),

Q(~ = Ma)~+ Q P~b(~'+ Q;~, (2.7)

where M=Ai P B i and Q]J has zeroes in the
first row and column and a (p —1)-dimensional
traceless tensor in rows and columns 2 through p.
In a uniaxial system, P and Q, J are zero in equi-
librium. Inserting Eq. (2.7} into Eq. (2.1), we
obtain the free energy density E= E„+E~, where

E„=~rM' —(P —2)t M'+ (u+ 8)M'

and

(2.8)

E~=C, Trg'+C, gP P +O(Q', P'), (2.9)

where F = t/[p(p —I)]'t', v = [(p' —3p+ 3)/p(p —I)]&,
and C, and C, are complicated functions of M. E„
is the mean-field free energy for a purely uniaxial
system and is plotted in Fig. 1 for various values
of r for (p —2)t &0. An evaluation of the mean-
field free energy for the discrete ATP model [Eq.

FIG. i. Mean-field free energy [Eq. (2.8)] as a func-
tion of order parameter M . In curve (a) r & (P —2) t /
(u+v) =r, , (b) r=r, , (c) 0 &r &r, (d) x&0. If (p —2)t
&0, the above curve must be reflected about the M= 0
axis. Then if M is constrained to be non-negative, a
second-order transition occurs when r = 0.

'r —3(p —2-)t M+ 4(u+ n)M'= 0. (2.10)

If t = 0, Eqs. (2.8) and (2.10) predict a second-or-
der transition"'" with M-(T —T*)' '. If (p —2)t
& 0 (&0) a first-order transition occurs to a state
with positive (negative) M when the secondary
minimum in Fig. 1 reaches zero. This occurs at
a temperature T, & T*which satisfies

and

r = (p —2)'t '/(u+ v)

M(T, ) = 2(p —2)t /(u+6).

(2.11)

(2.12)

An interesting situation occurs when p becomes
less than 2. In this case, (p —2)t becomes nega-
tive for the mean-field free energy for the ATP
Hamiltonian [Eq. (2.6)]. Thus, the free energy is
minimized for negative M. On the other hand,
the ground state of Eq. (2.6) clearly has M posi-
tive. For the percolation problem (ATP model

p = 1), the order parameter is the probability,
which must be non-negative, of being in the in-
finite cluster. '4 We are thus led to the conclusion
that M is constrained to be positive for p & 2 even
though (p —2)t is negative. " In this case, a sec-
ond-order transition occurs at T= T* with

(2.6)] with (A(x)) =Me„, where e„ is aunit vector'""
along one of the multihedral directions yields Eq.
(2.8) with t=(1/60)[p(p —I)]'t'T and (u+ 6}
= (I/120)(p —3p+ 3)T, where II is the volume of
a unit cell.

Minimization of E„with respect to M yields
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(2.13)

In other words, P = 1. y and v retain their usual
values of 1 and &. These exponents are in agree-
ment with exact calculations for the percolation
problem on a Bethe lattice" and lend strong sup-
port to our interpretation that M must remain
positive for p& 2. The fixed point in 6 —& dimen-
sions for p& 2 discussed in Sec. V is related to
this constrained transition, and allows us to ob-
tain percolation exponents.

In order for the uniaxial state to be stable, C,
in Eq. (2.9) must be positive. Using Eq. (2.10),
we find

C, = [2(3 —P)/(P —1)]vM'+ '.t[p/(P - I-)]'~'M.

(2.14)

Since tM & 0 (even for p & 2), this implies the uni-
axial state is stable whenv = 0. If p & 3, the uniaxial
state is at least locally stable if v& 0; if v& 0, Cy
will become negative for sufficiently large

~ v~

yielding and unstable uniaxial state. We also find

C, = 0. This is expected since the principal axis
of Q can point anywhere in the Q model. (P =0
in the ATP model. )

III. ISOTROPIC STATE

In this section, we will apply the z expansion in
the standard way to the calculation of critical ex-
ponents for the Q and ATP models. ' ' The initial
Hamiltonian is restricted to variables with wave-
number of less than a cutoff which we set equal
to unity. Degrees of freedom with b"'&q&1,
where b&1 are removed. Then space and dynam-
ical variables are rescaled via q- bq and Q- PQ,
where f is chosen so that the coefficient of
q'Q, &Q, &

remains unchanged. This prescription
yields recursion relations for the potentials r,
t, u, and v. Recursion relations for u and v to
second order in u and v determine four fixed
points to order & = 4 —d. To this order, the ex-
ponent g is zero and will be ignored. At each fixed
point, linearized recursion relations then deter-
mine the correlation length exponent v and cross-
over exponents for the t, u, and v fields. To first
order in E, t is a scaling field at each of the four
fixed points with fixed-point-dependent crossover
exponent g, —= A.,v. At fixed points where u and/or
v are zero, u and v are scaling fields with expo-
nents Q„-=X„v and Q„=—A,„v. At fixed points where
both u and v are nonzero, linear combinations of
u and v are scaling fields with exponents @g ~yv

and Q, =-X,v. The exponent @, is always positive
indicating that a small deviation of t from its
critical surface will always lead to a first-order
transition, or possibly to the Q' fixed point, or

some as yet unidentified fixed point. The most
stable fixed point will have both u and v exponents
negative.

In the noninte racting case (t = u = v = 0) bilinear
averages of the Q's can be calculated exactlyusing
Eq. (2.2). In the Q model,

(Q&g(q)Qa&(- q))

= (r+ q') '(5,~&«+ &„5q~ —(2/p)5, .q5, ), (3.1)

where

Q„(x)= Q e'~'%„(q).

The Feynman-graph perturbation theory for this
model is similar to that of the well-known Q4-

field-theory model. " The topological structure of
the graphs can be represented in exactly the same
way if the correspondences in Fig. 2 are made.
The cubic (three point) verticies are structureless.
Although the topological structure of the graphs
is identical to that of the Q4-theory graphs, the p
dependence of a graph can not be deduced from
simple structural considerations such as the num-
ber of loops. The p dependence must be calcula-
ted from Eq. (3.1).

For the ATP model

(Q«(q)Q~&(- q)) = [2/(r+ q')](5, ~
—1/p). (3.2)

The structure of the Potts model graphs is the

Ij ij k0 kt

jk

~~J kg Jk ~i~

FIG. 2. Correspondence between the structure of the
four-point vertex of the Q model and the structures of
the four-point verticies of the Q model.
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same as that of the Q model in the case of the u
verticies. Both the v and t verticies are struc-
tureless.

~„"= —e, &"„=[(n —4)/(n+ 8)]e, (3.11b)

t' = b"' [1—24K, lnb[4u+ (p+ 3 —12/p)v]] t,

u' = b'[u —32K, lnb(au'+ guv+ dv')],

v' = b'[v —32K, lnb(6uv+ c 'v')],

(3.4)

(3.5a)

(3.5b)

where

K = 2'-'2 "r(-.'d)

and

a = ,'(p'+ p+ 1—4)= 2 (n+ 8), g = —,'+p —3/p,

c=(—', +~p —9/p) ', d=-,'+ —', 1/p'. (3.6)

Equations (3.5) have four fixed points. They are
(a) Gaussian

ug = vg= 0.

(b) Heisenberg

ug = f/16(n+ 8)K~, vg = 0.

(3.7)

(3.8)

(c) and (d) mixed-plus and mixed-minus

u,*= (e/64K, )(a —6gc+ 36dc') ' (1+ 12dc' -gc s h),

(3.9)
v,*= c(t /32K4 —6u,*),

where

&=(c/ici)[(gc —1) +4dc (6-a)]'~~, (3.10)

where it is understood that the positive sign of the
square root is to be taken. c ' passes through zero
from negative to positive at P = 2.55. The plus and
minus fixed points map out two trajectories as a
function of p. The factor of c/i c

i
in Eq. (3.10)

insures that fixed points on a given trajectory
will have the same labeling for c '=0+ and c '
= 0 . (Note that the value of ug differs from that
usually quoted"' by a factor of —,'. This is due to
our different normalization of the Q' term in the
initial Hamiltonian. Critical exponents for this
fixed point will of course be the same as usual. )

The stability of the fixed points (a)-(d) are de-
termined by the X exponents obtained by lineariz-
ing Eqs. (3.5) about their fixed-point values. We
find

X=X
u v (3.11a)

A. Q model

The recursion relations for the Q model are

r' = b'(r + 4K,[-,' (1 —b ') —r lnb] [2(p'+ p+ 2)u

+ 2(3+ 2p —6/p)v]),

(3.3)

~2 = 3e —32K,[(2a+ 6)u,*+ (b+ 2c ')v,*]. (3.11c)

We are now in a position to discuss the position
and stability of the various fixed points as a func-
tion of p. First note that for n& 4 (p& 2.702), the
Heisenberg fixed point is the most stable. For
2(P(2.702, the mixed-minus fixed point lies in
the upper right-hand quadrant in the u-v plane,
and the mixed-plus fixed point lies in the lower
right-hand quadrant. Both mixed fixed points lie
to the left of the Heisenberg point until P - 2.6
when the mixed-plus point moves to the right of
the Heisenberg point. At n= 4, the mixed-minus
and Heisenberg points points merge and become
marginally relevant (i.e., X"„=X,=O). This is most
easily seen by noting that a= 6 and ~=gc —1 at
n=4. A similar situation occurs for the hyper-
cubic model'"" at n=4. For n&4, the mixed-
minus fixed point moves into the lower half plane
and becomes the most stable (X, and X2&0). Fi-
nally, at p = 3.62 (n= 7.38), n becomes zero and the
two mixed fixed points merge together. For
P & 3.62, 6 is imaginary and the mixed fixed points
become physically inaccessible. This presumably
implies a first-order phase transition" even if
t = 0. Of special interest are the physical dimen-
sions P = 2 and P = 3. As already noted Tr@4
=

& (TrQ')' in both these cases, so that one would
expect physical quantities to depend only on u+ &v.
At p = 2, the mixed-minus fixed point lies on the
line u+-,'v =up = e/160K, and the mixed-plus point
on the line u+2v=0. Similarly at P=3, the mixed-
minus fixed point lies on the line u+ ~v =u„*
= e/16 x 13K, (with u)uv and v&0) and the mixed-
plus fixed point lies along the line u+ &v = 0. The
flow lines for p = 3 (Fig. 2) indicate that a point in
the upper half plane will flow to infinity asymp-
totically along the line u+ &v =u„*. A point in the
appropriate region of the lower half plane will
flow to the stable mixed-minus fixed point with
u*+ pv„*=u~~.1

The exponents v and P, can easily be obtained
for all of the above fixed points from Eqs. (3.3)
and (3.4)

v '= 2 —8K,u*(p'+p+ 2) —8K,v*(3+ 2p —6/p},

(3.12)

p, = v[1+ 2e —96u* —24(p+ 3 —12/p)v~]. (3.13)

At the Heisenberg fixed point, v* is zero and Eq.
(3.12) reduces to the familiar result' for an n-
component vector: v ' = 2 —[(n+ 2}/(n+ 8)]e. As
discussed in Sec. II, this result is expected. At
p=2 and P=3, v depends only onu*+&v* as pre-
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dieted. Thus, for p= 3, v has the same value if
v starts off negative and flows to the stable mixed-
minus fixed point or if v starts off positive and

flows to infinity along u+ &v = uH. Hence, at p = 2

and p=3, v has the same value as Heisenberg
systems with n= 2 and 5: v '= 2 —[(n+ 2)/(n+ 8)]e.
t is undefined at p = 2 since Tr@'= 0. At p= 3, p,
depends only on u+-, v and has the value v(1 ——,', e).

B. ATP model

The recursion relations for the ATP model are

r' = b'tr + 16K,[-,' (1 —b ') r l—nb] [(P+ 1)u

+ 3(1 —1/p)v]),
(3.14)

t' = b"' '(I —24K~ lnb[2u+ 3(1 —2/P)v])t, (3.15)

uc*= vc

(b) Heisenberg

&g= e/16(n'+ 8)K„vg= 0.

(3.17)

(3.18}

(c) and (d} Mixed-pius and mixed-minus (see
note after summary)

(e/32K bl)[s/ p (sl2 bl)1/2]

v,*= (I/36[1 —(2/p }]Kg(-,'e —48K,M,*),

where

s' = (p —2)'- s(p —1)(p —2)+ —',

b' = (p+ 7)(p —2)' —8(p —1)(p —2)+ 16.

(3.19)

(3.20}

The A. exponents follow from linearizing Eqs.
(3.16),

and

ft V (3.21a)

(3.21b)

&', = 3e —32K,[(p+ 13)u,* + (12 —21/p)v,*],

(3.21c)
where n'=p -1 ~

We now analyze the position and stability of
these fixed points. As might be expected, the

u' = b'(u —16K, lnb [(p+ 7)u'+ 6(1 —I/p)uv

+(9/p')v']), (3.16a)

v' = b '{v —16K, Inb[12uv+ 9(1 —2/p)v']).

(3.16b)

As for the Q model, there are four fixed points
determined by Eqs. (3.16). They are

(a) Gaussian

fixed point structure for the ATP model is very
similar to that for the hypercubic model for all
values of p. For p & 5 (n' & 4), the mixed-plus

fixed point is in the lower -right quadrant and the
mixed-minus in the upper-right-hand quadrant.
The Heisenberg fixed point is the most stable.
At p = 5, the mixed-plus and Heisenberg fixed
points merge and become marginally stable. For
p & 5, the mixed-plus fixed point moves into the

upper half plane and becomes the most stable
fixed point. This is analogous to the cubic fixed
point passing through the Heisenberg fixed point
at n= 4 and becoming the most stable. As p- ~,
u,*-e/48pK„v,*-e/144K, and u*- 0, v*- e/144K, .
Thus, in this limit, the mixed-plus fixed point
becomes identical to the cubic fixed point and the
mixed-minus fixed point becomes identical to the
Ising fixed point of the hypercubic model. " (Re-
member the factor of 4 resulting from different
normalization. ) This is expected since the trace-
less constraint becomes unimportant at p = ~. At

p= 2 and p= 3 the mixed-plus fixed point lies on
the line u+ ~ v = 0 and the mixed-minus fixed point
on the line u+ ~v=uH.

v and P, follow from Eqs. (3.14) and (3.15):

v ' = 2 —16K,(p+ 1)u* —48K,(1 —1/p)v*, (3.22)

&f&, = v[ 1+—,e —48K,u* —72K,(1 —2/p)v ~]. (3.23)

For the Heisenberg fixed point, v '= 2 —e[(n'+ 2)/
(n'+8)] as expected. For p=2 and 3, v ' depends
only on u~+ 2v*, and both the Heisenberg and
mixed-minus fixed points yield the same numeri-
cal value for v '. P, depends only on u*+ 2v* at
p ~ 3

IV. ORDERED STATES WTH UNIAXIAL SYMMETRY

In this section, we will calculate the equation
of state for uniaxial states of the Q model to first
order in &" and in the infinite p limit, to first
order in a perturbation series in t. The restric-
tion to uniaxial states requires v & 0. Thus, we
will be able to dete. rmine the equation of state
associated with the stable mixed-minus fixed
point between n=4 and n=7.38. For 2&n&4, the
equation of state reduces to the usual Heisenberg
equation. " In the large-p limit, we predict a
first-order transition for negative v." Presum-
ably, there is also a first-order transition for
positive v in the large-p limit. We will not con-
sider this case. The development presented in
this section also applies to the ATP model. For
n' —4, the Heisenberg fixed point is stable with a
Heisenberg equation of state. For n'&4, the
stable fixed point has v positive and does not have
a uniaxial ground state. We will, therefore, not
consider the ATP model explicitly. We note,
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A, (x) =M+ L(x), (4 1)

and define fluctuating nonuniaxial components P
and Q, z as in Eq. (2.7). Using this relation the
Hamiltonian of Eq. (2.1) can be written"

r
K= (Ho+H~+H2+H, +H4)d x. (4.2)

The terms Hy H2 H„and H4 are regarded as
perturbations. The unperturbed Hamiltonian H,
is given by

however, that the ground state for v& 0 probably
corresponds to matrices with entries of equal
magnitude but alternating sign along the diagonal.
The equation of state should reduce to the hyper-
cubic equation" in the large-p limit.

In the uniaxial state, only A, [Eq. (2.3)] is non-
zero. We, therefore, write A., as a constant plus
a fluctuating field with zero average

Jt d'x(P, (x)P~(0)) = 2rg5, ~, (4 6)

(«a6u+ 6~& 6Ia

d x Qs& x @at 0 = —2 1 ~&z~ar

«~6&i[«a —1/(p —I)]2rs'.
(4.6)

The first form on the right-hand side of Eq. (4.7)
is used for the Q model, the second for the ATP
model. Of course the P, are exactly zero in the
ATP model.

The perturbation terms H~, k= 1, .. . , 4 are of
order k in the fluctuation fields L, P„and Qgf.
Their expressions are quite lengthy and we will
not reproduce them here. Using Eqs. (4.3)-(4.6),
we can proceed in the standard way to calculate
the equation of state. We find

H, =4[rsL'+(V I,)']+-'(r,p, p, +V,p, V,p, )

+ —,(rsvp, .xg, s+ Vg,.&VS &y). (4.3)

H/M + t/Mrdg=f(T/M' )

where 7. is the reduced temperature variable
(T r,)/T„

(4.7)

The quantities r~, r~, and x„are exact self-ener-
gies. They are given by

5=3+a, P=v(1- —,c),

(o~ = (1/P) Q q
= X,(1 + p e),

(4.8)

J
d x (L(x)L(0))= 2rz', (4.4) and

(4.9)

f(x) = 1+x+ le(6(3+x) ln(3+x)+ 2(p —1) (1+x)ln(1+x)+(p'-p —2)s(s+x) ln(s+x)+ 12x ln2 —18(1+x)ln3

+ (p' -p —2) [xs'(s —1)ln(s —1)-s'(1+x) lns]),

where

I& = 4K,[u*+[(p'- 3p+ 3)/p(p —1)]v~},

u*+ 3v*
u*+ [(p'- 3p+ 3)/p(p —1)]v* '

(4.10)

The standard normalization for f(x) was used:
j(0)= 1 and f(- 1)= 0. Equations (4.8) and (4.10)
are valid for both the Heisenberg and mixed-minus
fixed points depending on which is the more stable.
In particular, it is easy to verify that these equa-
tions reduce to the usual Heisenberg equation of
state when t = 0 and u *=u&, v*= 0. If H = 0 but
f c0, Eq. (4.7) indicates that there will be a cross-
over away from the t= 0 fixed point at v = 7.,-t'
M will undergo a change of order t' "& at this
crossover. We are unable at the moment to deter-
mine whether this crossover is to a first-order
transition or to the Q' fixed point. Though it
seems likely that the crossover is to a first-order
transition for p&2. It is certain, however, that
there is some critical value of p=p, (d) such that

for p &p,(d), the Q' fixed point does not exist. In
this case, the crossover is to a first-order tran-
sition. The crossover behavior can then be com-
pared with v, -t' [Eq. (2.11)] and M-f [Eq. (2.12))
predicted by mean-field theory.

Limit of large p. In this section we follow the
method developed by Wallace" for treating the
equation of state in the limit n- ~. In contrast
to the method used to calculate the equation of
state in the & expansion this method is valid only
when v may be regarded as a small perturbation.
The behavior under the renormalization-group
recursion relations is controlled by the unstable
fixed point of Eq. (3.8). In the limit p- ~ there is
a normal crossover behavior as a function of v.

In the case of the Q model we regard u as being
of order 1/p' so that the contribution of the quartic
term to the free energy is of the same order as
that of the quadratic term. If u is of order 1/p',
M is of order p. To insure that M remains of
order p for nonzero v, we assign v to be of order
1/p'. As pointed out by Aharony, "this assign-
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ment of the order of g is valid only if v can be
regarded as a small perturbation. If the renor-
malization-group behavior were dominated by a
fixed point with v* not of order I/p' this approach
would be invalid. However the analysis of Sec. II
shows that there is no fixed point with v*10 for
large p. For the Q model this calculation of the
equation of state is valid for either sign of v.

In the calculation below we obtain the equation of
state to order (1/p)'. We retain only the leading
terms in p. Of the three self-energies only r~ is
needed to this order. There is a contribution to
r„ from a single loop diagram. We now follow
Wallace step by step and obtain the equation of
state

The critical exponents are

5= 3+ 2e/(2 —e), y = 2/(2 —e),

&u„= 2e/(2 —e) = y„/P,

~&=(2+&)/(2 —e)= kg/P~P=2

(4.11)

For v= 0 this equation implies a first-order tran-
sition with T,- t' "t, since there is no Q' fixed
point for p = ~. This should be compared with the
mean-field approximation result: T,-t'. If t = 0
and v&0, there is also a first-order phase transi-
tion as for the vector model with hypercubic cou-
pling. If t = 0 and v& 0, Eq. (4.11) predicts a nega-
tive value of r„. This implies that the uniaxial
state is not stable, Eq. (4.11) is invalid in this
case.

The same type of analysis may be applied to the
ATP model, For, the Potts model u-I/P,
v-I/p, t-I/vp, and M'-p. Exactly the same
equation of state is derived. The ATP model,
however, has a stable fixed point for v*& 0.
Therefore, the scaled equation of state is only
valid for v&0.

V. Q3 FIXED POINT

In this section, we will show that there is a
nontrivial fixed point for both the ATP and Q mod-
els that exists below six dimensions for a range
of p. It is controlled by, and is stable with re-
spect to, t." We call this the Q' fixed point to
emphasize that its existence depends on the pres-
ence of a cubic invariant. The stability in 6 —E

dimensions is a new feature of the tensor models
that is not found in the usual Q' field theories.
Near six dimensions u and v are driven to zero by
the recursion relations. To simplify the calcula-
tion we set u = v = 0 as initial conditions. If u and
v were actually zero the averages calculated from
Eq. (2.2) would diverge. To avoid this conceptual

problem we argue that an infinitesimal value of u
removes this divergence.

As we shall see, it is difficult to determine un-
ambiguously the range of p for which the Q' fixed
point exists in 6 —& dimensions. To zeroth order
in &', it exists for all p& p„where p, =—", for the
ATP and 4 for the Q model. These values are
most likely reduced by a term proportional to

For both models, different interpretations
are needed for p & 2 and for 2& p &p, (e }. For p & 2,
the fixed point value of r is less than zero, i.e.,
the transition temperature is renormalized up-
ward as is the case for the vector order-para-
meter model. The fixed-point reduced Hamilto-
nian has two minima as a function of ~Q ~

. One
shallow one at

~
Q

~

- ~r/t
~

and a deep one at

~Q ~

-
~

t/u
~

[cf. Fig. 1(d) with r& 0]. As discussed
in Sec. I, the deep well corresponds to a situation
in which a fraction of a state is preferentially
occupied and is physically inaccessible. Thus the
phase transition occurs when the order parameter
falls into the shallower well. For p& 2, the fixed
point value of r is greater than zero. The fixed-
point Hamiltonian has a, minima at ~Q ~

= 0 and at
Q- ~t/u~ [c.f. Fig. 1(c)]. A first-order transition
occurs if the order parameter falls into the deep
minimum at Q- ~t/u ~. This corresponds to the
usual Landau mean-field theory and presumably
to the calculations around four dimensions pre-
sented in Secs. III and IV. It thus seems most
likely that the Q' fixed point for 2&p&p, corre-
sponds to critical fluctuations about the meta-
stable minimum at ~Q ~

= 0. Other possibilities
are discussed in the Introduction. The conjecture
of Alexander" that the minimum ~Q~

-
~t/u~ is

washed out by fluctuations among equivalent wells
should also be mentioned. It should be emphasized
that the problem of convergence discussed above
is strictly a conceptual one. The calculations
below are insensitive to the existence of the mini-
mum at Q- ~t/u~.

p = 2 is special to both the Q and ATP and cor-
responds, respectively, to the XY and Ising mod-
els. We would therefore, expect no nonclassical
exponents to arise at any fixed point above four
dimensions. It does in fact turn out that the crit-
ical exponents evaluated at the Q' fixed point for
p = 2 for both models obtain the mean-field values.

The fixed-point value of t is of order &' '. The
diagram contributing to the self-energy in order
e is shown in Fig. 4(a}, those contributing to
order e' are those shown in Fig. 4(b}. The criti-
cal exponent g is chosen such that the renormal-
ization-group operation acts as the identity on the
coefficient of the gradient term. Since the graph
of Fig. 4(a) is not momentum independent, q will
be of order z. The equation expressing the condi-
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tion that the gradient term not change is

1 = b "[1—a,t'A'(b) —2a~t'B'( b) —a,ag'C'(b)].

(5.1)

The recursion relation for the self-energy is

r' = b' "[r —a, t'A(b) -2a', t'B(b)- a,ag'C(b)].

(5.2)

The recursion relation for t must be calculated
to order &' '. The graph contributing to order &' '
is shown in Fig. 3(c), and those contributing to
order e' ' are shown in Fig. 3(d). The recursion
relation is

t' = bt'I" 'I'"~ [t+ a t'D(b)+ 3a,a t'E(b)

+ 3a~g'F(b)+ ag'G(b)]. (5.3)

In these equations a, = 2q32(1 —2/P) a, = 2'3'(1 -3/P),
and a, = 3 29(1 —6/p+ 10/p') for the ATP model and

a, = 2'3'(p+ 2 —8/p), a, = 2232(p+ 4 —24/p) and

a, = 3'2'(6p —16 —192/p+ 640/p') for the Q model.
The quantities A(b), B(b), C(b), A'(b), B'(b),
C'(b), D(b), E(b), F(b), and G(b) are related to
the momentum integrals associated with the
graphs through the relations~

A(b) =I,(q = 0) = K~[- 2r ln(b)+ r'2b'

—re ln'(b)]+ O(e'), (5.4}

B(b) =I,(q = 0) = K6[- ~ b' —~ ln'(b)

——,', ln(b)]r + O(c'), (5.5}

C(b) =I,(q = 0) =Ke[ 21n2(b) —Bin-(b}]r+0(e'},

(5.6)

B (q(=(,(,(q') =K'I ——,', q' ~ —,",, ( (q)
q-"0

+—„ln'(b)]+ O(e}, (5.8)

C'(b) =,1,(q) =K,[-—,
' ln'(b)]+ O(e), (5.9)

BQ

D(b) =Iq(q = 0) = K~[ln(b) —m2b'

+ —,
' c ln'(b)]+ O(e'), (5.10)

E(b) = I,(q = 0) = K~~[~ b2 —I ln(b)

——, In'(b)]+ O(e), (5.11)

F(b}=I,(q = 0) = K6[~ ln(b) + 2 ln'(b)] + 0 (q. ),

G (b }=I,(q = 0}=Ke ln(b) + O(e ).
(5.12)

(5.13)

A'(b)= ~I, (q) =K~[- 3 ln(b)
8Q

+ 9 e ln(b) —', e ln (b)-
+ m3b') + 0((."), (5.V)

FIG. 3. Flow diagram for the case p =3. Fixed points
are shown as filled circles.

To find the graph associated with the integral
I„consider the graphs in Fig. 4 to be labeled from
one to seven from left to right and from top to
bottom. In writing Eqs. (5.4)-(5.13) we have re-
tained only terms which diverge in the limit
b- ~. Also, we have made use of the fact that the
fixed-point values of r and t' are of order & to
evaluate the integrals to the order required to
evaluate the critical exponents to order &'. The
fixed point and the value of g are obtained by
simultaneous solution of Eq. (5.1) and the equa-
tion obtained by setting t = t' in Eq. (5.3). To check
that all the b dependence cancels out it is neces-
sary to know the fixed-point value of r to order &.
This comes from the nondivergent part of A(b).
The result is

r *=&a,t'+ O(c').

In this and all subsequent equations we absorb a
factor of E~ into t'. After checking that all the b

dependence does cancel out we find the fixed point
and the value of g

1 a,e ~a (3a', +a„a,+36a,)e'
3 2a, —a, 54 (2a, —a,)'
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FIG. 4. (a) Self-energy diagram of order e. (b) Self-
energy diagrams of order ~ . (c) Diagrams contributing
to Eq. (5.3) to order e 2. (d) Diagrams contributing to
Eq. (5.3) to order E'

t"= —e/(2a, -a, )

—(2a, —a, ) '(- —,
' a,a, +—„a',+ 2a, + 2a,)e'.

(5.16}

The value of v may be calculated from Eq. (5.2).
The result is

1/v = 2 —q —[2a, /(2a, —a, )]e

+ [a,/(2a, -a, )'] (-—,aa,'+ a', +—", a,a, —4a,)e'.

(5.17)

Note that both q and (1/v —2) are proportional to
a, which is zero at p = 2 for both the Q and ATP
models. Therefore, g and v take on their classi-
cal values of 0 and & at p = 2 as expected.

Evaluating Eqs. (5.15) and (5.17) for the ATP
model at p = 1, and using the scaling equations
y=v(2 —g) and 2P=dv -y, we obtain the percola-
tion exponents

q = ——,', e —(206/3'7')e',

1/v = 2 ——,', & —(23/7'3'2)e ',

y= 1+—,
' «+ (355/7'3'2')e',

p = 1 ——,
' e —(271/7~3~22)e2 ~

Substituting for & = 1 the results for 5 dimensions
are found to be y=1.17 and P=0.835. This can be
compared with Kirkpatrick's Monte Carlo calcula-
tion" which yielded y=1.3+0.1and P=0.66+0.05.
For both P and y, the &' term is of the right sign

but not large enough to get agreement with the
Monte Carlo result.

We will now discuss briefly the values of p for
which t is positive in 6 —e dimensions (i.e., the
values of P for which the Q' fixed point exists).
To first order in &, t~ is proportional to
e/(p', -p), where p,'= —", for the ATP and p', = 4 for
the Q model. Thus t*' is positive as long as
p&p', . If p&p,', t*' is positivein6+z' dimensions.
Note, however, that the & expansion breaks down
as p approaches p', . The second-order term in
Eq. (5.16) is proportional to e'/(p', -P)' suggest-
ing that in general

(5.19)

where f is a function that reduces t*' to Eq. (5.16)
for small e/(p', -p)'. A similar functional form
for fixed-point potentials occurs for random
n-component spin models" where p,'-p is re-
placed by n —1. In this case, the exponents at
n= 1 can be calculated directly" and are found to
have corrections near four dimensions proportion-
al to M&, in agreement with the scaling form of
Eq. (5.19). In the case of the ATP and Q models,
however, a direct calculation of t*' at p =p', yields
a negative (i.e., unphysical) value of t*2. There-
fore f(x) changes sign for some x, w ~. We are
now faced with a problem. If f(x)&0(&0) for
x &x, (&x,}, then there would be two disjoint re-
gions for which t*2&0: (i) p&po —(e/x, )'~'=p, &po

and (ii) P,&P &P,'+ (e/x, )'~2. The second region
however, is most likely an artifact since it was
off limits to the first-order expansion in &. In
other words Eq. (5.19) is valid for p&p, only. For
p &p„ t*'= 0. There is not much point in estimat-
ing p', to the order we have calculated. A single
Pade' approximant which replaces 1+x by 1/(1 -x)
would be the only reasonable way to obtain p„and
this is clearly not a good enough approximation.
It thus appears that the Q' fixed point only exists
for p &p„where p, decreases with &. The possi-
bility that the fixed point exists for all p & 4 in
two dimensions seems highly unlikely.

We conclude this section with the observation
that the Q' fixed point also exists for long-range
forces with potentials that die off as r~ as long
as o & &d. In this case, the long-range (LR) ex-
ponents to lowest order in &"= 3o -d are
q«= 2 —o and I/v«= o —(a,/a, )e". An analysis
identical to that of Sak" shows that the long-range
fixed point is stable relative to the short-range
fixed point as long as 0 & 2 —q, where g is the
short-range exponent. A curious situation arises
for p& 2 in which case q is negative. In this case
it would appear that the long-range fixed point is
stable for a& 2. However, in the region below
six dimensions where the short-range fixed point
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exists, the long-range fixed point only exists for
o& 2. Thus, below six dimensions, short-range
behavior is unstable with respect to long-range
behavior when g is negative below six dimensions
whenever a&2. This is compared with the strong-
er condition that o & 2 —g when g is positive. The
long-range Q' fixed points for the ATP and Q mod-
els have not yet been related to any physical. prob-
lem.

VI. SUMMARY

In this paper, we have studied the critical prop-
erties of models having p-dimensional diagonal
traceless (ATP model) and symmetric traceless
(Q model) tensor order parameters using the e
expansion. These models differ from the more
familiar vector model in that they have a cubic
invariant t and two quartic invariants rather than
a single quartic invariant. W'e have found two
sets of nontrivial fixed points that can be treated
using the e expansion: one with vanishing t which
gives nonclassical exponents below four dimen-
sions; and one with a nonvanish&g t which gives
nonclassical exponents below six dimensions. The
first set of fixed points is unstable with respect
to t. This instability leads in most cases to a
first-order transition describable by the usual
Landau mean-field theory with a cubic invariant.
The fixed point near six dimensions describes the
percolation problem when the ATP model is ana-
lytically continued to P= 1.

We have been unable to make any definitive
statement about the relationship between the con-
tinuous transition that is known to occur for the
ATP model for p & 3 in two dimensions and the
fixed-point structure obtainable from the z expan-
sions. It seems unlikely to us that these transi-
tions have anything to do with the Q' fixed point
in 6 —& dimensions since the critical value of p
for which this fixed point becomes nonexistent is
less than or equal to —",. One possibility is that
the continuous transitions in two dimensions are
described by fixed points in which the cubic po-
tential t vanishes. In 4 —& dimensions, the fixed
points with vanishing t are those discussed in
Secs. III and IV. Thus, in 4-f dimensions, the
XÃ and the three-state ATP, and the Heisenberg

and the four-state ATP model would belong to the
same universality class and have the same criti-
cal properties. This would remain true down to a
critical dimension d, of order 3& where the fifth-
order potentials (i.e., Tr@' and TrQ') become
relevant. The fifth-order potential breaks the
rotational invariance in spin space and distin-
guishes between the ATP and usual spin models.
Thus below d„ the ATP and spin-model fixed
points would separate leading to different critical
behavior for the two models. Different critical
behavior is to be expected in two dimensions since
the ATP models have long-range order in two
dimensions whereas the two- and three-compo-
nent spin models do not. The role of the fifth-
order potential in distinguishing between the ATP
and spin models is intriguing and is currently
being investigated. We note in closing that it is
entirely possible that it is impossible using the
& expansion to locate fixed points which, when
followed to two dimensions become the fixedpoints
describing the continuous transitions for p = 3 and
4,

While this paper was in the final stage of prep-
aration two other papers'"' dealing with the ATP
model were published. The first paper" by Zia
and Wallace generalizes the ATP model in essen-
tially the same way as we do in the present paper.
They, however, factorized the fixed-point values
for I,* and v,*, Eqs. (3.19) and (3.20). Factorizing
these equations we obtain

u. ,*=(a/48K, )1/(p+ 2),

v,*=(e /144K, )p/(p + 2),

u*= (e/48K, )1/(pa —Vp+ 14),

v *= (&/144K, )p( p —5)/( p' —Vp + 14),

in agreement with Ref. 49. Reference 50 derives
the equation of state for the three state Potts
model in agreement with Eqs. (4.9) and (4.10).

ACKNOWLEDGMENTS

We are grateful to Alan Bray for providing guid-
ance in evaluating the integrals in Sec. V. One of
us (R.G.P.) acknowledges support from the Na-
tional Research Council for a NRC postdoctoral
fellowship while preparing this paper.

*Work supported in part by the Center for Theoretical
Physics and the National Science Foundation.

)Present address: Naval Research Laboratory, Wash-
ington, D. C. 20375.

fWork supported in part by a grant from the NSF and an
Alfred P. Sloan Research Fellowship.

'L. P. Kadanoff, Physics 2, 263 (1966).
K. G. Wilson, Phys. Rev. B 4, 3174 (1971); 4, 3184
(1971).

K. G. Wilson and J. Kogut, Phys. Rep. 12, 77 (1974).
K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28,
240 (1972).



13 CRITICAI P ROP E RTI ES OF TWO TENSOR MODE I.S... 4171

Shang-keng Ma, Rev. Mod. Phys. 45, 589 (1973).
M. E. Fisher and P. Pfeuty, Phys. Rev. B 6, 1889
(1972); F. J. Wegner, ibid. 6, 1891 (1972).

Amnon Aharony, in Phase Transitions and Critical Phe-
nomena, edited by C. Domb and M. S. Green (Academic,
New York, to be published), Vol. 6.

M. E. Fisher, Bev. Nod. Phys. 46, 597 (1974). This
and the preceding article give comprehensive reviews
of the predictions of the renormalization group re-
garding critical behavior of vector order parameters
subject to interactions of varying symmetry.

P. G. de Gennes, Phys ~ Lett. A 30, 5 (1969).
' P. G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193

(1971).
J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943);
B. B. Potts, Proc. Camb. Philos. Soc. 48, 106 (1952).
P. W. Kasteleyn and C. N. Fortuin, J. Phys. Soc. Jpn.
Suppl. 16, 11 (1969); C. N. Fortuin and P. W. Kaste-
leyn, Physica (utr. ) 57, 536 (1972).

' The continuum version of the three-dimensional Potts
model was introduced and studied by G. R. Golner
Phys. Rev. A 8, 3419 (1973).
For a review of the percolation problem, see V. K. S.
Shante and S. Kirkpatrick, Adv. Phys. 20, 325 (1971).

' A. B. Harris, T. C. Lubensky, W. K. Holcomb and
C. Dusgupta, Phys. Rev. Lett. 35, 327 (1975).

' T. C. Lubensky and R. G. Priest, Phys. Lett. A 48,
103 (1974).

' P. J. Amit and A. Scherbakov, J. Phys. C 7, L96
(1974). See also R. Opperman, J. Phys. A 8, L43
(1975).

"P.J. Wallace, J. Phys. C 6, 1390 (1973).
' A. Aharony, Phys. Rev. B 8, 4270 (1973); Phys. Rev.

Lett. 31, 1494 (1973).
I. J. Ketley and D. J. Wallace, J. Phys. A 6, 1667
(i.973); Amnon Aharony, Phys. Rev. B 8, 3349 (1973);
R. A. Cowley and A. D. Bruce, J. Phys. C 6, L191
(1973); A. D. Bruce, ibid. 7, 2089 (1974); A. D. Bruce
and Amnon Aharony, Phys. Rev. B 11, 478 (1975).
L. D. Landau and E. M. Lifshitz, Statistical Physics
(Addison-Wesley, Beading, Mass. , 1969), Chap. XIV.
R. J. Baxter, J. Phys. C 6, L445 (1973).
J. P. Straley and M. E. Fisher, J. Phys. A 6, 1310
(1973).

' J. P. Straley, J. Phys. A 4, 2173 (1974).
R. V. Ditzian and J. Oitmaa, J. Phys. A 7, L61 (1974).

P. A. Lebwohl and G. Lasher, Phys. Rev. A 6, 426
(1972); 7, 2222 (1973).
W. Maier and A. Saupe, Z. Naturforsh. A 13, 564
(1958); 14, 882 (1959); 15, 287 (1960).

"A summary of experimental results is given in
R. Alben, Mol. Cryst. Liq. Cryst. 10, 21 (1970).

' R. L. Humphries, P. G. James, and G. R. Luckhurst,
J. Chem. Soc. Faraday Trans. 268, 1031 (1972).

3 R. Priest, Phys. Rev. A 8, 3191 (1973).
3'R. Priest, Solid State Commun. 17, 519 (1975).
32G. Mack, in Proceedings of the International Summer

Institute on Theoretical Physics, Kaiserslautern,
1972, edited by J. Ehlers, K. Hepp, and H. A. Weiden-
muller (Springer-Verlag, Berlin, 1973), p. 300.
For a discussion of crossover to first-order behavior
see B. I. Halperin, T. C. Lubensky, and Shang-Keng
Ma, Phys. Rev. Lett. 32, 292 (1974). See also
R. Opperman, J. Phys. C 7, L366 (1974).
R. Alben, Phys. Rev. Lett. 30, 778 (1973).
M. J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).
L. Mittag and M. J. Stephen, J. Phys. A 7, L109
(1974).
M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609
(1961).
R. A. Ferrell and D. J. Scalapino, Phys. Rev. Lett. 29,
413 (1972) and Phys. Lett. A41, 371 (1972).

3~E. Brezin, D. J. Wallace, and K. G. Wilson, Phys.
Rev. Lett. 28, 548 (1972); Phys. Rev. B 7, 232 (1973).
E. Brezin and D. J. Wallace, Phys. Rev. B 7, 1967
(1973).

'Amnon Aharony, Phys. Rev. B 10, 3006 (1974).
This fixed point was discovered independently by M. J.
Stephen in an unpublished work (private communica-
tions).

3S. Alexander, Solid State Commun. 14, 1069 (1974).
The techniques used to evaluate the graph integrals
are similar to those used by A. D. Bruce, M. Droz,
and Amnon Aharony, J. Phys. C 7, 3673 (1974)~

4~S. Kirkpatrick, Phys. Rev. Lett. 36, 69 (1976).
T. C. Lubensky, Phys. Rev. B 11, 3573 (1975).
D. E. Khmelnitsky, Sov. Phys. -JETP (to be published).
J. Sak, Phys. Rev. B 8, 281 (1973).

~R. K. P. Zia and D. J. Wallace, J. Phys. A 8, 1495
(1975).
J. Rudnick, J. Phys. A 8, 1125 (1975).


