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The specific heat (C) and entropy (q) in zero field are calculated for infinite chains of spins, coupled by a
nearest-neighbor Heisenberg exchange. The data presented include all spin values S & 5/2 and cover
ferromagnetic and antiferromagnetic exchange. Several techniques are used to obtain reliable estimates for the
infinite chains, and much attention is given to the theory underlying these techniques. For high temperatures

the series expansion of C is used for the estimates. Coefficients in the series are obtained from the energy

spectra of different finite chains. This method is fully described, and attention is given to the estimation of
further coefficients. For intermediate temperatures, around the region where C displays the characteristic
broad maximum, the series expansions fail and here the estimates of the infinite chain are obtained from a
suitable extrapolation of the data for finite chains. This method is shown to be correct for sufFiciently high

temperatures. It is applicable to a wide temperature range. For temperatures near T = 0, C is described by a
polynomial based on the spin-wave theory. The coefficients in this polynomial are equated such that a smooth

fit in with the intermediate temperature specific heat is obtained and that at the same time the over-all

entropy gain is correct. The results are, as far as possible, tabulated.

I. INTRODUCTION

An ensemble of an infinite number of spins with
interactions is most easily studied theoretically
in the two limiting cases of a one-dimensional
(1-d) arrangement and of an infinite-dimensional
lattice. The second case, known as the equivalent-
neighbor model, ' has little practical application,
but in experimental magnetism several compounds
are known to approach a 1-d model. ' Theoretical
attention to 1-d systems started, long before any
experimental need for such models existed, with
the solution of the partition function of the Ising
model with S= ~ ~

' Sincethen, several other models
have been solved, 4 but in spite of much effort, few
general solutions have been arrived at. The best-
known examples are those of the XY Hamiltonian
for S =

& in zero field' and the classical limit of
infinite spins interacting isotropically in D di-
mensions of the spin vector space. ' ' The gen-
eralized Ising Hamiltonian with additional single-
ion interactions (magnetic field or zero-field
splitting) can be solved in principle for any spin
quantum number using the transfer-matrix tech-
nique. ' For several other models less-detailed
information exists, 4 such as the ground-state en-
ergy or the susceptibility for T =0.

The experimental study of crystalswithanearly-
1-d behavior started on substances with Cu" as
the magnetic ion. "'" Since Cu" (S = &) generally
displays a Heisenberg or anisotropic exchange,
approximate techniques were had recourse to in

order to enable a comparison between theory and

experiments to be made.
Series expansion for the isotropic" and the an-

isotropic" ' "Hamiltonians offered the possibility
of such comparison for the high-temperature side.
The estimates of Bonner and Fisher, "based on
extrapolation of the data for finite rings of spins,
covered also temperatures well below the char-
acteristic broad maxima in the specific heat (C)
and susceptibility (}().

The study of crystals with other magnetic ions
has resulted in the discovery of fairly good ap-
proximations of 1-d Heisenberg models, such as
TMMC"' " (tetramethyl ammonium manganese
chloride) and CMC"' '~ (cesium manganese chlo-
ride). Such systems (S = &) are confronted with a
further lack of theoretical predictions. The
series-expansion work of Rushbrooke and Wood"
gives information concerning the high-tempera-
ture behavior, but for lower temperatures the
information is limited, when S & 2.

For S = 1, Weng" studied C and g for the iso-
tropic case. Stimulated by the experiments on
salts with Ni" as the magnetic ion, we have re-
cently presented estimates of C for an S =1 Ham-
iltonian with isotropic exchange and a zero-field
splitting term AS ', ." Green's-function analysis by
Rhodes and Scales" offers some data for S = &.

Our main interest lies in the behavior of chains
with nearest-neighbor Heisenberg interactions
and spin S = —,

' (Mn", Fe")." Since Bonner and
Fisher's technique was shown to yield fair results
for S =1,"'"'"it was examined to see if this
method was worthwhile for S = 2 too. This actually
turned out to be the case, but in order to get a
general feeling about the uncertaintites in the es-
timate of C, we employed this technique for all
smaller spin quantum numbers as well.
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In order to estimate C for the infinite chain, we
did not restrict ourselves to the technique of ex-
trapolation from finite chains and rings. For the
high-temperature side, the series expansion in

P (= I/kT) was derived from the calculated prop-
erties of finite chains. The region near T =0 is
hardest to examine. There we used a polynomial
in T based on spin-wave theory, ' the coefficients
of which are chosen so as to assure the correct
entropy gain and a smooth transition to estimates
for higher temperatures. We quote a possible
error of about 5%%up below T (the temperature for
which C is maximum), 0.5% in its neighborhood,
and no error for T & & T, for S = ~.

For S& & the error in the low-temperature re-
gion gradually increases, especially for the anti-
ferromagnetic chain. For S = ~, the (antiferro-
magnetic) polynomial fitting must even be con-
sidered unreliable.

In order to defend the estimates, much attention
is given to the application of the different methods,
and this finds its clear display in the grouping of
the chapters. Instead of a division starting from
spin quantum number or sign of the exchange, we
preferred a presentation based on temperature
region. After a general theoretical introduction,
attention is turned to the high-temperature region
(T» T ) and the series expansions of C are dis-
cussed. The technique of extrapolation of the re-
sults for finite chains is typical of intermediate
temperatures (T = T ), which are reviewed in Sec.
IV. The low-temperature side (T&T ) will be
discussed in Sec. V and in Sec. VI we present the
over-all estimates and compare them with others.

II. GENERAL REMARKS

The common features of all systems studied here
are the 1-d arrangement of spins and the absence
of any anisotropy in the exchange interaction. The
interaction is between nearest neighbors only and
a magnetic field is not present. For chains the
Hamiltonian can be written as

N-I
3C = —2J Q S;'S;„,

When dealing with rings the additional interaction
between S, and S„ is included.

The exchange J may be of ferromagnetic sign
(J&0) or antiferromagnetic (/&0) and the spin S
ranges from S =

& to S = &. In estimating the ther-
modynamic behavior of the 1-d system when X-~,
use will be made of the data for finite clusters of
spins. To calculate the thermal behavior of these
systems, a detailed knowledge of the eigenvalue
spectrum for given N and S is a prerequisite and
we shall first consider the limitations imposed on

this calculation. For N spins S there are (2S+1)"
eigenvalues, and they can be found by diagonaliza-
tion of the matrix representation of X on any set
of basis functions. The use of good quantum num-
bers may facilitate such diagonalization since it
will result in factorization of the matrix. Owing
to the completely isotropic character of the inter-
actions, good quantum numbers are T' and T,
(T =Q; S;). These are independent of the precise
topological way the spins are coupled. Further
factorization may be accomplished by using the
symmetry of the cluster. For a chain, an inver-
sion center exists, and parity would be a good
quantum number: eigenfunctions of X transform
according to the irreducible representations (IR)
of the group D, . The translational invariance of
a ring makes the wave vector k as well as the IR's
of the group D„good quantum numbers. The
higher symmetry of a ring allows of a solution
of the eigenvalue spectrum for a system with more
spins than is possible for a chain. However, it
appears that in practical computations not all good
quantum numbers should be used to obtain min-
imum computer time. The good quantum numbers
can be introduced in two ways, which we shall
briefly describe here.

The first is to construct basis functions that are
eigenfunctions of T„project them on one of the
IR of the group associated with X, and finally
apply a projection after total spin T. The first
projection can be obtained using ordinary group-
theoretical methods (since the functions are al-
ready eigenfunctions of T„only positional per-
mutations of the spins are of importance, and use
of double groups can be avoided). The projection
of a function on the subspace of a certain total
spin T may be accomplished with the aid of the
projector p~,

(2)

Since any eigenfunction of T, ~M& can contain only
functions that belong to T &M~, the product may
even be limited to S& T.

The second possibility consists in constructing
eigenfunctions of T' and T, in the first stage by
applying Clebsch-Gordan coefficients~ and in
using in the second stage the group symmetry.
In both cases further use can be made of the com-
mutation of X and T', since this guarantees that
any eigenvalue for the solution in the subspace
with T, cf-M~ will reappear in the problem with
Mr &Mr [all eigenvalues belonging to a certain total
spin T are (2T+1)-fold degenerate]. Of these two
possible approaches to the solution, the first is
preferable for the matter of program generality,
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since it results in a program that can handle any
Hamiltonian showing axial symmetry. The first
projection is then applied according to the sym-
metry group of X and the second may be used if
[X,T'] =0, as in the present study. This has been
the set up of our main programs. It turned out,
however, that the application of I"~ is so elaborate
that it consumes all computer time saved in the
solution of a smaller eigenvalue equation. For
large N, therefore, the second scheme had to be
used and there the symmetry of X had to be omit-
ted for the same reasons.

The maximum allowable number of spins in a
cluster is determined by the resulting order of the
largest eigenvalue problem, together with com-
puter limitations. A summary of these numbers is
given in Table I for rings and chains.

Once the complete set of eigenvalues is known,
the partition function may be calculated from

the summation being over all (2S+ I)" energy
levels.

TABLE I. Summary of the order of the largest eigen-
value problem arising in the solution of the energy
spectrum of finite rings and chains with various spin.
The columns headed A give these numbers when use is
made of the topological symmetry of the clusters (group
D2 for chains, Dz for rings of N spins) but not of the
commutivity of X and T . Column B lists the order of
the largest eigenvalue equation when the symmetry of
the clusters is not taken into account, but PC, T j = 0
and PC, T, j=0 is used. In this case no difference exists
between rings and chains. Underlined numbers in the
second column indicate that it has been possible to cal-
culate the eigenvalues for rings as well as for chains.
In the other cases only rings could be solved.

The thermodynamic functions are then found
from the Gibbs free energy [G„=—ln(Z„) jP] and
its derivatives. Naturally, all these functions
give detailed information only for the finite sys-
tems they are derived from. The main task in
finding the behavior of an infinite chain is either
to eliminate the boundary effects in case of a chain
calculation or to extend the finite k spectrum to its
continuous limit when dealing with rings. This
happens to be possible in the two limits P -0 and
T-O, at least in principle. The high-temperature
region (PJ'«S') is most easily analyzed by using
a perturbation series. Since in this limit all func-
tions for magnetic systems attain constant values,
they may be expanded into a power series in P.
The coefficients of the ensuing expansions [high-
temperature expansions (HTE)] for the infinite
chain can be expressed in traces of the Hamilton-
ian for finite clusters, which makes possible an
indirect extrapolation to the case N-~. Section
III will be devoted to this matter.

For temperatures near T =0 a convenient ap-
proach is the assumption of spin waves and cal-
culation of their dispersion relation. It is gen-
erally assumed that this technique yields fair re-
sults for 3-d lattices but for a 1-d arrangement
of spins the predictions turn out to be only of qual-
itative correctness. Studies in this low-tempera-
ture limit will be the subject of Sec. V.

It appears that the HTE, although covering a
considerable part of the temperature scale, is not
powerful enough to reach the spin-wave region
and one is left with the intermediate temperatures
(PS~ S'). Estimates of the limiting function in
this region may be obtained by using Pads approx-
imants of the HTE. This will be discussed in Sec.
IV, where we shall also show that an even more
powerful method is possible if the data for finite
chains are used directly.

9
10
11
12
13

6
7
8

5
6

4
5

A (ring}

10
25
44
78

138

24
56

140

31
96

19
76

35
156

A (chain)

66
126
236

74
200

81

45
197

76

B

48
90

165
297
572

40
105
280

36
120

17
70

24
120

III. HIGH-TEMPERATURE REGION

In the extreme limit of P -0, all energy levels
are equally populated and the partition function Z
is just the total number of levels. For increasing
P, Z(P) may then be expressed in a power series
and all thermodynamic functions can be found by
suitable differentiation of this series. We shall
turn our attention mainly to the specific heat per
site (C) and for that quantity the first term in the
series is in P'

with K=PJ. The series is infinite but in actual
calculations M will be finite. The number of com-
putable terms depends on the technique of calcu-
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lating the coefficients. Each coefficient a~ is re-
lated to the trace of the ith power of X, which
can be solved by diagrammatic techniques. A

straightforward calculation after the general rules
of Rushbrooke and Wood" limits us to a maximum
of M=11 for general spin. However, once the
Hamiltonian is solved for a number of finite
chains, the coefficients may be calculated directly
from the eigenvalues and the maximum M is then
related with the maximum size N of achainthrough
M=2N- 1. Owing to the properties of one of the
contributing graphs, one further term may be
found approximatively. For S = 2, this sets the
maximum to M=22.

For calculating the coefficients two approaches
are available. The simplest (the cumulant meth-
od) was originally proposed by Domb" and, for
S=& chains, applied by Baker et al." It consists
of an expansion of the Gibbs free energy for the
infinite lattice in terms of the corresponding quan-
tity for a number of finite lattices. The attrac-
tiveness of this approach is that only the occur-
rence of connected linear graphs is of interest. "

The second approach is directly related with
the expansion of C in traces of X, X', etc. , as
introduced by Opechowski" (moment method).
Here too the basic units (the trace of certain
graphs) are calculated by a suitable combination
of the traces of X for a number of finite lattices.
In this case not only the occurrence of connected
graphs is of importance but also that of discon-
nected ones. Although this involves a far more
complex calculation scheme, it is worth applying
since it can serve as a check on any systematic
or rounding errors in the calculation after Domb.
Furthermore, this method allows us to calculate
one more coefficient in the series. Since for both
schemes the procedure is one of recursive cal-
culation, propagation of rounding errors may be
severe. We shall first outline the principles in
more detail and turn to the error propagation
afterwards. In the following subsections the def-
initions and formal solution for both schemes
are described, starting with the moment method.

A. Moment method: Definitions and notation

The normalized trace of the nth power of X„
will be denoted by

tr(X"„)=(2$+I) " QE", . (4)

Each trace can be divided in contributions from
different clusters in the chain. This is conven-
iently done by the introduction of graphs. Each
term J(Si Si„) is therefore represented by a bar
connecting sites i and i+1. If all n sites in a graph
in tr(X"„}are interconnected, we shall call the

~i, (ri)
19 2f f) ~

(5)

where the function y is a generalized Dirac func-
tion,

The first summation in (5) encompasses all dif-
ferent combinations of r&, excluding possible per-
muatations.

For a chain of fq spins tr(X"„}may be expressed
in the D(n)'s and d(n)'s

n ~n

tr(X"„)=Q Q", Df,(n)+ Q q", d, (n),
k=z 5=I

with Q,
" indicating the occurrence of graph Df,(ii)

on a chain of N spins and a„ for the number of
different composite graphs of the order ii (and cor-
responding definitions for q", and P„).

In order to calculate a coefficient in the series
expansion for the infinite chain (3) by the moment
method, one must calculate the trace of each graph
that may contribute to the corresponding order,
multiplied by the coefficient of the linear term in
its occurrence function (e.g. , Rushbrooke and
Wood~). The occurrence of each simple graph is,
in our definition, just once per site for the infi-
nite chain. For composite graphs, Q& also con-
tains terms in N', N', etc. If we denote the term
proportional to fq in Ql by i} T' then the coefficients
a; in (3) are found from

gn n
a

n

a„=— d, n)+ gy Dp n)
k=I

Since, according to (5), the trace of a composite
graph may be expressed in products of the traces
of its composing simple graphs, it is sufficient

graph simple and denote its trace by d(n}. In order
to distinguish between different graphs of the same
order, they will be labeled according to their
length: d, (n) for a graph with all sites intercon-
nected and between points i and i+l on the lattice. "
When the sites in a graph are not all intercon-
nected, the graph will be called composite, and
its trace denoted by Df(n). The vector subscript
indicates the lengths of the set of composing sim-
ple graphs. The decomposition into simple graphs
enables a relation between D f(n) and d, (k) to be
expressed:

Dr(ii) = Di, , i, , i, , . . . , i„(ii)
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to know all d, (m) with m& n in order to calculate
a„. But Eq. ('I) shows that tr(X"„) can also be ex-
pressed in d, (m) with m&n, and it should there-
fore be possible to relate a„ to tr(X"„) for different
N. Instead of establishing this relationship direct-
ly we shall content ourselves with the solution of
all d&(s) and then substitute them in (8).

q d(n} = B(n), (9)

where the components of B(n) are related with the
Hamiltonian for different chains as

B„(n)=tr(X"„}—Q Q Dl, (n) . (10)

The number of equations equals the number of
chain lengths for which tr(X"„) could be calculated
and the number of unknowns is P„. This set of
equations may be solved as long as no two simple
graphs have all 9'" equal. This requirement is
satisfied since the lengths of two simple graphs
is unequal, and g& = N- l +1 for chains. A unique
solution is then found if P„ is at most equal to the
number of chains. Owing to the fact that
tr(S; ~ S~, ,) vanishes, P„ is found to be

—,
' n, n even

—,'(n —1), n odd .

Therefore, the contribution of all d, (n} can be cal-
culated for n&2N- 1 when tr(X~} is known for all
L&N.

Returning to the original calculation we note that
once d, (m) is known for all m&s, d, (n) could be cal-
culated. Since d, (2) [the smallest order with non-

vanishing d(m)j is known, all d(m) can therefore be
found.

The method so far has not distinguished between
rings and chains, except for the actual values of
the occurrence functions. However, when tr(X"„)
is calculated for a ring of N spins there will be a
contribution of a polygon P„(n) (ring graph) if
n ~

¹ This introduces additional unknowns in Eq.
(9). Since it is difficult to correlate polygons of
different length, the use of rings is limited to

B. Calculation of dI(n)

The calculation of the trace of a graph d, (n) is
most simply formulated with an induction formal-
ism. Suppose that the value associated with all
d, (m) is known for all m& n Sin. ce a composite
graph of the order n is composed of simple graphs
of orders smaller than n, all Dy(s) may be cal-
culated according to (5). Then Eq. (I} can be re-
written as a set of linear equations with d, (n) un-
known:

d, (4) =4T, , +2R. . .
with

(12)

n&N. Although rings have higher symmetry and

should therefore be solvable with more spins than
is possible for a chain, their application to this
technique is limited. However, owing to the peri-
odicity of a ring, the thermodynamic functions,
when normalized per spin, are correct to the
order n=N-1. This will be a useful check in the
calculations.

The important question about any systematic
error in the theory or in the actual numerical
computation of the graphs was examined with great
care. First of all we recall the set up of the cal-
culation. The method outlined was one of complete
induction and the computer programming was cor-
respondingly a recursive algorithm. This actually
leads to one of the few cases in which the correct-
ness of a program can be proved. " The calcula-
tion of the occurrence functions g", and Qp is ele-
mentary in this case and yields no particular dif-
ficulties. All further steps in the calculation of
a„were checked by comparison with the results of
direct calculation of the first ten terms in the
series, following the general outline of Rushbrooke
and Wood. " The propagation of rounding errors
in the stepwise calculation of d(n) might cause
trouble. Except for the highest order, the set of
equations (9) is overdetermined. The solution is
then found using a least-squares criterion, and the
squares' sum is a reliable measure of the cor-
rectness of the results. Since of all d, (n) for a
certain order n, d, (n) has always the smallest
value, any rounding errors will affect this graph
most clearly. In the Appendix it is shown how

d, (n) can be calculated exactly from first princi-
ples, and this provides a check on the influence
of the propagation of errors. Finally, we note
that the cumulant method independently leads to
the same coefficients a„, and a comparison be-
tween the two results again serves as a check
(see Sec. III C).

As we mentioned in the introduction to this sec-
tion, one further coefficient in the series (3) can
be calculated approximatively. This additional
term requires knowledge of the contribution of
all graphs in tr(X~ ), where L is the number of
spins in the longest chain that was solved. Exam-
ination of Eqs. (8)-(10) shows that any d, (21.) can
be solved except those with l &L —1. This leaves
only one graph to be calculated, d~(2I}, which
consists of a double bar between L +1 consecutive
sites. An approximate solution is possible owing
to its relative simplicity. This can best be dem-
onstrated by starting with d, (4) and examining the
different terms that make up this graph:
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T( i, , —(S; ~ Si~,)(Si Si+i}(Si„Si„)(Si„Si„)
(13a)

d, (6) = »i d (4) (4T, , +2R, ,) 6!/(4!2!),
or for general order

(14}

di~ i(2l +2)» di(2l) (4T +2R) (2l + 1) (2l + 2)/2

(16)

where the subscripts to T and R are omitted since
they do not affect their respective values. Both
formulas are incorrect since it was assumed that
T and R occur four times and twice, respectively,
irrespective of the terms already present in the
smaller graph. Actually there are correlations
between these terms, as can be verified from
Table II where we list the possible combinations
for d, (6). For a large number of terms, as in the
case of d»(22) for S = », one may assume that there
will be a more or less constant distribution over
all terms and then Eq. (16) may be generalized to

di„(2l + 2) = d, (2l}a(2l + 1) (2l +2}, (16)

with a a constant.
A plot of d„,(2f +2)/d, (2l) against (2l +1) (2l + 2)

would thus show linear behavior. The results for
S = 2 are plotted in this way in Fig. 1 and it is ob-

TABLE II. Trace of the graph d3(6) has contributions
from terms with different symmetry. The occurrence
of combinations of these terms is listed together with
the numbers that result if these terms are assumed to
be independent.

Term pair Real occurrence Estimate of Eq. (14)

Ri, i+ z
= (Si ' Si+ i) (Si+, ' Si+») (Si ' S;+,) (Si+ i

' Si+») .

(13b)

In general the terms T and R have different val-
ues. They are a basis for the two groups of dif-
ferent permutations of four quantities belonging
to two groups of two. Now for d (6) there will be
combinations of T, „R,„T,„and R, , Here
again T, , , occurs twice as often as R, , as is also
the case with T, , relative to R, „and the total
number adds up to 6!/(2!)'.

Tentatively, therefore, one might express d, (6}
in d, (4} as

10-

CV

13

CV
+
P4

+ 5

I

50 100 150
(2k+9(2k+2)

I

200

FIG. 1. Plot of d&+&(2k + 2)/d& (2k ) vs (2k + 1) (2k + 2)
for S = 2. The asymptotic linear behavior is used in or-
der to estimate an additional. coefficient in the HTE.

vious that Eq. (16}is a good approximation. The
approximate value of d»(22) for S =

& can be cal-
culated in this way and is accurate within 0.1%.
This results in a possible relative error of 10 '
in the coefficient a». Similar calculations were
performed for the case of other S, although the
errors increase considerably with increasing S.
The resulting errors are summarized when the
series are presented in full detail in Sec. IIID.

First, the cumulant method of obtaining the co-
efficients will be outlined.

C. Cumulant method

1 7

2C2 =24, +42,

3C3 =34, +24'2+43 .

Instead of expanding the partition function, an
expansion of 1n(Z) or the Gibbs free energy is
possible also. An important consequence of such
an expansion is that only simple graphs are of
importance, "which introduces a great simplifi-
cation intothe calculation. Especially for a higher
lattice dimensionality the enumeration of the oc-
currence functions for composite graphs Q& is
complicated. For a 1-d lattice there is little rea-
son to favor one method over the other, and we
merely used them both as a partly independent
check.

Following the outline of Rushbrooke, "we may
specialize the method for chains and express the
specific heat per site for different chains (C„) in
the cumulant functions 4~ as

f2 23

&i2 R23

R(2 T23

Ri2R23

42

18

18

12

40

20

20

10
g N

NC»= Q q»4» = Q(N-0+1}4» . (16)

For general chain length we then obtain the analog
of Eq. (7):
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The cumulant functions 4~ are, like the specific
heat, functions of temperature. Each can be ex-
pressed in a power series in P

TABLE IV. Coefficients in the HTE of the specific
heat of an S=i chain, C= t36P J g & 0 b;(2PJ)'.

(19a}

1
Ca =

k Q da( P' (19b)

and the important observation is (e.g. , Rushbrooke
et al.")that c,~

=0 for i&2k. The coefficients c„,
may be solved stepwise, according to Etl. (17),
i.e., first all c„ in C„which equal the coefficients
in the expansion of C„ then c„by examining
2(C, -4,}, etc. However, this would result in un-
necessary error propagation and it is therefore
better to use the analog of Etl. (9), and solve the
c~& from

0
1

2
3
4

6
7
8
9

10
11
12

1.0
-0.5
-1.666 666

1.250 000
2.138 889

-2.226 389
—2.397 016

3.447 366
2.364 325

-4.902 016
-1.939 088

6.541 397
1.35+0.2

qc=dg, (20}

In this way one obtains, except for the highest
order, an overdetermined set of equations which
can be solved in the sense of a least-squares fit.
Generally this is sufficient to obtain numerical
stability.

TABLE III. Coefficients in the series expansion of
the specific heat of an S= 2 chain,
&= ~P'~' Q ( 0 b;(z pJ )

' .

0
1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.0
-1.333 333
-2.222 222

5.925 926
1.382 716

-16.100 960
8.293 370

31..980 259
-41.425 570
-43.403 537
121.959 798
11.991 318

-273.767 213
159.718 026
479.797 98

-664.302 69
572.727 27

1798.4461
1827.128

-12696.13
-100 357.5

D. Results of the series expansions

The moment method and the cumulant method
both make use of the eigenvalues of the Hamilton-
ians for finite chains. The results are therefore

TABLE V. Coefficients in the HTE of the specific
heat of an P = aa chain, C= —", P'J' P &, b;(

0

2

4
5
6

8

9
10

1.0
—0.266 667
—1.312 000

0.477 234
1.355 578

—0.625 065
—1.279 653

0.726 823
1.148 911

-0.791 381
-1.07 +0.02

not completely independent, nor even their errors.
We note that a higher degree of accuracy may be
obtained when the traces tr(X") are calculated di-
rectly by repeated multiplication of the matrix
representation of X by itself and then summing
the diagonal elements. Since we started with a
calculation of the eigenvalues in order to obtain
the thermodynamic behavior of finite chains, we
did not employ this technique but used the eigen-
values as the basic entities. Besides for S && the
matrix of X contains square roots of integer num-
bers and a complete integer arithmetic is thus
not possible anyhow.

The way of solving the traces of simple graphs
and cumulant functions with a least-squares cri-
terion gives, except for the highest coefficients,
an indication of their errors. Very surprisingly,
this suggests that the errors in the coefficients
obtained by the cumulant method are about three
orders of magnitude higher than those from the
moment method, although the latter involves more
complicated steps. Apparently an error in d, (k),
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TABLE VI. Coefficients in the HTE of the specific
hea. t of an S=2 chain, C=48p J p; Db;(8M'.

1.0
-0.166667
-1.133333

0.243 827
1.009 671

-0.267 781
-0.823 004

0.262 774
0.57 +0.06

through the action of composite graphs to which
it contributes, does stablilze the errors in sub-
sequent coefficients.

The series coefficients, as we present them in
Tables III-VII, are rounded off to six decimals,
except for the final ones in each series. Our
checks indicate this to be the correct number of
reliable digits for the higher coefficients. The
last coefficient in each series, found by applica-
tion of Eq. (16), is very rough for higher spin.
The errors are indicated in the tables. In order
to obtain coefficients of the order of unity, the
series are expressed in powers of JiiS(S+ 1) in-
stead of JP.

IV. INTERMEDIATE-TEMPERATURE REGION

As is well known, a 1-d arrangement of spins
with short-range interactions cannot sustain a
state of long-range order and instead of a singu-
larity in C, a broad maximum is observed. The
results obtained through direct application of the
HTE do not even indicate such a broad maximum,
as shown in Fig. 2. Therefore, in the neighbor-
hood of this maximum (T= S'J) other techniques
have to be used. The analysis of the series coef-
ficients by Pads approximants (PA) has been

TABLE VII. Coefficients in the HTE of the specific
heat of an S=: chain, C= 'It~ p2 j2 p, O(b~p3J)'.

1.0
-0.114286
-0.103336

0.147 032
0,838 068

-0.145777
—0.619784

0.129 303
1.5 +0,3

7 I I I I I I I I I I I I I I
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0 0.4 0.8 1.2 'I.6 2.0 2.4 2.8
I TPJS(S.1 j]1

FIG. 2. Antiferromagnetic specific heat as a function
of reduced temperature T*=k T/JS(S+ j.), for S =2 and
S =2. The curves represent estimates based on a finite
number of terms in the HTE. The numbers indicate the
power of P in the last term of the series.

shown to increase the region of usefulness of a
series considerably. " Basically, a PA indicates
the position of poles in the complex P plane, which
determine the convergence radius of the HTE, and
the removal of these poles from the series auto-
matically extends its applicability.

A very brief description of the method and the
presentation of results obtained in this way is
given in Sec. IVA. A more direct approach to the
PA, possible in the case of chains, is discussed
also.

The special structure of the equations used in the
calculation of the HTE coefficients, especially the
simple form of the occurrence functions q"„en-
ables a direct relation between the specific heat
per site in chains of different length to be estab-
lished. The use of this relation automatically
leads to a simple extrapolation of the results to
the case N ~. In Sec. IVB this technique will be
outlined, and it will be shown that the results ob-
tained in this way are reliable in the high-tem-
perature region and in the intermediate-tempera-
ture range.

A. Padd approximants

The construction of a Padd approximant [N/D]
as a quotient of two polynomials of the orders N
and D, of which the series expansion equals that
of a given series to the order N+D has been well
established by the studies of Baker" and others. "

It is convenient to apply the PA to the logarith-
mic derivative of the specific-heat series, as-
suming a power-law divergence of C. Since in
our case of a 1-d lattice no long-range order can
exist, the singularities in C will lie in the complex
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P plane, off the real axis. The series of C may
then be written in the form

(p - p,)'(p —p*.)"* ' (21)
3.0

where p, and p,* indicate the position of the two
conjugated poles closest to the origin. The order
of the poles are y and y*, respectively, ensuring
a real expression for real P. The zeros of the de-
nominator of a PA to (8C/8 p)/C then indicate the
position of P, and P,*and the residue of the PA in

P, is a measure of y.
When P, and y settle around a limiting value for

different [N/D], we may obtain the specific heat
by direct integration of the [N/D] and expect that
the result will not vary much when changing N and
D. Qn the other hand it is possible also to aver-
age over the different Po and y found from various
[N/&] and construct a new series for C according
to Eg. (21). In this latter case the region of reli-
able application can be found as in the case of the
original HTE by constructing the curves result-
ing from (21) with a varying number of terms in

the nominator.
The results thus obtained are not very convinc-

ing. First of all the temperature region of reli-
able application is not as large as was hoped.
Secondly, we find a residue y which is spin de-
pendent. For S = 2, y= 1.55 +0.01 and for S = &,

y=1.83 +0.05. Such spin dependence does not fit
in with the general assumptions of universality. '"

In order to examine the poles more closely, we
turned to the following simple consideration. Since
C is a derivative of the Gibbs free energy G, any
pole in C may be caused by a zero in the partition
function Z. We can thus study the zeros of Z for
different chains and so estimate their limiting
behavior. Figure 3 displays the position of these
zeros for a number of chain lengths when S = &.

Since the location of roots of a complex function
is not at all simple, we did not attempt to find
them all, but those shown in the plot are sufficient
to give an idea of the behavior. With increasing
chain length, the number of roots increases and
their location changes. The lines indicate this
change of position. Several lines can thus be
drawn, all approaching the point P, =- 0.11+0.46i
obtained from the PA analysis. All zeros lead to
a residue y=2, since, if we write

Z=(p —po) (p —po} 8(p) (22)

then

Q p2 ggp2 p2
C=

(p p },+
(p p~), + 8, [88"—(8')']. (23)

It is hard to justify the conclusion that y=2 in
the limit N-~ since several poles, distinct for

g 2.5

2.0—

-1 0 -0.75
4Re (K)

-0.5

FIG. 3. Position of some roots in the partition func-
tion for finite chains, together with the estimated l.imit
for the infinite chain. The numbers indicate the length
of the chains. Only those roots are shown that display
a regular behavior for increasing number of spins.
Others exist but are general. ly further from the origin.

finite N, then coincide. We found, however, that
for y= 2, a P, can be located such that in (21) all
b& with i &2 become of the order of 0.1 (while in
the original series the highest coefficients are of
the order of 20). We also note that an approximate
fitting of the estimated C for N- results in y= 2
for all S as was shown in a preliminary paper. "
See also Sec. VI.

The uncertainty in y may be related to the fact
that the usefulness of an HTE generally increases
with increasing coordination number of the lattice
(see, for instance, the difference between two-
and three-dimensional lattices"' ' and, for 3-d
systems, the difference between open- and close-
packed arrangements"}. One may anticipate that
in the case of a 1-d lattice this situation will be
worst and that therefore the results of a PA anal-
ysis of such series should be interpreted with
care.

Fortunately we are not primarily interested in
the order of the singularities but in an estimate of
C for real temperatures. It has been shown that
direct extrapolation of the results for different
chain lengths to the limit N- ~ is possible and that
such a procedure results in fairly reliable esti-
mates for a wide range of temperatures. In a
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previous paper" the basis of this technique was
derived from an examination of the HTE. A more
rigorous foundation was found afterwards and will
be presented in Sec. IVB.

B. Direct extrapolation of finite chains

The simplicity of Eq. (18) offers a basis for a
direct relation between the specific heat per site
in finite and infinite chains. Rearranging the
terms in (18) readily leads to the relation

1Cs=C„-—+ —Q kC~~„„, (24}

where

5 =Q (k —1)4»
k=1

(25)

is independent of N. Since the cumulant function
4k is a polynomial in p starting with p" ',"we
may thus write

C» = C„—&/N+ O(P "+') . (26)

2, 0

That is, for sufficiently high temperatures, C„
may be obtained from a plot of C„against 1/N for
a given temperature. Increasing P will result in
deviations from the supposed linear relation be-
tween C„and 1/N and this is indicated in Fig. 4
where C~ is plotted for two temperatures. Ob-
viously the correction term O(P' ")has an al-
ternating effect in accordance with N even and odd.
This offers a good possibility of extrapolation.
Using a least-squares criterion, C„and b may

1
C~ = C~- 4~+k+

k=p
(27)

In this way the correction term is O(P"). In com-
parison with the chain formula this is a loss of
O(P""). But a more important restriction is
found in the behavior of the last term in Eq. (2'I}.
For antiferromagnetic exchange this term is al-
ternating in sign for different N but for ferromag-
netic coupling the term is of uniform sign. This

be calculated so as to fit in best with the plotted
C„ for any temperature. A higher weight may be
assigned to the points for high N but this is not
necessary. In any case the squares's sum offers
a reliable measure of the error in the estimate
of C„.

The procedure outlined gives good results by
itself for S=& and S=1. Figure 5 shows the esti-
mates obtained in this way for these two cases and
a comparison with Fig. 2 marks the extension of
the useful temperature range compared with the
results from the HTE.

For higher spin, and especially for S= &, where
the longest chain has N=5 only, the estimates are
based on a smaller number of points. But still,
this procedure gives fair results. To understand
this, one may observe that for S-~, C„=NC /
(N- 1} is exact for all N& 1. For higher spin the
deviations from (26) are therefore smaller and
this compensates the loss of data points in con-
structions as in Fig. 4.

When rings are used as the basic items for an
extrapolation procedure, we may rederive Eq.
(25). If the cumulant function associated with a
polygon of N spins is denoted by Q„, we may write

2.5

2.0—

15-

O
E

1.0- 1/2

S-1 J ~0
0.5- J&0

I ( I I I

1/7 1/5 1/4

I

1/3 1/2
0.2 0.4 0.6 0,8 1.0 1.2 1.4 1.6 1.8

kT[JS (S+l)]-1

I/N

FIG. 4. A plot of Cz vs 1+ for S=l chains. At high
temperatures the data points obey a linear relation. At
lower temperatures deviations from this linearity are
observed. The error bar in this last case indicates an
interval of 2e where cr is the standard deviation.

FIG. 5. Estimates of the specific heat of an infinite
ferromagnetic chain for S = ~ and S = 1. The estimates
are obtained from a direct extrapolation of CN vs 1/N
(cf. Fig. 4). The two curves shown for each S deviate
in the low-temperature region and indicate the uncer-
tainty of the result.
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severely limits the temperature range of appli-
cation as may be seen from the work of Bonner
and Fisher. " These authors already pointed out
the similarity between the specific-heat curves
for different (short) chains I.t is this similarity
that actually leads to the sound procedure outlined
in this section.

V. LOW-TEMPERATURE REGION

U(T} —U(0) =AJT

then obviously

(28}

When the energy spectrum of a finite ring or
chain is known, one may construct a density func-
tion of the energy levels. On examination of this
function for clusters of different size one may
note a gradual steadying of its shape with increas-
ing cluster size. That is, after smoothing, the
difference between the functions for chains with
N and with N-1 spins decrease with increasing
¹ This is indicative of the possibility of con-
structing a limiting function and hence proceeding
to an estimate of the thermodynamic functions in

that limit. The discussion of the last two sections
showed this to be true for sufficiently high tern-
peratures. On closer examination, however, the
differences will be more marked. It is thus very
hard to use information on finite systems in cases
where the details of the density function are es-
sential.

This obviously excludes the low-temperature
region, where only a few energy levels are of
importance and dominate the thermodynamic be-
havior. Nevertheless it was shown by Bonner and
Fisher" that reasonable estimates may be obtained
since the ratio of certain quantities is less sensi-
tive to the deviations in the energy spectrum than
the quantities themselves. For instance, a plot
of internal energy U against the product of tem-
perature and entropy (to exclude confusion, g will
be used for this quantity instead of S) shows a
linear relation down to fairly low temperatures.
And if one assumes a power law behavior for U

near T=O, viz. ,

and equated the coefficients such that at a certain

(a) 12

1.0-

0.8-

O
E 0.6-

0.2—

0.05 0.10 0.15

kTLJS (S+1)]
0.20 Q25

3O
E

Green's-function analysis" (GFA) also predicts
the values for a mentioned; the amplitude is found

very close to the U vs. Tg results. This analysis,
moreover, indicates that the region in which (28)
may be assumed is small.

In our examination of the low-temperature be-
havior we started from the assumption (28) and

checked whether a was spin independent using
plots of U vs Tg. This was found to be the case.
In order to find a reasonable estimate of C(T} in

this region, noting the prediction of the GFA, we
attempted to describe C(T) by a polynomial in T.
For ferromagnetic exchange, for instance, we
assumed

C(T) = a,(kT/J} '~2 +n2(kT/JP ' +a~(kT/J)' '

(80)

U(T) —U(0} = (1 —I/a} Tg(T}, (29)

which explains the linearity. Moreover, the ex-
ponent a may be found from such a plot. The
amplitude A can then be determined otherwise
and the results used to obtain the specific heat in
the very-low-temperature region.

The description of C(T) near T =0 found in this
way compares with the prediction of spin-wave
theory" in the sense that the exponent a= & for
4& 0 and a = 2 for J& 0. Discrepancies exist how-
ever in the magnitude of A (cf. Weng for S =1}."

0.1 0.2 0.3 0.4
kTfJS(S+1)]

0.6

FIG. 6. (a) Low-temperature specific heat of a ferro-
magnetic chain with S = 2. The two curves are obtained
by equating the coefficients in the assumed polynomial
such that the curves fit in smoothly with the estimated
C at different temperatures. The curves have been
drawn below the corresponding take-over temperature.
(b) Low-temperature specific heat for S = 2, J & O. The
comment of Fig. 6(a) applies here also.



4152 T. DE NEEF

temperature T, the curve fits in with the estimate
obtained by direct extrapolation (cf. Sec. IV) both
in value and in slope. Moreover, it is required
that the total entropy gain between T = 0 and T-~
equals Aln(2$+1). If the expression (30) is rea-
sonably good, little influence is expected from a
change of T,.

Figure 6(a) shows the influence of Ta for the
ferromagnetic chain with S = &. The different
curves have been drawn in the interval 0& T& T„
and although discrepancies are present the max-
imum deviation does not exceed 3%. Curve A re-
sults when kT,/J = 0.24, which is about the lowest
temperature at which the intermediate-temperature
extrapolation is reliable. For a 30% higher value of
T„curve Bwas obtained. Solutions for 0.24(kT, /J
(0.32 show an array of curves that lie between the two
drawn. In view of the considerable difference be-
tween Tc(A) and Ta(B), the maximum deviation of
3% between the two results is not surprising. In

case of antiferromagnetic exchange the leading
term should be in T and the polynomial used then
reads

C(T) = btlkT/JI+b. IkT/Jl'+ &slkT/JI' (31)

In this case too, the resulting curves are quite
insensitive to the value of T„and deviations like
those shown in Fig. 6(b) are representative. The
actual values of the coefficients are tabulated in
Tables VIII and IX.

It should be noted that an additional coefficient
may be introduced if the internal energy gain
U(~) —U(0) is also required to be correct. How-
ever, the result is not sensitive to this require-
ment since U(0) —U(T, ) is very small for the T,
we have used.

The description of the low-temperature part of
the specific heat by polynomials as introduced
above is based on spin-wave theory, so one might
expect it to be at least qualitatively correct. In
a way the insensitivity of the resulting curves to
changes in To is an indication of this. Neverthe-

TABLE IX. Coefficients in the polynomial used for
the description of the low-temperature specific heat of
antiferrotnagnetic chains, C= b& Ik T/J I

+ b& IkT/J I

+ b3ik T/J I . The take-over temperature Tp is in con-
formity with the description in Table VIII.

S= -' S= 1 S=— S=2 S=2

bi 1.67 0.90 1.02 1.27
b2 710 460 205 071
b3 -6 04 -2 16 -0 68 -0 17

1.15
0.41

—0.08

T*
0 0.8 0.7 0.4 0.475 0.4

less, there are considerable differences in the
numerical result as compared to spin-wave and
GFA predictions and extrapolation from rings. "

The coefficients of the leading terms in the
series (30) and (31) are compared for various
techniques in Tables X and XI. In these tables
the coefficients correspond to C/R in order to
simplify comparison with published work. We
note that in the case of ferromagnetic exchange
the predictions from the various techniques do not
differ much. For antiferromagnetic exchange,
however, large discrepancies are observed. In
this case we can refer to some theoretical results
for the S= —, chain. The leading term in (31) was
calculated as b,/Jt =-,',""as a special case of
a general expression for the axial Hamiltonian.
Examination of Table XI shows that spin-wave
theory" predicts unreasonably high values, while
our own results are low compared to similar work
of Bonner and Fisher" and Weng. " In comparing
our predicted specific-heat curve with that of
Bonner and Fisher, we note excellent agreement
for all temperatures above kT/J=0. 3. For low'er
temperatures our result is systematically lower
with a maximum difference of about 10%. Since
the difference in entropy gain is only 2%, which
is accounted for in both our uncertainty in g at
T, and Bonner and Fisher's over-all uncertainty,
it must be concluded that differences of this order

TABLE VIII. Coefficients in the polynomial used for
the description of the low-temperature specific heat of
ferromagnetic chains, C= a&(k T/J) + a2(k T/J)
+&3(kT/J) . Tp* is the reduced temperature
k Tp/JS(S+ 1) where this polynomial is fitted in with the
estimated C in the intermediate-temperature region.

TABLE X. Comparison of predictions for the coeffi-
cient of T / in the expression for C/k near T=O in casei/2 .

of ferromagnetic coupling: BF, Bonner and Fisher
(Ref. 15); RS, Rhodes and Scales (Ref. 23); SW, spin-
wave theory (cf. Keffer, Ref. 26); W, Weng (Ref. 21);
deN, this work.

S= —' S=1 $3 S=1 S=— J)0 S= —' S=i $3 S=2 5S=2

To 0.2125

gi 3,77
g2 -9.96

12.99

2.81
-1.20

0.56

0.45

2.45
-0.73

0.39

2.01
0.06
0.001

0.325 0.425

1.91
-0.09

0.04

0.325

0.42
0.46
0.552

BF
RS
sw
W

deN 0.45

0.424
0.391
0.297
0.338

0.379
0.319

0.340
0.276

0.307
0.247

0.295 0.242 0.230
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TABLE XI. Comparison of predictions for the coeffi-
cient of T in the expression for C/k near T=O in case of
antiferromagnetic exchange: BF, Bonner and Fisher
(Ref. 15); KY, Kondo and Yamaji (Ref. 41); SW, spin-
wave theory (cf. Kubo, Ref. 42); W, Weng (Ref. 21);
deN, this work.

J(0 S= -' S=i S= 2
—3 S=2 S=—52

BF
KY
SW

deN

0.35
&0.05
1.047

0.200

0.523 0.349 0.262
0.4
0.108 0.123 0.153

0.209

0.138

U„(0) = U„(0) + a/N" (32)

with K=3 [for details of U„(0) for different N and

S see Table XII]. Secondly, the data for S = —, can-
not be fitted in with an equation of the form (32) at
all.

For S) & not enough data points are available to

TABLE XII. Ground-state energy @/NJ for antiferro-
magnetic rings of different size. The row with N= ~
indicates the lower bound for Ep/NJ based on Eq. (34)
for the infinite ring or chain.

S=2 S=i S=—2 S=2

3
4
5
6

8
9

10
11
12
13

0.5
1.0
0.747
0.934
0.816
0.913
0.844
0.903
0.858
0.898
0.866

2.0
3.0
2.612
2.872
2.734
2.834

3.5
6.0
4.972
5.796

6 ' 0
10 ~ 0
8.456

8.5
1 5.0
12.426

0.833 2.857 5.900 9.935 14.960

are not unaccountable in the extreme-low-tem-
perature region. The differences in entropy gain
between Weng's estimate and ours for S = 1 are
larger. We think it likely that Weng's total entropy
gain it too high by about 6%.

In order to estimate the ground-state energy for
the infinite antiferromagnetic chain, a plot of
U~(0) against some inverse power of N was shown

to be useful.
For S =

& Bonner and Fisher" used N ', and N '
was used by Weng" for S =1. Weng pointed out
that since for S-~, U„(0) against N i' ''' would

result in a straight line for general S. Our data
do not support this prediction. First of all the
results for S =1 may hardly be said to obey the
relation

examine the relation. The technique as used by
Duffy and Barr ' is not possible either, for the
same reason.

The results for the low spin values (S& 2) in-
dicate that in all cases a prediction of U„(0) based
on the connection of U„(0) and U„+,(0) in a plot of
Ur(0) against A ' " results in a value that is too
negative when the data of even-numbered rings
are used. [It may hardly be expected that odd
numbered rings obey a relation like (32) since
for S-~ the ground-state energy is proportional
to cos(2v/N). ] If such behavior is assumed for
all S, then clearly (32) may be used to obtain a
lower bound for U (0). With the aid of the exact
results for rings with N=2 and N=4 (Appendix)
we then arrive at the relation

U (0) )[2S'+S(2" —2)/(2" —1)]J (33)

with z=2$+1, and J&0.
The lower bounds obtained in this way are sum-

marized in Table XII together with the estimates
available for small S.

VI. DISCUSSION OF THE RESULTS

Fragments of the results were shown in the pre-
ceding paragraphs. Here we shall present and dis-
cuss the estimates for the thermodynamic behavior
of the infinite chain, resulting from a combination
of the different techniques that were used.

For antiferromagnetic interaction a combination
of high-, low-, and intermediate-temperature
techniques results in the curves shown in Figs. 7
and 8 for C and g, respectively. The specific heat
has always been our basic quantity in all three tem-
perature regions (for the series expansion around

P =0, for the direct extrapolation to N-~ in the
neighborhood of C ., and for the fitting around T
=0). The entropy is obtained by integration of C/T.
The requirements made upon the evaluation of the
coefficients in the low-temperature polynomial
guarantee the correct over-all entropy gain of
ft ln(2$+1) between T =0 and T -~.

As could be expected, C increases monotonically
with increasing spin when scaled to a reduced tem-
perature T =kT/JS(S +1), and the reduced tem-
perature for which C attains its maximum value
(T*) gradually decreases. In the limit S-~, T*
tends to zero.

The take-over temperatures T„where the low-
temperature polynomials are fitted in with the esti-
mated curves obtained from direct extrapolations
of finite chains, are indicated in Fig. 7. The scat-
ter of these points is due to the differences in the
estimated uncertainty of the results from the direct
extrapolations. Although the maximum chain length
for which the eigenvalues could be calculated de-
creases with increasing spin, the estimates are
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FIG. 7. Estimates of the specific heat of infinite
ch~&&s with antiferromagnetic exchange for different
spin as a function of reduced temperature. For each
curve the temperature is indicated where the low-tem-
perature polynomial is fitted in with the estimates ob-
tained by direct extrapolation of the specific heat of
finite chains.

0.2

0 0.2 0.4 06 0.8 1.0 'l. 2 1.4 1.6 1.8 2.0
kTt JS(S+1)j

FIG. 9. Specific heat of infinite chains with ferro-
magnetic exchange for various spin. Above the dots
the estimates are obtained by direct extrapolation of
the specific heat of a number of finite chains (cf. Fig. 4).
Below the dots the curves result from low-temperature
polynomial fittings.

generally better for higher spin. This is not amaz-
ing since in the limit S- the exact result is ob-
tained from a combination of the data for two chains
with length N = 2 and N = 3.

The entropy (Fig. 8) is plotted in reduced form
q =q/Rln(2S+1) against reduced temperature T .
Here too, there is a gradual increase with increas-
ing S. The limiting curve for S ~ is not known,
because the limit of q(S, T)/ln(2S+1) for S-~ can-
not be calculated since the spin dependence of q is

unknown in that limit.
C as well as q shows a smooth change with in-

creasing S, also for low temperatures. Examin-
ation of Table IX, however, shows a difference in
the low-temperature behavior between integer and
half-integer spins. But the net result of the ex-
pression (31) is still regular.

The data for the ferromagnetic case are displayed
in Figs. 9 and 10for C and g*, respectively. Here
too the specific heat gradually approaches the limit-
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FIG. 8. Reduced entropy p/R ln(2$+ 1) as a function of
reduced temperature for infinite antiferromagnetic
chains with different spin.
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FIG. 10. Reduced entropy for chains with ferromag-
netic exchange for various spin. The curves result
from an integration of C/T when for C the estimates of
Fig. 9 are used. For T —~ all curves tend to unity.
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ing curve for S - with increasing S, and at the
same time T decreases. In all cases (except S
=~) the ferromagnetic specific heat is lower than
the corresponding antiferromagnetic specific heat.

The specific heat for J&0, unlike the case of J
=0, does show differences in overall shape between
the integral and half-integral spins. For S = ~ and
S =-', (and possibly for S =-,') a linear portion in C
is observed below T, whereas for $=1 and S=2 the
specific heat is curved in this region. We recall
that this low-temperature part was fitted in with a
polynomial in T' ', T' ', and T' '. Although such
a form is not fully arbitrary —spin-wave theory al-
so indicates these powers of T (Ref. 26)—it may be
the cause of this linear portion. However, as men-
tioned, small changes are observed when varying
the fitting temperature T,. Even the use of other
polynomials, such as one with T' ', T, and T' ',
does not destroy this linearity. For integral S, on
the other hand, the curved result is obtained in all
cases, and with the alternative polynomials. Dif-
ferences in the energy spectrum exist between half-
integral and integral spina, even for the ground
state (see Appendix}, but we have no rigorous ar-
guments to support the indicated differences in the
specific heat.

The entropy (Fig. 10) also displays some differ-
ences but these are too small to be obvious in a
plot. Striking is the over-all similarity of the en-
tropy curves as compared to the antiferromagnetic
data. With increasing spin the curves soon over-
lap and one might anticipate that the thermodynam-
ic functions for ferromagnetic chains can more
easily be scaled with respect to spin value than do
the antiferromagnetic equivalents.

None of the figures with complete results (7-10}
show error bars or otherwise indicate uncertain-
ties in the estimates. Discussions in previous sec-
tions may help to establish some rules concerning
the errors. For T & 3T the high-temperature ex-
pansions rapidly converge in all cases and the re-
sults are undisputed. For T &T &3T„, the use of
extrapolations from chains produces favorable re-
sults, and although errors are introduced in this
way, the error estimate is of the order of 10 '.
The temperature T, is situated in a region where
the extrapolations give rise to uncertainties of the
order of 2% and between T and T, the errors gra-
dually increase. Below T, error indication is very
hard. Thy results for different T, show little vari-
ation [cf. Figs. 6(a) and 6(b)] but the resulting values
for the parameters in (30) and (31) are quite sen-
sitive to errors in C, sC/BT, and q at T =T . The
situation is probably worst when J&0,S =-,'. The
difference from estimates of Bonner and Fisher is
20+ near kT/4=0. 1 and 70% for kT/J&0. 01. The
assumption that 6,/R =0.35 (Bonner and Fisher) or

b, /R =-', (Takahashi") for this situation would in-
troduce an unrealistic peak in C for some temper-
ature below kT/J =0.5, unless we take C as large
as possible within our error bounds for kT/J &0.8.
This indicates a possible error of 70% in b, for
S =-,', J&0. For higher S the error is smaller and
drops to the order of 5% for S =-', . In the case of
ferromagnetic coupling we can suggest an error of
5% in a, for all S. This would also be the error
bound for the specific heat itself.

The specific heat of a ferromagnetic chain with
S =-,' offers a possibility of comparison with other
techniques of evaluation. It was calculated by
Rhodes and Scales" (RS) on the basis of a Green's-
function approach. Weng, "using the results of
Bonner and Fisher" for S =-,' together with his own
calculations for S =1 and the exact result for S-~,'
used an interpolation to obtain estimates for other
spina (the scheme is essentially a two-point Pade
approximant, introduced by Baker et al.~).

Since for many properties S = 2 is "quite close" to
S =~, one may also use the formulas of Harrigan
and Jones4' that describe the assumed discrepan-
cies from the S =~ curve. The estimated specific-
heat curves that result from these three techniques
are plotted in Fig. 11 together with our own result.
In discussing the plot we first of all recall that our
result is (nearly) errorless for T & T since the
Pade approximants to the high-temperature series
as well as the direct extrapolation of finite chains
rapidly converge. Weng's estimate (W} approaches
this curve for sufficiently high temperatures,
which is not surprising since his interpolation
should be good if only a few terms in the HTE
are of importance. For higher temperatures, the

S.5/2 J &0

4

—3

0 02 0.4 05 0.8 1.0 1.2 1.4 1.6 1.8 2.0
kTI,JS(S+1}]

FIG. 11. Estimates from different techniques for the
specific heat of an infinite ferromagnetic chain with
S = &. The solid curve is the result of the present study
(cf. Fig. 9). The line of dashes (RS) is the estimate of
Rhodes and Scales obtained from Green's function analy-
sis. Quantum corrections to the infinite-spin model by
Harrigan and Jones are represented by the broken curve
(HP and the dotted curve is an estimate obtained by
Weng using an interpolation between the specific heat
for S=2, S=1, and S=~.
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corrections for quantum effects (HJ') and the
Green's-function result (RS) are both off by about
5%, even at T =3T A. s emphasized by Harrigan
and Jones, HJ is not valid at all for low tempera-
tures, which is clearly visible. Also W deviates
more and more at lower T. All in all, RS does
show the same features as our estimate, includ-
ing the linear part below T . However, the devia-
tions between RS and our curve is 5% for T)T
and 15@for T & T . The same effect is observed
for S =-,' where the discrepancies between the GFA
result and the estimates of Bonner and Fisher are
large even at temperatures at which the latter are
undisputed. "

Presentation of the results in their present form
is hardly useful in experimental physics, where
the. curves are fitted to data points in order to
check the one-dimensional character of the crystal
under study and to determine the magnitude of J.
For the high- and low-temperature parts the tables
with coefficients in the respective series do suffice
but the intermediate-temperature region is de-
scribed poorly. To avoid comprehensive tables, "
we shall use a formula from a preliminary paper
to cover this temperature region. "

I
Guided by the expressions obtained from Pade-

approximant representations of a series we adapt-
ed the estimated specific heat to a function F of the
form

~) a~K'+a, K'+a~K'
(1+b,K+bmK )&

(34)

with K =SOS(S+ 1). The parameters are so chosen
that

F K -C(K dK+ F K -C K dK
Kg ICg

(35)

attains a mimimum value for given K„K„K,and
K~.

Since an expression of the form (34} should be

valid in the complex K plane, we introduced two
integrals in (35} in order to cover both sides of
the real axis. By choosing K, andK, in the ferro-
magnetic domain and K, and K4 in the antiferro-
magnetic region, we finished with a set of param-
eters for the function F(K} such that F(K) de-
scribes C(K} favorably for both Z) 0 and Z(0 for
each S separately. The discrepancies between
F(K) and C(K} are a function of the integration
bounds. These boundaries are now chosen such
that the maximum error between F(K) and C(K)
in the integration intervals does not exceed 2%.

The values of the parameters and of the inte-
gration boundaries found in this way are summa-
rized in Table XIII, for all S studied. The table
also lists the values of T*, the reduced temper-
ature at which C reaches its maximum.

As was mentioned in the Introduction, actual
magnetic crystals can hardly be expected to be of
the pure Heisenberg type, nor will they be purely
one-dimensional. This last restriction will affect
the applicability of the presented results on the
low-temperature side only, and for sufficiently
small interchain interactions most of our esti-
mates may still be used, as was shown in the
recent analysis of the specific heat of
CsMnC1, ~ 2H,O,""aRbMnC1, 2H, O and
CsMnBr, 2H,O,"and TMMC. " Discrepancies
from the Heisenberg form may change the over-
all specific heat quite drastically. For 8 =1 we
showed this for a Hamiltonian such as (1) with
the additional single ion term b,, ~' '~ and for
S =

& Bonner and Fisher reviewed the anisotropic
situation". The results of these two papers to-
gether with the present analysis make it likely
that equally good estimates may be obtained for
any other Hamiltonian with S ( 5/2. Recently
B15te" presented estimates for the specific
heat of linear chains, obtained by a technique
similar to the one described in Sec. IV B (direct
extrapolation of finite chains). The Hamiltonian

TABLE XIII. Review of the values for the parameters in the formula K= (a2K +a3K3+a4K )/(1+ b++b2K )& that fit
best the calculated specific heat (CQ, for different spin [cf. Eq. (35)j. The columns headed "interval" indicate the
temperature region where the difference between I and C„ is less than 2%. The reduced temperature for which C„
reaches its maximum value is given in the columns headed T

Parameter s
a4 bi

J)0
Interval m

J(0
Interval

10.935 1.6555 2.8722 0.6900 1.7030 2.1765 1.06-4.0 0.88 0.95-4.0 1.32

1 10.745 -0.1034 1.0334 0.2450 0.8502 2.1078 0.59-2.8 0.85 0.56-4.0 0.86

10.939 -0.6760 0.6481 0.1047 0.6514 2.0792 0.50-4.0 0.80 0.50-4.0 0.75

2 11.072 -0.9653 0.4408 0.0408 0.6041 1.9449 0.40-4.0 0.75 0.50-4.0 0.67

11.097 -0.8511 0.1799 0.0195 0.5845 1.8081 0.38-4.0 0.71 0.36-4.0 0.62
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studied by him contains also anisotropy in the ex-
change, and this does not influence the power of
the technique. The detailed tables in B15te's
article were checked against our results. This
reveals that the errors as estimated by Blote
are several orders of magnitude smaller than
the errors that were assumed in the present study.
A check for the case S = t. , using Pade approxi-
mants to the HTE of C as presented by Rush-
brooke and Wood (Ref. 20), showed that the rel-
ative difference with Blote's tables amounts to
2% in a region near T where his tables indicate
an accuracy of 2X 10 '. Since in this region there
is little reason to mistrust the Pade predictions,
we conclude that B15te has been too optimistic.
Since his paper does not indicate the detailed way
in which the estimates are obtained, it is hard
to comment further on this point.

For S & & the Hamiltonian may contain several
parameters for the description of the zero-field
splitting or the anisotropy in the exchange, and
calculations on these general cases are therefore
hard to present. When, as a result of different
experimental techniques, a fair estimate exists
for such parameters, calculations as those pre-
sented here are likely to give a proper theoretical
estimate for comparison.
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APPENDIX; EXACTLY SOLVABLE RINGS AND CHAINS

The energy spectrum of a ring with N =3
or N =4 spins and of a chain with N=2 or
N = 3 can be solved exactly. These clusters are
examples of the equivalent-neighbor Hamiltonian
or the hypercubical Hamiltonian.

If X can be reduced to the form

K=- J(R -nT', -mT,'), (Al)

the eigenvalues may be labeled R, T„and T, since
these are good quantum numbers.

For a chain with N = 2, we have R = S, +S„T,=3„
T, =S„n =m =1, and accordingly the partition
function is given by

2S

Z — -mr~&~+~) g (2R +I) r"&&+» (A2
B=p

with K =J/kT. The ground-state energy per spin

for the ferromagnet and the antiferromagnet may
be calculated as

U(o) „=s(s+1)J,
U(0)~&0 ——-s'J .

(A2)

3S
Z. = -~~&~+» P (2T+I) «r&r+»

ring, 3
T~S

U(0)~&, =S(S+1)J (- J if S half-integer),

(A6)

U(o)„,= -2s'J.
For a ring with N =4, S, +S, and S, +S, are good

quantum numbers (T, = S, +S„T,= S2+ S4, R = T, +T,)
and we find

2S 2S

Z = ~ -KTg(Tg+&) -KT2(T2+I)
ring, 4

=
Z

Ty= 0 T2= 0
T +T2

X (2R + 1) &&B&R+»

R=lTg -T2 l

(A8)

U(0)«, =S(2S+1)J,

U(0)„,= —2 S'J .
(A9)

In order to calculate the trace of the graph d,{k)
it is sufficient to calculate tr(K,„,;„,), which is
easily done from (A2). Since tr('K', h,&„,) = 2d, (k)
+d, (k), d, (k) may be found from (A4) in combin-
ation with d, (k). No limitations are imposed on
the order k.

The limiting high-temperature behavior of the
specific heat per site may be found from (A2) and

(A4) [using Eq. (18)],

C chain, ~ = 3 C chain, 3
—2 C chain, 2 y (Alo)

a result that is correct to order g' for general
spin. For S-~ this expression is exact.

A chain with three spins reduces to the form
(Al), if we set T, =S„T,=S, +S„R=T,+T„and
the partition function and ground-state energies
are then

2S

Z e -ÃS(S+1) e -KT(T+l)
chain

T=p
T+S

(2R + I)ere&"+&~

R= l
T-S

I

(A4)

U(0)~&o= —.'S(S+1)J' (-~J if S half-integer),

U(o)„,= —-'s'J . (A5)

A ring with N = 3 may be written in the form
(Al) if T, = S, m = 2, n = 0 and R = S, + S2+ S, is sub-
stituted. The quantities are then
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