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Renormalization-group techniques developed to analyze bicritical and tetracritical points, specifically in n-

component antiferromagnetic systems, are presented in detail. The treatment yields a scaling description of the

critical behavior of anisotropic antiferromagnets in both parallel and skew, uniform and staggered magnetic

fields, in particular, the bicritical, spin-flop transition is discussed. For n( 3 it is described by a stable,

isotropic, Heisenberg-like fixed point. However for n &4 a new biconical fixed point, with irrational (-
expansion coefficients, becomes stable and describes tetracritical behavior. Special attention is given to the

singular shape of the (T, H) phase boundaries for both isotropic and anisotropic antiferromagnets.

I. INTRODUCTION

Successes gained over the last decade in the
experimental and theoretical. study of phenomena
in the vicinity of critical points, "particularly the
advent of the renormalization-group e-expansion
approach, "have more recently given one the
courage to attempt the serious study of multi-
critical points. The simplest general character-
ization of a multicritical point may, perhaps, be
given by first considering a system exhibiting a
A, line: that is, a line of critical points, T,(g),
which is generated by some "nonordering" field
g applied to the system (e.g. , a pressure, stress,
magnetic field, etc. ). A nonordering field alters
nonuniversal critical parameters, like critical-
point energies, specific heat, and spontaneous
order amplitudes, but does not change the basic
nature of the critical point so that, in particular,
universal quantities such as the critical exponents
do not vary with g. ' Well-known examples are
the shift of Curie points under applied pressure,
the depression of the A point in 'He on dilution
with 'He, and, of particular concern in this paper,
the shift in the Neel. point of an anisotropic anti-
ferromagnet by a uniform magnetic field. It is fre-
quently observed in both real materials and model
systems, that the invariance of the asymptotic
critical behavior along a 4 line extends only over
a finite range of g and is terminated abruptly at
some special value go. At this multicritical point
(T= To, g=go), distinct, new critical exponents
occur and, in general, beyond this value quite
new phenomena arise. ["Beyond" should more
generally be interpreted as "in the vicinity of the
end point go of the A. line in the (T, g) plane. "] In
what seems to be the simplest situation, the X

line T,(g) is merely continued by a sing. e line
T, (g) across which the transition becomes first
order. However Griffiths' pointed out that if the

(T, g) space was enlarged by adjoining the basic
ordering field, say h, then for many model systems
analyzed phenomenologically the line T, (g) when

viewed in the full (T, g, h) space, is seen to be a
line of triPle Points at the join of three first-order
surfaces. These surfaces individually terminate
in three distinct critical or 4 lines [one being the
original T,(g) line] which, in turn, then meet and

terminate at the multicritical point. Since three
X lines are confluent, Griffiths dubbed' the point
a tricritical point.

This terminology appears apt and has been adopt-
ed by most subsequent workers: But the name
is perhaps slightly unfortunate, in that it suggests
a unique linear ordering of possible "higher-order"
multicritical points. Subsequent (and, indeed,
even earlier) studies have shown that the conceiv-
able thermodynamic geometries of multicritical
points embedded in larger thermodynamic spaces
can be very complex. ' " Indeed it seems likely
that the full classification of multicritical points
wil. l, like the classification of knots, remain an
esoteric and largely unsolved probl. em for some
time. For the present it thus seems reasonable
to proceed in a more frankly ad hoc fashion and
investigate various multicritical points as they
come to hand in significant contexts.

A step in this direction was taken by Liu and
Fisher (Appendix of Ref. 8), who presented a
phenomenological analysis of the multicritical
points resulting from the competition betsoeen tuo
distinct types of ordering. Liu and Fisher were
principally concerned with 4He, where the com-
petition is between "diagonal" or "crystalline"
ordering and "off-diagonal" or 'huperfluid" order-
ing as a function of the pressure p~g. However
they utilized the analogy with anisotropic anti-
ferromagnetic spin systems, where the corres-
ponding competition between "parallel" or "Ising-
like" and "perpendicular" or "Xl'-like" ordering
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takes place as a function of the magnetic field,
0(( ~g, paral. lel to the axis of anisotropy. This
situation is the focus of the research reported
below.

The phenomenological analysis shows that for
a certain range of the quartic parameters entering
the phenomenol. ogical expansion of the free energy
one may, below the multicriticaL point, encounter
three distinct ordered phases. Adopting magnetic
language these are, fA st, a pure parallel ordered
phase, with critical temperature T,(g) =- T,'(HJ[),
for transition to the disordered paramagnetic
phase (see Fig. 1); second, a pure perpendicularly
ordered phase, with critical temperature T,(g)

T, (H„-) (see Fig. 2); and third, an "intermediate"
or "doubly ordered" phase (not shown in Fig. 1)
separated from the pure parallel and pure per-
pendicular phases by two further A lines T„(g)
and T„(g) In he. lium the new intermediate phase
would be a "supersolid. "" The four A. lines then
meet together at the multicritical point (T„g,),
which Liu and Fisher' accordingly termed a tetra-
critical point. "

On the other hand, for the second range of the
quartic free-energy parameters, the phenomeno-
logical theory yields no intermediate phase but,
rather, a first-order transition between the two
purely ordered, parallel and perpendicular, phases
along a "flop line" T~(g) = T~(H„), [or g H~~

=H~(T)]. The topology is as shown in Fig. 1. In
the case of the anisotropic antiferromagnet the
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FIG. 2. Phase diagram for an antiferromagnet with
zero anisotropy.
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FIG. 1. Schematic phase diagram of an anisotropic
antiferromagnet in a uniform magnetic field oriented
parallel to the anisotropy axis.

flop line T„(H,~) corresponds simply to the spin-
flop transition, from antiferromagnetic parallel
ordering to antiferromagnetic perpendicular order-
ing (as indicated schematically in Fig. 1), which
was predicted many years ago by Noel. " Since
the flop l.ine meets with just Aeo X lines, namely,
T,(g) = T,"(H„) and T~(g) = T, (H„), at the spin-flop
multicritical point (T„H,), this point was termed
a bicritical point by Fisher and Nelson. " The
prefix bi may also be regarded as indicating that
this type of multicritical point results from the
simplest form of competition between two distinct
ordering mechanisms.

Although the experimental situation is by no
means entirely transparent, " ' the essential cor-
rectness of the phase diagram shown in Fig. 1 as
a description of real antiferromagnets with rela-
tively small uniaxial anisotropy in carefully aligned
fields seems fairly well established. Accepting
this phase diagram, one may develop a scaling
theory of bicritical points. ' In addition to the
underlying modifying" or "deviating" field 8)(
it is natural and straightforward to introduce the
corresponding ordering fields h, ~H,

,
and h, ~R~

which, for an antiferromagnet, are parallel and
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perpendicular staggered fields which act oppositely
on opposing sublattices. (Although these fields
are normally physically inaccessible for antifer-
romagnets, "their response function may be stud-
ied by neutron diffraction. However, to our know-
ledge, such experiments have not yet been per-
formed near a spin-flop point. ) The scaling theory"
leads to various predictions interrelating observ-
able properties near the bicritical point. However
to make these predictions more concrete and pre-
cise it is necessary to know the values of the basic
bicritical exponents a, (II), &~~, and &, entering
the scaling formulation. " From a deeper theo-
retical viewpoint one also requires some assurance
that the multicritical scaling behavior will be
bicritical rather than tetracritical in nature.

Both these needs have been met by a recently
announced" renormalization-group calculation
employing the & expansion. ''4 In this paper we
present the details of this calculation. We show,
in particular, that for realistic Heisenberg spins
with n = 3 components, there is a stable bicritical
fixed point while other fixed points, describing
tetracritical scaling behavior, are unstable. Since
diagonal order in helium may be described by

n}}=1, and off-diagonal. order by n, =2, so that
n =n}}+n,=3, this conclusion also indicates that
a tetracritical point with an intermediate, super-
solid phase should not occur in 'He." On the other
hand, for n larger than a certain n" depending
on the dimensionality ~, new, biconical tetra-
critical behavior is discovered. This may be
relevant in certain experimental situations if the
total number of ordering components satisfies
n ~ 4. Additional. ly, for n & 11 decouPled, tetra-
critical behavior sets in (see Ref. 16 and Sec. V
below).

Second, our renormalization-group calculations
demonstrate that the bicritical exponents should
be isotropic or Heisenberg-like with n =n}~+n, .
This serves to justify the explicit numerical ex-
ponent predictions made by Fisher and Nelson. "
In particular, the fact that the crossover exponent

Q = @n(n, d) exceeds unity for n = 2 or 3 and d & 4,
leads to the conclusion that the two a lines T,'(H[~)
and T, (H„), and the spin-flop line T~(H„) should
meet with a common tangent at the bicritical point.
The details of this feature, in particular the sig-
nificance of choosing the correct linear scaling
axes to describe it, are discussed here in Sec.
VE 30

The renormalization-group calculations also
apply to a perfectly isotropic antiferromagnet in
a small. magnetic field H. Although perfect iso-
tropy represents a strong idealization of any anti-
ferromagnet, sufficiently precise realizations
may exist to test the quite striking predictions

which follow. ' Within mean-field theory, im-
position of the field H depresses the transition
and the resultant initial temperature shift is quad-
ratic in H. However, as explained in Sec. IV, our
treatment predicts that the shift should vary rather
as H with /=2/$~1. 6 (for n=3 isotropy). Fur-
thermore the critical behavior in any nonzero
field should reflect the reduced symmetry of n —1
components; i.e. , it should be XY-l.ike rather
than Heisenberg-like and, concomitantly, the
initial temperature is initially raised rather than
lowered. (Of course in small fields this will be
obscured by the usual crossover effects. }

In real systems alignment of the total, uniform
external field 8=(H„, 6, ) along the axis of mag-
netic anisotropy is often hard to achieve. Indeed,
as discussed in Sec. VI, this may well be why a
firs t-order spin-flop transition is sometimes not
observed below T~." It is thus clearly of interest
to include the perpendicular field components H,
in the calculation. As shown in Sec. VI, this is
straightforward in principle but quite complicated
and tedious in practice. Accordingly we have con-
fined ourselves to a discussion of the transitions
in the (T, H~~, 0 ) space from disorder to order,
but have not discussed the transitions (including
the spin-flop transition itself) which may take
place within the already partially ordered phases.

The effects of finite ordering fields H}( and H,
is complicated by the fact that each is an ordering
field only for its own phase: For the second phase
it acts as a nonordering field which does not des-
troy the transition. Aspects of the resulting phase
diagrams are discussed in Sec. VII.

The renormalization-group calculations them-
selves proceed in two stages. In the first, pre-
sented in Secs. II and III, a series of transform-
ations and partial renormalizations are applied to
the Hamiltonian to bring it into a form adapted to
a detailed recursion-relation analysis. The basic
procedures used were developed and applied pre-
viously in connection with a study of metamagnetic
tvicritical points. " The second stage, carried
through in Sec. V, then consists of the more-or-
less standard steps" of derivation of recursion
relations, location of fixed points, and l.ineariza-
tion to find exponents, all performed for a re-
duced Hamiltonian with quartic terms of lower
symmetry than previously analyzed. " The most
interesting theoretical points to emerge are, first,
the existence of fixed points (the biconical fixed
point) at which the exponents have e-expansion
coefficients which are nonrational algebraic func-
tions of the number of components n (in contrast
to the usual ratio of finite polynomials). In fact the
exponents even vary nonanalytically for real n.
A second feature of interest is the existence (for
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large n) of a stable fixed point describing two
independent Hamiltonians with distinct critical
exponents. As observed in Ref. 16 this essentially
implies a breakdown of the usual, "total." scaling
hypothesis.

II. SPIN-FLOP HAMILTONIAN

We first present the series of transformations
needed to put an antiferromagnetic Hamiltonian into
a form suitable for renormalization-group analy-
sis. As mentioned, these transformations were
developed for the discussion of metamagnets. "
The present analysis is slightly more complicated,
but the essential features are the same.

The Hamiltonian considered is that appropriate
for the uniaxial anisotropic antiferromagnet with
n-component spine S(R) = [ S,(R) = S~~ (R); S (R) J

at the sites R of a d-dimensional lattice, namely,

+ int

= —Q [J(R —R')S(R)' S(R')+D(R R )Sg(R)Sil(R )J
RR'

P[Hg S~~(R)+H ' S (R)]-g e'"' '
[H S(R)).

(2.2)

The total effective Hamiltonian is thus

K(s(R)) = -3c,„,/k~T —Q w(s(R)), (2.3)

and the trace operation, needed to define the par-
tition function, simply involves integrating each
spin component from —~ to ~.

Following the techniques introduced in Ref. 32,
we decompose the spins according to which sub-
lattice they populate. Defining sublattice 6 func-
tions by

4, (R) =1, 4~(R) =0 if RCA,

b., (R) =0, b, (R) =1 if RGB,
(2.4)

we can then write

sublattices A and B (with superiattice reciprocal
vector ko), while D(R) represents an anisotropy
energy tending to align the spins along the "easy"
or "paral. lel" axis. The staggered or ordering
field is H =(Htt, H ). As in previous renormaliza-
tion-group work the spins are taken to be con-
tinuous in magnitude, and with each spin S(R) is
associated an i sotropic spin weighting factor"

e =e-g(S) -tS 12@-f4I,S |4

(2.1)
S(R) = S, (R)A, (R) + S~(R)&~(R). (2 5)

The isotropic exchange coupling J(R) leads to
antiferromagnetie ordering on two interpenetrating

If this decomposition is inserted in (2.1), we may
write

R = 2 ~ (Kaa(R R )[Sa(R) ' Sa(R )+S|,(R) ' Ss(R )I +Ksv(R R )[Sa(R) ' Sv(R )+Su(R) ' Sa (R )]
RR'

+E„(R—R')[S,'(R)S,'(R') + S," (R)S," (R')] +E„(R—R') [S," (R)S," (R') + S,' (R)S," (R')] )

+ Lt(Q [ S, (R) —S," (R)J+ L~ Q [S, (R) —S~ (R)J+ L ' Q [ S, (R) + S~(R)J

——.2[ IS.(R) I'+
I S.(R) I'] —f,2[ IS. (&)I'+ I Sg (&)I'], (2 6)

where the reduced fields are

L, = ~/Hk~ TL~~ =H„ /k~ T, L = H /k T, s(2. 7)

and the reduced interactions are

K„(R—R') = K~,(R —R') =J(R —R')6,(R)h, (R')/k~ T,

K,~(R —R') = J(R —R')h, (R)E„(R')/k~ T,

(2.8)

and

E„(R—R') =E,~(R —R') =D(R —R')4, (R)4, (R')/k~ T,

E,~(R —R') =D(R —R')b, , (R)A, (R')/k~T.

(2.9)

For theoretical convenience, we have changed the
sign of all spins lying on the B sublattice. This
device converts the K z(R) and E„B(R) into pre-
dominantl. y ferromagnetic interactions, and makes
the fields LII and L acts as though they were
staggered fields on a ferromagnet. Similarly the
ordering field L becomes a uniform field.

In order to diagonalize the quadratic part of X
we define the transformed spin variables

s, (q) = —,Pe'' ' [S,(R)&,(R) +S,(R)a,(R)J,
R

(2.10)

where q runs over a half-sized Brillouin zone. "



416 KOSTERLIT2I, NELSON, AND PISHER 13

The inverse transformation is

S, (R) =N, 'g e 'q ' [s,(q)+s (q)], RC'A

S,(R) =N, 'Qe '~ [s,(q) - s (q)], RCB.

(2.11)
I

If (2.8) is substituted into (2.6), and if we write
s, (q) = [s",(q), s,(q)J, the resulting expression can
be decomposed into three pieces as

J
++& +~X ) (2.12)

where the part involving parallel spin components
only is

JCJJ=-N'g1 —K, q —E, ps, ps-q+ 1 —Kq —Eqsqs-q+2LJJs+2LJJs,

—2f,N, ' Z [ s,' (q) s ~+ (q' }s+(q" )s+ (- q —q' - q" ) + Gs," (q) s+ (q' )s" (q" )s" (- q - q' —q" )
qa q

+ s" (q) s ' (q') s" (q" )~' (- q -q' - q ")],

while the corresponding perpendicu lar part is

R, = —N, +[[I -K, (q)ls, (q) s', (-q)+[1-K (q)]s'(q} s'(-q)j +2L, . s'(|J)+2L, s', (1))

(2.13)

—2f,N, ' g [[s',(q) s', (q')] [ s', (q") s', (- q —q' -q")J+ 2[ s,'(q} s', (q')] [s'(q) s'(- q - q' - q")]

+ 4[ s:(q) s'(q')] [s'(q") s'-(-q - q' -q")]+ [s'-(q) s-'(q')] [s'(q") s'-(- q - q' - q")]J,

and finally the purely fourth-order part with mixed spin components is

X„= 4f~N, ' P [[s",(q)s", (q') + s" (q)s" (q')] [s, (q" } s, (- q —q' —q" )

+s (q")s'(- q —q' —q")]+4~"(q)s'-'(q')[s:(q')s'-(-q —q' —q" }J J.

(2.14)

(2.15)

where

K, (q) =pe'" ' [K„(R)a K~(R)], (2.16)

where a is, say, the nearest-neighbor lattice
spacing. It is then convenient to res cale the spins
to fix the coefficients of the q' terms at unity by
writing

E,(q) =g e'q ' [E„(R)a E~(R)] . (2.17) s', (q) =(ksT/2j oa" )' o, ,„
s" (q)=(ksT/2Jj' Ja

' )' o, q,

One may note that for a model with only nearest-
neighbor interactions, E„vanishes identically.

Next, we make small-momentum expansions of
the Fourier-transformed interactions entering
(2.13) and (2.14), by writing

1 —K, (q) = (T —To) /T + (j,a2/ks T)q +

(2.18)
I —K (q) = (T —T )/T+ (j a2/AT)q2+ ' ' '

s', (q) = (AT/2j oa"'}' s, q,

s'(q) = (k~ T/2 Ij I
a"')'ks, -, .

(2.2O)

We have denoted paral I.el spin components by o
and the perpendicular vectors by s for notational
clarity. With a positive uniaxial anisotropy D(R)
it is easy to show that the inequalities

and and lj I
~ lj 'I (2.21)

1 —K, (q) —E,(q) = (T —To)/T+ (j oa'/ks T)q'+ ~ ~ ~

(2.19)
1 —K (q) —E (q) =(T —T" )/T+(j" a'/ksT)q +

hold. Denoting N, 'a 5 q by J ~, we find that these
transformations reduce the three contributions to
the total Hamilton ian X to the forms
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r1+e1 a1+1 2 2+e2 ) 2 2+ ~( 2,0+ )I a1,o

11 1 1 1 1 12 1 1 2 2 22 2 2 2 2
q ql qll

(2.22)

which involves only parallel or a spins,

Js, = --,'„(; s,'S' )s, s, ——,'f (r, ,'s)s, s, +K, s, ;~ S s, -,

[ V44(sz' S])(sg S])+ V/2(s] SZ)(sm S4) + V»(S4 ' S2)(S4 S4)+ V»(S4 ' S2)(S2 ' S2)] s

q ql qlt

which involves only perpendicular or s spins, and

(2 23)

R„= — w„aa s, s, +w„ocr s, s, +w„oo, s, s, +w„aa, s, s)+w„oo, s, s, . 224)
q ql qll

In these expressions we have neglected terms of
order q', which will be irrelevant, and have de-
leted the usual momentum-conserving subscripts
on the spins. The basic temperature variables are
then

rI=ke(T- T")/a~j ", r~=ke(T —T")/a'~j "(,

r,' =ke(T —To)/a j o, r2 =ke(T —T )/a'(j

(2.25)

for the possibility that j and j might be negative;
negative values for e, and e2 need not concern
us since we will find that these terms are strongly
irrelevant variables, going rapidly to zero as we
repeat the renormaiization procedure. (The same
phenomenon was observed in Ref. 1.) It can be
seen from (2.16)-(2.19) that j o and j o will be pos-
itive for antif erromagnetic interac tions. We note
also that the inequalities T,& T and T, T
hold; from these it follows that we have

while the reduced fields become r &r r'&r'
1 29 1 29 (2.31)

and the quartic amplitudes are

(2.26)

k„=(2keT/a ")j' ~) L, k„=(2keT/a"j ")' L

h, =(2k ST/"a"~j '()'kL„h, =(2keT/a" j )'kL„
in the critical region. These inequalities are
important because they will eventually allow us to
integrate the spin variables a2 -, and s, -, out of
the problem.

/a

(4» = 2 f4k'e T'/a' "j '",

v„='f 4ke T'/a' j-o'
(2.27)

v,.=fp'. T'/a' 'jol j'I,

w„=f,k,'T'/a' 'j ",j,', w„=f4u~T'/a4 ')j ")j,',

w „=4f4+g T'/a' '(j () I j '

Ij () Ij '-
I
)",

w., =f.keT'/a' 'l(f" I li'I.

(2.29)

Finally the momentum factors are

e", =e, =1, ez' ——+1=sgn(j"), e4 = +1=sgn(j ).

(2.30)

The signum functions are needed here to account

v,2=2f4keT'/a' j, J(j (, v»-—,'f,k~T'/a j"—
(2.28)

III. HAMILTONIAN TRANSFORMATIONS FOR

A PARALLEL FIELD

In this section we analyze the Hamiltonian of
Sec. II for the simpler case where only the uni-
form field H~) acts. All other perpendicular and
staggered fields are supposed to vanish. A sche-
matic drawing of the anticipated phase diagram
in the (T, H„) plane is shown in Fig. 1. As explain-
ed, the object of the renormalization analysis
is to obtain concrete numerical predictions for
the exponents describing critical behavior: (i)
on the "parallel" critical line in fields below H, ;
(ii) on the "perpendicular" critical line above
H, ; and (iii) at the bicritical or spin-flop point
(T„H,) itself. In this section we present an ac-
count of preliminary renormalization-group pro-
cedures which simplify the Hamiltonian X and
allow a standard renormalization-group analysis
to be made in Sec. V. The procedures developed
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here also allow a discussion of the special case
of zero anisotropy, which is presented in Sec. IV

On writing the Hamiltonian (2.22)—(2.24) sym-
bolically in real space, we obtain

JC= dR 2r, o', +&e, Vv, '+-,r,e', +-,'e, Vv, '+-,r, s, '+-, e, Vs, '+&r, s, '+-, e, Vs, '
2 2 4

2 11 1 12 1 2 22 2

+ v Is I'+ v„le, l'Is, l'+ v»(q s,)'+ v„le, l'+w„o', Is, l'+w a'Is I'+w a'Is I'

+w»aia2(si ' S2) +w22a2 I s2 I ]. (3 1)

The o and s variables here denote, of course, the Fourier transforms back into real space of the vari-
ables appearing in (2.22)-(2.24).

We now shift the 02 spin variable to eliminate the linear field term, that is we make the replacement

0, ~@2+M,

and obtain

(3.2)

dR[ ,'r," a-+ —,e,"(v a)' +,'r2a', —+—,'e,"(aa, ) +~r,'Is, l'+~e, (vs, ) +-,'r, ls, l + —,'e,'(& s, )'

+ 2u» Ma, a', + 4u» Ma', + 2w» Ma2(s, s, ) +w» Ma, (s, s2) +2w» Ma, (s, ~ s, )

+u„a,'+ u„a', a', +u„o,'+ v„ I s, I
'+ v„ I s, I

'
I s, I

'+ v„(s, s, )'+ v„ I s, I'

+w„o', Is, l'+w, .a', Is. l'+w„a', ls, I'+w, .a,a.(s, s, )+w..o,'I s, I'], (3.3)

where the displaced temperature variables are

r M+4u M =All. (3.5)

The definitions (2.25) indicate that the inequal-
ities (2.31) will for small field h„(and hence,
small M) apply also to the unbarred r,. parameters
defined in (3.4). Consequently, the two parameters
r, and r, will diverge indefinitely under iteration
of the usual renormalization-group procedures. '4

With this in mind we follow Ref. 32 and intro-
duce distinct renormalization-group spin revealing
factors" VII, C~, VII, and ~, , where 0II and c', are
chosen, as usual, to keep e, and e, constant but

li and ci are chosen to keep r, and ~2 constant
(and thus prevent them diverging). As in Ref. 1,
this rescaling device causes many of the variables
in the Hamiltonian to become strongly irrelevant,
so converging rapidly to zero as the renormali-
zations progress. The surviving terms are found
to be

(3.4)

while. PI =M(hair T) is chosen to satisfy the relation

Since gradients of the spin variables 02 and s,
no longer appear, we may integrate these vari-
ables completely out of the problem, and thereby
obtain the reduced Hamiltonian

u =u„—8u'„M'/r, ",

= ~w« —4 w»u» M r 2
-w» kP /4r2,

v = v||—2w2» M'/r, ".
(3.8)

Reference back to (3.4) and (2.25)-(2.29) shows
the basic (T, H„) variation to be of the form

r „=a „(T—To) + 12a," h'„, ri = a j (T —T ) + 4ao h'„,

(3.9)

where all, a„ai, and ao are positive constants,
to lowest order in the anisotropy given by

Xq ——— dR ~ IIU'+2(Vcr) +2r~ s +2 Vs)

+ua'+2wa'lsl'+ vlsl']. (3.7}

In this expression we have deleted superfluous sub-
scripts, lowered the remaining superscripts, and
set

dR 2r, v', +&e, Vcr, '+-,'r, o, + —,'r, s,
2 ~ II

Kill =k~ ja'j „ a, = ks/a'j, ',

+-,'e,'(& s, )'+-,'r,
I s, I'+2u„Ma, a', +w„Ma, I s, I'

+w„a,(s, s, )+u||a,'+w«o', ls, l'+v„ls, l'].

(3.6)

(3.10)

In these expressions we have assumed that the
field HII, and hence M, is small. Under these con-
ditions the quartic parameters u, v, and zo in
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(3.8) are also positive. We take the uniaxial ani-
sotropy small enough so that the complete range
of flop transitions is swept out as we vary H~~.

For any nonzero anisotropy, we have T, & T„', with
equality holding for zero anisotropy. We make
no attempt to answer the global questions involved
in considering large anisotropies and consequent
large fields H}~. Indeed, under such circumstances
one may wel. l find that a tricritical point intervenes
on the X line T,(H„) before a spin-flop point is
reached.

The Hamiltonian (2.1) has now been simplified
sufficiently so that a detailed investigation of
fixed points and critical exponents is feasible.

IV. FIELD BEHAVIOR FOR ZERO ANISOTROPY

p(n) = —,'y(n). (4.3)

For an antiferromagnet with zero anisotropy,

It is straightforward and instructive to treat
a fully isotropic antiferromagnet with no anisot-
ropy, i.e., D(R) —= 0, under the influence of a uni-
form field H=-H~~. ' When D(R) =0, we find that
the parameters in (3.9) satisfy

(4.1)

Thus the temperature variations of r~} and r, in
the reduced Hamiltonian (3.7) are identical. How-
ever coefficients of the field dependence neces-
sarily remain unequal. This l.eads to an interest-
ing effect not, apparently, noticed before.

In zero external field, the quartic couplings
u, o, and ~ clearly become equal and the Ham-
iltonian exhibits full n-fold rotational symmetry.
[This may be checked from (2.27)-(2.29) explicitly
via (2.16)-(2.19), which yield j,'=j,".] One thus
expects the usual Heisenberg-like critical ex-
ponents corresponding to an n-dimensional iso-
tropic order parameter when H~~ vanishes.

When H}( is nonzero, however, the degeneracy
of r}} and r is split, since r(~ increases more
rapidly with field than r . The analysis of quad-
ratically anisotropic spin systems made by Fisher
and Pfeuty" can now be applied. Under renormal-
ization-group iteration the system crosses over
and exhibits critical behavior characteristic of
an (&-1)-dimensional order parameter with spin
ordering perpendicular to the field axes. It must
be remembered, however, that the crossover ex-
ponent y(n) normally considered"" corresponds,
by (3.9), to a variation of the variable H~~. Thus
the effective crossover exponent appropriate to
the variable H}~ in scaling expressions like"

q'(T, H, )=t-~'"'X„(H„/t ""'), (4.2)

with t =(T —T,)/T, , is given by

(4.4)

where x is a constant, so that as H~~ -0 we have

T,(H(() —T,(0) = cH)) AEPj),-
with

tI =1/P, c=i

(4.5)

The term -AH')}, with A positive, represents the
usual depression of T, by a field, which is present
even in mean-field theory; it enters here" as the
leading nonlinear correction to the scaling field t.
We expect c to be Positive since it corresponds
simply to the increase in T, found when the an-
isotropy is present solely in the quadratic spin
couplings. ""The result (4.5) leads to the rather
surprising bow-shaped critical line illustrated
in Fig. 2. For a sufficiently isotropic, real anti-
ferromagnetic material, the predictions

g =1.60 (n = 3), 1.70 (n = 2)

should be testable experimentally.

(4.6)

V. RENORMALIZATION-GROUP ANALYSIS FOR

A PARALLEL FIELD

A. Recursion relations

We now present a detailed renormalization-
group analysis of the Hamiltonian (3.7), for non-
zero anisotropy D(R) For small .H~~, it follows
from (3.9) and the inequality &o& T, that the tem-
perature parameter r becomes negative before
r~ does, when T is reduced. Thus the system
ultimately displays standard Ising-like critical
behavior. " (This is, of course, also the case
for zero field. ) For fields sufficiently large com-
pared to (To —T,')', however, the reverse sit-
uation evidently occurs. Then (n -1)-isotropic
(i.e., "perpendicular" or "planar" ) critical be-
havior is instead realized. '4 Below the transition
this changeover as H~~ increases leads to the spin-
flop transition.

A new analysis is needed in the bicritical region
where r}~ and r are of comparable magnitude.
Recursion relations to first order in & =4-d, for
a d -dimensional system, can be constructed di-
rectly from the general expressions given by
Fisher and Pfeuty. ' However their relations

we hence expect a phase diagram of the sort shown
in Fig. 2. The crossover index @ has been de-
termined most accurately for three dimensions
by series analysis" with the results Q(3) =1.25
and P(2) =1.175. Hence, Q should be less than
unity. Now the extended crossover scaling hy-
pothesis' embodied in (4.2) implies that the phase
boundary should be given asymptotically by

H„/t'=~,
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were derived from Wilson's approximate recursion
formula. Although this is, in fact, exact' to order
~, it nevertheless seems useful to reconstruct
the relations using the exact momentum-integra-
tion method of Wil, son. '

Accordingly, consider the generalized Hamilton-
ian for n-component spins,

(5.2)

g', , =6' u;&-Bu;, u;, B r&, r; -16u;q& r;, r,

—8 „;,B(r;r, l —4$,.„B(, „,r„)),

(5.3)

which are valid to O(e). The diagrammatic in-
tegrals arising here are

A(r) = (r+q ) ',
a

B(r, r') = (r+q'} '(r'+q') ', (5.4}

n n

jg = —p dR r st+ Vs] +2 u3J s] sJ
1=1 i,J= f

(5.1}

On transforming to momentum space, the resulting
momentum integrals may, for simplicity, be taken
to run over a spherical zone (although this is not
essential), As in Ref. 4, we assume the nonquad-
ratic parts of the Hamiltonian are small, and cal-
cuLate recursion relations by perturbation theory.
A new, renormalized Hamiltonian X' is generated
from X by choosing a rescaling factor b& 1 and
integrating out all spin variables such that bq lies
outside the original Brillouin zone.

When these standard techniques' are applied
to (5.1), we obtain the recursion relations

been studied by Brezin et al."but their results
do not include ours. To order & we obtain finally
the recursion relations

r'„=b'[r)(+4(n„+2)fu+2n~ fw

—4(n„+ 2)gur() —2n~gwr, ],
rj =b'[r, +4(n, +2)f u+2n„fw

—4(n~ + 2)g vr~ —2n() gr)(],
u' = b ' [u —4(n„+ 8)gu' —4n, gw'),
u' =b'[ u —4(n +8)gu —4n)(gw2],

w' = b 'w [ 1 —16gw —4(n„+ 2)u —4(n~ + 2)u],

where the functions

(5.6)

(5.7)

(5.8)

(5.8)

(5.10)

B. Decoupled fixed points

For any value of n (& 0) the last three recursion
relations above determine six fixed points. Four
of these have uJ*=0 and hence represent decoupled
Hamiltonians with independent fluctuations in the
0 and s variables. Indeed these Hamiltonians
satisfy the mean-field criterion for a tetracritical.
point, ' namely,

(w +)'& u +v+. (5.12)

Thus they correspond to tetracriticaL rather than
bicritical behavior as discussed further below.
That these Hamiltonians will describe tetracritical
points is also indicated by the decoupling. On
defining

f(b)=A (1 —b )/8v and g(b)=Lob/8((~A'

(5.11)

arise from the Feynman integrals over the outer
momentum sheLL evaluated in the Limit d -4
(i.e. , &=0).

e. = 8n'A'c (5.13)
where the symbol J, denotes a d-dimensional
momentum integration over the shell Ab ' & I(LI&A.
Apart from a few inessential modifications, these
recursion formulas are identical to those found

by Fisher and Pfeuty. '4

The recursion relations (5.2} and (5.3}can be
used to treat a model involving nII-component
spina v interacting with n -component spins s,
through the Hamiltonian

X= -2 dR r]I 0' + +0') +rg s + ()I s

+uIoI +2wIvI IsI +uIsI ] ~ (5 5)

For n]I =1 and n =n -1 this model reduces to the
spin-flop Hamiltonian (3.V). For n() =n it has

these fixed points are (a) u*= v~ =0, the trivial,
aLways unstabLe Gaussian-Gaussian point; (b)
u~=Z/4(n()+8), v*=0, an n((-Heisenberg-Gaussian
point; (c) u*=0, v*=7/4(n +8), a Gaussian-nj-
Heisenberg point; and finally (d) u~=Z/4(n((+8),
u'=Z/4(n~+8), a decoupled n)) -Heisenberg-n, —

Heisenberg point.
The flows associated with these fixed points in

the u =0 plane are shown schematically in Fig. 3.
The various crossover exponents associated with
these in-plane flows are all, of order &. Calculating
the renormalization-group eigenvalues correspond-
ing to perturbations which take the system out of
the ~ =0 plane leads to the eigenvalues

&& b&
= 6e/(n((+ 8),
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n„n, +2(n„+n, )& 32+0(«). (5.15)

If this inequality is reversed, the fixed point be-
comes completely stable and terminates the cri-
tical surface flows. Since the system will then
spontaneously break into essentially independent

&!~ -Heisenberg and & -Heisenberg subsystems, a
single scaling function cannot properly describe
the asymptotic free energy when n!!Wn . Evidently
this spontaneous decoupling provides one mech-
anism within the renormalization-group frame-
work for the breakdown of scaLing. Setting n!! =1
and n~ =n —1, we see that this breakdown can
occur only for n& 11+0(«). As such it is probably
hard to realize in real physical systems.

C. Bicritical, Heisenberg fixed point

The two remaining fixed points lie at nonzero w.
The first is the well-known isotropic &-Heisenberg
fixed point"" located at

,/(
32 2n 2n pl pl

(n +8)(n, +8)

(5.14)

where we have written the b-dependent renormali-
zation eigenvalues A( ) (b) as A(„& =b ( '. The
fixed points (a), (b}, and (c) are evidently unstable
to w-type perturbations for all n)! and n & —8.

Fixed point (d), however, is only unstable when

As the interaction parameters u, v, and u at this
fixed point satisfy the mean-field theory criterion
for f&icritical behavior' [namely, the converse
of (5.12)J, we conclude that this fixed point de-
scribes a spin-flop or bicritical point. Lineariz-
ing about this fixed point in (u, U, a&} space, we
find the three eigenvalues

)((„),= —&, )((g), = —8&/(n )&+n~+ 8),

x(„),= —(4 —n„—ni)«/(n)&+n, +8), (5.18)

correct to order &.38 This fixed point is fully
stable and hence determines the critical behavior
for

n„+n, & 4+0(«). (5.19}

I) +nj =n&n"(d} =4 —2e+c e +O(E ) (5.20)

The range of n!! and n, values not covered by the
inequalities (5.15) and (5.19) is the domain of sta-
bility of the sixth fixed point, which we will call
"biconical" for reasons to be explained. The do-
mains of stability to order e for the Heisenberg,
biconical, and decoupled fixed points are shown in

Fig. 5. The critical behavior along the line n!!=n~
=-,' n was analyzed by Brdzin et al." These do-
mains of stability are modified somewhat when the
calculations are extended to higher orders in ~.
For example by using the eigenvalue ~~&~, obtained
to O(e') by Ketley and Wallace, "we find that the
Heisenberg fixed point is stable for

u « = ((& *= u* =7/4(n „+n ~ + 8),

with

(5.16) where

c" = ~2[6&(3) —1J . (5.21)

Z(n, +n, +2)
2(n, (+n, +8) (5.17) To estimate this oscillating series at &=3, the

diagonal Pads approximant

n" (d) = (4 + 3.176«)/(1 + 1.294') (5.22)

0.020--

0.019--

(a) Gaussian
I(

4 E
w r —4

(b)

FIG. 3. Hamiltonian Qows and fixed points in the w=0
plane.

0.018-.
1 2 5 4 5 6 7 8 9 10 t1 12

FIG. 4. Plot of the biconical exponents g!! and g~ to
0(e2) as a function of n. The isotropic exponent g to the
same order is shown for comparison. VFe have set
e =1 for numerical evaluation.
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may be formed; this yields n"(3) = 3.128. Thus,
in three dimensions, we still expect the Heisen-
berg fixed point to dominate for n &3.

x(5) =[82 —(a+c~82)' ' —(a —c~82)' ']/333,
with

a =18%28, c =1998 . (5.26)
D. Tetracritical, biconical fixed point

We will analyze the remaining biconical fixed
point in detail only for theuniaxial case n]I =1,
nj =n-1, considered in the earlier sections. For
n" (e) & n& 11+0(e) this fixed point determines the
critical behavior. Its location to order e is found
to be given by

w*= ex/8, u*=(1+[1—9(n —1)x']' ')7/72,
v* = ]I + [1 —(n+ 7) x'] ' 'I e/8(n+ 7) (5.23)

and

[12fu*+4(B—1)fw*]/(5 1)

r~~ = —[4(s+1}fv*+2fw*J /(5 ' —1), (5.24)

where x=x(n} is the real root of the cubic equation

9(4n'+ 29s+ 88) x' —6(2rP +28n+ 179)x'

(+n' + 5n 4+72) x+ 6(n —11)= 0 .
(5.25)

Furthermore as a function of n the root exhibits
a two-thirds root cusp at n=2 described by

x(n) =—"-Q6) ' 'nn' '-~M+. hn=s-2 .
(5.27)

The renormalization-group eigenvalues needed
for the various exponents can now be computed
by Iinearizing the recursion relations (5.6)-(5.10).
To order c this yields

Xi~~, = 2 + 2 (- 3u* —(n+ I}v*+{[Su* —(n+ I) v*]'

+4(n —1)w*')'~'),

X&s» = 2+ & (- 3u* —(n+ I) v*+[[Su*—(u+ I) v*]'

+4(u- I)w+'j' ') .

(5.28)

From these relations the biconical thermodynamic
exponents can be calculated using the standard
expre ssion4

Although the appropriate root of this equation is
rational at n= 11 (x=0), n=4(x=-,'), n 2(x==-,'),
and at n=1 (x=P) and —1 (x=—',), the root is an ir
rational function of n. Specifically, for n=5, we
find

2 —n=d =vd/

while the crossover exponent is given by4

Q = X2/A,

(5.29)

(5.30)

16

14-

In general, we must allow for distinct exponents
gJI and g& governing the decay of order parallel
and perpendicular to the anisotropy axis. The
two gap exponents 4J] and 4~ entering the free-
energy scaling relation"'" for the biconical tetra-
critical point are related to gII and g~ by

A, ~= —,
' (d+2 —g, ~) v, A~ =-, (d+2 —g~) v, (5.31)

and, similarly, we have the susceptibility expon-
ents

12-

10-

y~~ =(2 —g~~) v, y& =(2 —q~) v .

Since we have

7g, 'qj. =O(e'),

(5.32)

(5.33)

&-

6-

2-

0
0 4 6 & 10 12 14 16

II

FIG. 5. Domains of stability of the decoupled, Heisen-
berg, and biconical fixed points.

it is clear that yII and y~ are the same to order ~
and may, for brevity, be denoted ys(n) (as in Ref.
28, where this distinction was not explicitly made).

The biconical exponents ys(n) and Qs(n) to order
~ evaluated at & =1 are listed in Table I together
with the corresponding truncated Heisenberg expon-
ents. (A graph of these results has been presented
in Ref. 28.) Note that the biconical fixed point
merges with the Heisenberg fixed point at n =4
+O(e), which is why the values coincide for n =4.
Similarly the biconical fixed point merges with the
Ising/(nj =10) decoupled fixed pint at n=11 so that,
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x(n)
Biconical

Va(n) @a(n)
Heisenberg

~, (n)

1
2
3
4
5
6
7
9

10
11
13
15

0.303 03
0.3333
0.230 20
0.166 67
0.120 53
0.086 01
0.059 66
0.023 12
0.010 31
0

-0.015 21
-0.024 55

1.1667
1.1667
1.2230
1.2500
1.2673
1.2805
1.2921
1.3136
1.3238
1.3333
1.3505
1.3651

1.0720
1.1667
1.1761
1.1667
1.1551
1.1470
1.1438
1.1504
1.1578
1.1667
1.1858
1.2048

1.1667
1.2000
1.2273
1.2500
1.2692
1.2857
1.3000
1.3235
1.3333
1.3421
1.3571
1.3698

1.0555
1.1000
1.1364
1.1667
1.1923
1.2143
1.2333
1.2647
1.2777
1.2895
1.3095
1.3261

TABLE I. Biconical and Heisenberg exponents eval-
uated to order & at &=1.

fixed point satisfies the mean-field criterion'
(5.12}for tetracriticality. Thus, a new phase with
both parallel and perpendicular ordering simul-
taneously present is expected to appear below T,
in place of the usual spin-flop line. In confirma-
tion, recall that the equation of state to order co

is always given by the phenomenological theory.
One does not expect that the corrections of order e
and higher would alter such qualitative features of
the thermodynamic behavior corresponding to the
fixed point. [As already mentioned, the condition
for bicriticality, ' namely, (u *}'~ u'v*, is satisfied
at the Heisenberg fixed point. ]

Because of the symmetry implied by the unequal
values of r~~ and r* and by the values of u*, v*,
and ~*, the spins will tend to lie on an easy dou-
ble cone with axis parallel to the original easy
axis, and with a conical angle (9 determined by n

via the fixed-point values. Specifically we find

to order e, we have ya(11) = yn(10).
Although the values of y are numerically close

for the biconical and Heisenberg fixed points, the
values of (I(} differ significantly; this might enable
these fixed points to be distinguished experimen-
tally (or in numerical calculation and simulations).
It may be remarked that as a result of the singular
variation of x(n), given in (5.27), the exponent
ya(n) displays a cubic cusp at n=2 (see the figure
in Ref. 28).

It is in fact possible to determine the tetracrit-
ical exponents g~( and g~ to leading order by
straightforward techniques. 4 Thus one discovers
that the biconical fixed point does not, in fact,
have a single, isotropic exponent g. The inequality
of the fixed-point values r~~ and r,*, as evidenced
by (5.24), leads to distinct exponents gq and g, .
To order e' these are given by

ri~u* —r i~]so
tan'e(n) =

r]] v —r~e (5.36)

In interpreting this formula, however, it must be
recalled that the 0 and s spins represent distinct
rescalings of the original parallel and perpendicu-
lar spin components, unless one has jo =jo in
(2.18) and (2.19}. This equality will hold when the
anisotropy is of single-ion type [i.e., D(R) =0 when
R&0]. Even in this case, however, some differ-
ential rescaling may take place through subsequent
renormalizations. Nevertheles s the biconical na-
ture of the predominant spin fluctuations near the
tetracritical point should be detectable in scatter-
ing experiments (once such a point is found) and,
in any case, justifies the name given to the fixed
point. The formula (5.31) has no meaning for n&4,
since the length of the spin components in the (now
unstable) biconical phase can be imaginary.

g~~
= 8[3u*' + (n —1)w*'] + 0( t')

q~ =8[(n+1) v*'+w*']+O(e ),
(5.34}

(5.35)
E. Scaling and scaling fields

Once one has identified a renormalization-group
fixed point corresponding to a particular critical
or multicritical point, scaling of the free energy
and correlations in the vicinity of the multicritical
point follows by the usual renormalization-group
arguments. 4 The only issue of special significance
to be discussed, however, concerns the identifica-
tion of the appropriate linear scaling fields. For
a bicritical point occurring in zero field, symme-
try dictates that the linear scaling fields are
t=(T —T,)/T„and H, ~, H, H~~, and H . In the
presence of a finite field B(] in the vicinity of the
bicritical field H„symmetry still shows that H j,

and H~ are scaling fields. However, the fields
t and 4H~]=H~]-H& must, in general, mix to pro-
duce new linear scaling fields t and g. The need

where only the fixed-point values (5.28) of u*, w*,
and v~ to O(e) are needed.

A plot of g, ~
and g~ to O(e') as a function of n is

presented in Fig. 4; the isotropic exponent g to
the same order is shown for comparison. As in the
case of Zs(n) and &f&a(n), the exponents g~~(n) and

q~(n) exhibit cusps at n=2. Note that, in parts of
the region 1 &n &4, both g~~ and qj become greater
than the isotropic g, even though the isotropic or
Heisenberg fixed point dominates the critical be-
havior in this region; this violates the folklore that
"the largest g wins. "

In the region of biconical stability, 4&n +(0)e
& 11, it is not hard to show that 0 & w* & e/(n+8),
while u* and v* exceed e/(n+8). Accordingly the
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to define the modifying (or deviating} field g by

g = n, H g/ks Ta pz t =k g
—p~f (5.37)

follows from simple geometric considerations of
the bicritical phase diagram. Thus, as explained
in Refs. 16 and 30, the mixing parameter p~ must
equal the slope of the tangent to the first-order
spin-flop line T+(h~~) or T~ in the (k~~, f} or (H,~, ksT)
planes. Conversely a calculation of p, dictates the
slope of the spin-flop line. (Note we are assuming
that the spins and their magnetic moments are
dimensionless. ) Since the crossover exponent Q,
which then enters in the scaling combination g/t
exceeds unity, it is actually sufficient for asym-
ptotic scaling purposes to replace t simply by t
(as was done in Ref. 16). However the aPProach
to asymptotic scaling will, in fact, be more rapid
in terms of the linear scaling field

t = t+q,hg, (5.38)

where the anisotropy has been estimated in terms
of H~ and T~. We note first that both gt and P~ are
positive (the latter being in accord with experi-
mental observation). (Second, as is to be expected,
both P~ and q, vanish as H, -0.)

Various predictions resulting from scaling at
thebicriticalpointwere discussed explicitly in Ref.
16 under the assumption, justified in detail above,
that for n =2 or 3 the bicritical exponents are just
those appropriate to the corresponding isotropic
spin Hamiltonian. The best estimates for the ex-
ponents are then those derived from analysis of
series expansions. "'" We will not repeat the dis-
cussion here except to point out that utilization of
the scaling field t in place of t leads to a refined
prediction for the location of the n~( = 1 and n~ = n —1
phase boundaries H, (T), in the vicinity of the bi-
critical point. ' Specifically the scaled relation
g/t e=+w, yields

where —p& is evidently the reciprocal slope of the
t = 0 axis in the (H, ~, ks T) plane.

Within the renormalization group the mixing pa-
rameters P, and g& can in principle be derived
from the two fixed-point eigenvectors correspond-
ing to the r~~ and r& parameters in the linearized
form of the recursion relations (5.6) and (5.7).
However, in general, this would entail knowledge
of the full course of the nonlinear renormalizations
leading to the fixed-point vicinity. This knowledge
cannot be gained, but an estimate of the mixing pa-
rameters within the e expansion may be obtained
by assuming H

~~
is small and utilizing (3.9) and

(3.10}. When this is done we obtain"

P~ —[I—(j /jo)]ks(T~ —T' )2/16f4H~T~, (5.39)

q, = 8(n+2) f,H, T,/nks(T T' )', -(5.40}

H,'(t)/ks T =p, tow, (t+gp~~)
~

=p~t+w', t~+w,"t'~ '+O(t'~ ')

where

(5.41}

w ', = w ~(1 +p~q, ) ~, w,"= pw'$1 +p~q, )' e ' . (5.42)

Note that the t'~ ' correction term in (5.41) is
relatively singular and introduces a stronger
asymmetry into the two branches than implied
merely by the differences between so, and w . For
these reasons it is probably preferable to make
experimental fits to the first part of (5.41) rather
than to the expanded version. '

As mentioned in Ref. 16, this prediction implies
that the X lines H,'(T) and H, (T) should meet at the
bicritical point H& with a common tangent which is
also the tangent to the first-order spin-flop line
beneath T, . This prediction is in contrast to the
mean-field result, where the three lines meet at
distinct angles. The relative amplitudes w,/w
should be a universal parameter; however, its
evaluation requires further calculation. " One may
anticipate, nonetheless, that it will exceed unity
on the basis of the observation that for fixed near-
est-neighbor coupling J the critical temperatures
of the Heisenberg, XY, and Ising models are or-
dered according to

(Trr Tll)/(g TH) ( l (5.43)

VI. UNIFORM BUT SKEW EXTERNAL FIELD

A. Skew fields and the ordered phases

We now turn to the experimentally interesting
case, in which the uniform external field is skew,
i.e., applied at some nonzero angle, to the aniso-
tropy axis. In practice it is hard experimentally
to avoid some misalignment resulting in the im-
position of a skew field. Indeed there have been
suggestions that the transition between the anti-
ferromagnetic and flopped states with the field
along the anisotropy axis is continuous and not
first order, as expected theoretically. It has even
been asserted that there is no transition at all, "

The ratio of critical-temperature differences here
should be a measure of (w /w, )' ~. These conclu-
sions seem to be in reasonable accord with cur-
rently available measurements which, however,
are not of as high a precision as desirable. " (It
must also be remembered that P = 1.25 is quite
close to unity, so that as in historical observations
of inverse ferromagnetic susceptibility plots, which
approach the axis tangentially as t~ with y= 1.2-1.4,
the tangency may not be at all obvious to the un-
aided eye. )
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i.e., that the magnetization and other variables
change rapidly but continuously as H]] is increased
below T,. One possible reason for the failure to
observe the anticipated first-order transition is
just the misalignment of the external field with
respect to the easy axis of the crystal. Thus a
mean-field-theory analysis"'" indicates that a
true first-order transition should be observed only
if the angle between the easy axis and the field is
less than some temperature-dependent critical
angle determined by the effective anisotropy and
exchange fields. Although this conclusion is prob-
ably valid far from T& its status close to the bi-
critical point is not yet clear. In any event the
critical angle is expected to vanish as T, is ap-
proached from below.

To complicate matters further, in the often
studied antiferromagnet MnC1, 4H, O, the easy
axis is not along the crystallographic c axis (along
which the field is usually applied" "'"), but is
displaced by an angle of about" 7'. We note, how-
ever, that a recent study, '4 with careful alignment
of the field, has shown that the spin-flop tran-
sition below T, is almost certainly first order in
this material just as expected theoretically.

There is a further theoretical possibility for the
nonobservation of a first-order transition in cer-
tain materials. When there is an additional aniso-
tropic interaction of cubic symmetry and of the
appropriate sign it is possible [even though such
interactions are technically "irrelevant" at the
bicritical point when n& n" (d)] that the spin-flop
point appears thermodynamically to be tetracritical
in nature even for n& n"(d). In such a case, there
should in fact again be two further X lines separat-
ing the antiferromagnetic and flopped phases from
the extra, doubly ordered, intermediate phase. '
Such a possibility has been investigated using
Feynman-graph e-expansion techniques by Aharony
and Bruce" and seems likely to be of particular
relevance to displacive transitions. Aharony and
Bruce do indeed find tetracritical thermodynamic
behavior. However it shoul. d be noted that these

two extra A lines approach one another very rapid-
ly as T- T& so that, in fact, within the asymptotic
scaling regime the point of confluence still appears
to be bicritical.

In this paper we do not explore the possible or-
dered phases or the transitions between them.
Rather we restrict ourselves to the bicritical re-
gion in the disordered phase. Although the effects
of a misalignment of the field are less dramatic
they are interesting and significant. In particular,
misalignment may make it hard to verify the tan-
gency of the X lines at T~ in the (T,H~~) plane and to
derive the crossover exponent Q that way from
(5.36}.

B. Transformation of the Hamiltonian

X=+ +BC~, (6.1)

where 'JC, is the Hamiltonian given in (3.3) except
that the coefficients of the quadratic terms are
replaced by

r, =r, +2u»M(]+2%12M

r, =r, +12u22M]]+2u)22M i,
r, = r, + 2m, M ]] + 2 v» M

l. —J. 2 2+ 2+22M I] +4v22 M ~

(6.2)

In these relations M]] and M„ the components of
the magnetization parallel to and perpendicular to
the anisotropy axis, are give, for small h, by

(M(r 42u+»(M) =h, (, r~ M =h~ .

The second part of the Hamiltonian is

(6 3)

We consider the system described by the reduced
Hamiltonian X(o„o„s„s,) of (3.1) in an external
uniform field h = (h~~, h~), where hj is the compo-
nent of the field perpendicular to the anisotropy
axis. On shifting both the o, and s, variables by
writing &, -o, +M~] and s, - s, +M~, and choosing
M)] and M~ to eliminate the linear field terms, the
Hamiltonian can be written

3C j dR vy2 MJ sy)' +4v» Mj s2
' +4se22M]] Mj s, cr2

+su»M, ~(M~ ~ s, ) o, +4v»(Mj ~ s,) ( s, )'+2v»(Mj ~ s, ) j s, ('

+2V»(M& s, ) (s,s, ) +2+»(M~ s, ) & +2w»(M, s, ) v, +Q»(M~. s,) &rp, J, (6.4)

Although this expression contains quadratic and
cubic terms in the spin variables, no terms of
third order in o, or in s, alone are developed by the
new spin shifts. This is important since such
terms would be relevant under the renormalization

group discussed in Sec. III. Consequently, we ex-
pect that the Hamiltonian (6.1}will have the same
stable fixed points for a range of values of h(] and
h~.

The new complication which does appear in (6.4)
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is the bilinear coupling between those spin com-
ponents s, parallel to the anisotropy axis, and
those &, along the transverse field. This neces-
sitates a preliminary diagonalization of the quad-
ratic terms. Physically it corresponds to a canting
of the spins which undergo ordering.

C. Casen=2

Because of the complexity of the Hamiltonian
we will first analyze the XY or planar case n =2,
when s, and s, are simply scalar fields. On re-
writing the Hamiltonian (6.1) in the form

X =- dA 2 Vsp'+2 s' r'fs'+
& s ]I f

(6.5)

where i = II, & and u = 1, 2, the matrices r'„' are
seen to be

From (6.8) and (6.9) it is clear that for any value
of M~ the eigenvalues A~ are larger than the Xf;
thus all terms in the Hamiltonian of the form o, o,'

with A &l are strongly irrelevant and decay to zero
as in Sec. III. Provided h~ &0 (or equivalently
m J &0), we also have ~', », , so that again the
majority of the remaining terms are irrelevant.
Finally we are left with a new reduced Hamiltonian
of the form

+red ~ 2 ~+y +2~1 +y +&~1 Oj +P& (0 )

+ g k ((T2 ) + (o~ } ( v (7~ + v2(T~ ) + u~(o~ ) ]

(6.1 1}

in which vy v2 and ~, are complicated functions
of the initial parameters known only for small h,
whose precise form is not, in any case, very
informative. Evidently we may now integrate out
the 0', and &2'fields, to obtain simply

w„M

y2M II M J ry + 2 vy2M JJ
(6.6)

3C= — dR 2 Va'~ + 2A.~ G~ ) +Q 0'~, 6.12)

with

II

r2 422M II M J u = u, —v', /2A', —v, /2k+ . (6.13)
if
2

4u»MII M, r, +Sv„M
(6.7)

where we may recall that the parameters my2 vy2,

etc. , are defined in (2.28) and (2.29). The r ma-
trices have eigenvalues A.,' and A,

' given explicitly
by

+4w' M'M']' ')
(6.8)

A,'= ~(r,'+r, +8v»M~ +I(r2 —r, —8v»M~)'

+64w' M' M']'i'].

(6 9)

/=1~2:f= &

2 Va„f)'+2Xq V„')'+0 0'),

(6.10)

where 0(o') denotes all the terms cubic and quartic
in the o„arising from (6.1). We do not explicitly
display these terms since there are very many of
them, most of which turn out to be strongly irrele-
vant under the renormalization procedure used.

and corresponding eigenvectors y„'.
Denoting the linear combinations of spin variables

which diagonalize the quadratic parts of the Ham-
iltonain by o„', we can now write

This, of course, is just the n =1 Ising-like Ham-
iltonian, whose analysis is well known.

At least for small values of rn J it is fairly easy
to verify from (6.13}that u is positive; however,
it is not so clear that u remains positive as 4 J is
increased arbitrarily. (A negative u, of course,
indicates the possibility of tricritical behavior. "'")
Nevertheless, for our purposes we may assume
this is the case since all phase boundaries close
to the A'J =0 bicritical point should remain con-
tinuous with no tricritical points in the immediate
vicinity. However, the evaluation of u being still
restricted to @II small, means that our analysis
does not completely exclude the possibility of con-
fluent tricritical points.

Now, for a set of initial interaction parameters
for which u &0, the Hamiltonian (6.12) has Ising-
like critical behavior. We conclude that the phase
boundary T = T,(& ~~, &~) is Ising-like everywhere
with (n = 1) critical exponents, except for a single
(n = 2) point in the @J = 0 plane, namely, the spin-
flop bicritical point with XY-like exponents. For
fixed T& T„ the phase boundary should be a smooth
curve in the (A, ~, u~) plane.

Very close to the spin-flop point, the analysis
of Sec. V can be adapted to investigate the shape
of the phase boundary in the vicinity of the bicrit-
ical point for the Hamiltonian (6.10). From the
general discussion of anisotropy crossover, '
the change in the critical temperature at fixed
@II =k, (the bicritical value) when a small trans-



BICRITICAL AND TETRACRITICAL POINTS IN. . .

= Hb

Xsi,ng-Like

spins, we may, by rotational invariance, always
suppose that h~ is directed along the first com-
ponent of s, .

The same diagonalization as for the n =2 case
may then be performed. After following the re-
normalization procedures of Sec. III and integrat-
ing out the irrelevant spin variables o,', etc. , the
Hamiltonian finally becomes

X,cd= —2 dR V(T~ ) + Vo'~ ) + VS~ ) + ~~

+A, (o, )'+r, (s, ('+O(s')], (6.16)

Heisenberg

Ising-like

FIG. 6. Cross section of the critical surface with
H it

—Hb.

verse field is applied should vary as

T,(h~) —T,(h~ =0) -(A.,
' —A, )'~~, (6.14)

where P is the n=2 crossover exponent. Since we
have r, =r, at the flop point, we easily find from
(6.2), (6.3), (6.8), and (6.9) that

Z', —Z, - fM, f-/h,
/

(6.15)

D. General case

A similar analysis may be performed when the
transverse spin variables (s„s,) have more than
one component. However we must now distinguish
between that transverse component parallel to hj
and the other n —2 perpendicular components.
Since we have assumed isotropy in the transverse

ash, -0. Since P&1 (as before) the phase bound-
ary in the h(~ =hb plane is therefore tangent to the
line k~ =0 as shown in Fig. 6. From Sec. V we
know that, in the (h~(, T) plane, the phase boundary
istangenttothe flop line Tz(h, ~}; by continuity, the
(T h~~ hg) boundary surface has an isolated cusp-
like singularity at which it is tangent to the flop
line and from which it deviates as

~
h —h, ('

where h~ =(h~, 0) is the value of the external field
vector at the bicritical point.

[2V»(r," —r, ) —&2»M
~~

]M~2 & 0 . (6.17)

Clearly, for r, «, , the left side is always nega-
tive. Furthermore, in the vicinity of the bicritical
point we have r," —r, =O(M', ), so that it is again
negative. Thus we conclude that the critical sur-
face in the (T, h„, h~) space is Ising-like in the
neighborhood of the bicritical point for ( h~

~

& 0.
In reaching this conclusion we have made the

tacit assumption that the irrelevant variables do
not, under renormalization-group iteration, cause
a crossing of the renormalized coefficients r, and

If the initial values satisfy A, (l = 0) &r, (l =0)
we presume that this inequality is maintained for
all l, in order that the effective Hamiltonian with
all irrelevant variables neglected may be dis-
cussed in terms of the initial interaction param-
eters. As with other such global questions we
have been unable to decide the point; it deserves
further study.

A mean-field type of analysis suggests that, for
a uniaxial antiferromagnet in which the j inequal-
ities (2.21) hold, the left side of (6.17) is negative

where now s, denotes the (n —2)-component spin
vector orthogonal to h~. We will again assume
that the coefficients of the four spin interactions
are all positive. Now this Hamiltonian has the
same structure as the general quartic Hamiltonian
(5.1) so that an identical analysis applies.

There are three possible relationships which
may obtain between the quartic coefficients in
(6.16), namely': (i) A', =X, =r, , (ii) A,'&A, =r, , and
(iii) X,'& A, &r, . By (6.8}, the first case is pos-
sible only for M =0 and T= T~(h„); this corre-
sponds to the h~ = 0 bicritical point discussed in
detail in Sec. V. One subset of case (ii) ha. s also
been discussed, namely, the phase boundary in
the M, =0 plane. The two possibilities in (iii) are
~, & ry corresponding to Ising-like critical sur-
faces, and A., +r, , describing n —2 critical be-
havior. We must investigate for what ranges of
initial parameters these two alternatives are real-
ized. It is trivial to show that ~y O'Y] according to
whether
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everywhere; it would follow that for 4& &0, the
critical surface would be Ising-like everywhere.
However, from this analysis again one cannot ex-
clude the possibility that the sign of the inequality
is reversed by the irrelevant variables. Thus,
at a finite distance from the flop point, there is
the possibility of an n- 1 critical line separating
Ising-like and n-2 critical surfaces, although this
seems unlikely to be realized in nature. Indeed an
n-1 critical line would have to satisfy, for finite
M2~, the condition

H))

XY
seam
Tc~~HII~

Heisenberg
bicritical
point

2u»(i," —r,') =@i'2M
II (6.18)

Some straightforward algebra using the initial co-
efficients (2.25)-(2.29} shows that, for reasonable
values of these parameters, one cannot, with fixed
M ll, find a positive solution for M2~. The implica-
tions is again that an n- 1 critical line is unlikely
to exist.

The critical surface will have the same cusplike
singularity at the flop point found for the n =2 case.
Near the n —1 critical line in the h~ = 0 plane, we
find from (6.17) that

(6.19)

for small h~. Thus the effective crossover ex-
ponent is 2Q and the critical surface comes in per-
pendicular to the && =0 line at fixed T. The gen-
eral appearance of the critical surface in the
(T, ki„, hi} plane is thus as sketched in Fig. 7.
Similar considerations show that, if an n-1 crit-
ical line exists for finite h~, the n-2 and Ising-
like critical surfaces meet smoothly with a tan-
gency exponent g exceeding unity.

We see from this analysis that in an experiment
designed to investigate the spin-flop bicritical
point, very careful alignment of the field along
the anisotropy axis is required. Otherwise, for
h~ &0 the critical surface is Ising-like with asso-
ciated Ising-Heisenberg crossover effects (assum-
ing that the flop point corresponds to the isotropic
fixed point, as it should for real systems with
s &3). Thus, the measured exponents may be
either Ising-like or lie between the Ising and
Heisenberg values because of the crossover ef-
fects. Moreover, because of the cusplike singu-
larity in the critical surface at the bicritical point,
measurements of T& will be sensitive to precise
field alignment. However, the system provides a
rich, experimentally accessible range of critical
behavior in the (T, 1i„,h, } space even in the dis-
ordered phase, which (for n = 3) displays Heisen-
berg, XF, and Ising-like critical behavior in dif-
ferent parts of the critical surface as shown in
Fig. V.

Ising surface T~(H)), H~)

FIG. 7. Critical surface of an n =3 uniaxial anti-
ferromagnet in the fu11 (T, &}},H~) space.

VII. EFFECTS OF ORDERING FIELDS

In this concluding section we discuss the effects
of ordering fields on the critical surfaces. In
particular we carry out an analysis similar to that
in Sec. V but with applied fields (i) hi and iii and

(ii) 4~, and }i~, and concentrate on the disordered
or single-phase region. In case (i), we make the
shifts a'2-o2+ ~i[. and O, -ai+ M

ll
and obtain

X Ã0+ 36i i (7 1)

where JCo is again the Hamiltonian of (3.3) except
that the coefficients of the quadratic terms are
this time given by

y, =y,+ 12u„M}}+ 2u,2M)),
}} .Il 't2

L l2 e
y~=y, +2w, ~M ll +2w2, ~}},

l2r2 =r2+ 2w,2+)} + 2w22M)),

(7.2)

and

X,= — dR [4u»MiMio, o~+io»MiMiis, sm

ii[ "i+4&ii&ii)'+»» ill =

Mj~[r,'+4ii, M~~ +2u»(M~~ ) j =hi ~

(7.4)

(7.5}

In X we now have bilinear couplings between the

+ 4 QiiM J(ol) + 2siiiMli oi(si si) + sill ii oi(8g sm)

+ 2m» Mini(o~ /+slim, ( 2(si'82}] y (7.3)

with M}} and Ml~) being defined aS the SOlutiOnS Of
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pairs (o„o,) and (s„s,) so that a diagonalization
similar to that of Sec. VI must be performed. We
also note that in (7.3) there is a term cubic in g,
which is relevant under the renormalization group
of Sec. III. Thus, we can reach a fixed point cor-
responding to a transition in the parallel compon-
ent only if MII =0; this is, of course, just as ex-
pected. If we work in a region of the (T, h~~, h~~ )
space in which r,"(t', we will find no transition,
exactly as in a conventional magnet in an ordering
field. Conversely, if one is in a region where

there is the possibility of a transition.
Now, according to the discussion of Sec. III, we
can treat the o, spins as irrelevant variables.
Furthermore, there are no terms cubic in s,
(which would be relevant). Thus, as usual, there
is only a single relevant field in the problem,
namely, r, . Even after diagonalization of the

sy sg quadratic form to eliminate the cross term,
inspection of (7.3) shows that no such relevant
terms can develop. Thus there will be a continu-
ous order transition to a state where the n —1 trans-
verse components order. A study of the eigen-
values shows that, as H

~i
-0 the phaSe bpundary,

at constant Hg meets the critical line in the (T,
fi„) at right angles, as indicated in Fig. 8. Of
course, this analysis assumes as before that,
after integrating out the irrelevant spin compon-
ents, the coefficients of the quartic term remain
positive.

Should the quartic coupling term be driven
negative by the imposition of a strong enough field

gI~I, the "balloon like" critical surface for r", )r,
will terminate in a symmetric pair of lines of
tricritical points (see Fig. 8). The transition
surface bounding the (n- 1)-ordered state becomes
first order in character on the other side of this
tricritical line. A mean-field-theory calculation
(for fixed length spins) by Khajehpour, Wang, and
Kromhout" does, in fact, explicity produce these
lines of tricritical points, which then terminate
at the bicritical point". A similar phase diagram
was constructed by Chang equal. ,

' who applied a
homogeneity hypothesis to a somewhat simpler
model situation.

Renormalization-group arguments can be given
to show that these lines of tricritical points are
also present in the continuous spin model treated
here and run into the bicritical points. Consider
the Hamiltonian (3.1), but with an additional field
term &II', added. Suppose that this Hamiltonian
is investigated by first renormalizing away the
imposed uniform field h„, ~ithouI' shifting the cr,

spin by M„. One is then left with a Hamiltonian
of the form (3.7), but with a field h,

~
coupling to the

cr spins. In the case n=2, this Hamiltonian is
identical to an effective Hamiltonian arising in a

~
~ ~

1. '
~ % r ~ ~

~ ~
'

Q1 e. j-.~ ~ AE e

XY (r) &~

surface

Bicriticai
Paint

/

/

~Ising
Edge

FIG. 8. Phase diagram of an n =3 uniaxial antiferro-
magnet with both H t„: and H~~~ applied. The XY transition
surface is divided by a line (-0-0-) of tricritical points
into regions of first order (clear) and continuous (stipled)
transitions.

u„,=u' -A(& /g )'

~here

roe+0(& ).

(7.7)

(7.8)

study of metamagnetic tricritical behavior. The
analysis presented there can be applied directly,
provided that the anisotropy g—= rii -r is positive
and of order unity. " The result is that the Hamil-
tonian (3.7) with the field term hgo, is equivalent
to an Ising-like Hamiltonian with a renormalized
quadratic coupling term, azd an effective quadratic
coupling given by

Q g Q A (7.6)

where A depends weakly on the various coupling
constants in (3.7)." Thus, tricritical points will
occur at large values of g when the renormalized
quadratic coupling is zero, and hII is strong enough
to drive (7.6) through zero.

The analysis of Ref. 32 may readily be extended
to the case of small g (with n=2). One simply
first iterates the recursion relations (5.6)-(5.10)
for (3.7) until g is large. The field &t~ obeys the

simple recursion relation (h~t)'=5" h~~ during
this process, and the difference g grows accord-
ing to g'=b~~g, where' '"A., =2-5 ~. If b is chos-
en so that g' =0(1), the analysis of Ref. 32 can be
carried out for the "partially renormalized" par-
ameters g', (Pl~t} etc. Then (7.6) becomes
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Thus, the field in which the transition becomes
tricritical goes to zero as g tt when g vanishes,
and the lines of tricritical points terminate at the
bicritical point as indicated by mean-field theory, "
but with a geometry determined by the nonclassical
exponent pii. The analysis sketched above can be
extended readily to general n, and the conclusions
are the same. The combination h, i/g i~ in (7.7)
with b, and P given by their bicritical, i.e. , iso-
tropic n-Heisenberg values, is readily seen to be
appropriate from the scaling formulation Ref. 16.
The coefficient of e in (7.8) is thus more generally
(n+2)/4(n+8) and the coefficients for e' and e'
could also be quoted. '

An identical analysis may be performed for case
(ii) with Rg and Ai nonzero. Shifts Alp and Afar~ are
performed on cr, and on one perpendicular com-
ponent of s,. This leads to a term in che Hamil-
tonian of the form 4v||(g t s,) Is, i' which is now

relevant; thus no transition occurs in these spin
components. However, there is an extra compli-
cation when s, has two or more components, in
that there is likely to be Gaussian critical behavior
in g —2of these below T, when pg~t=0 and hiI -~, .
Indeed, because we have assumed that the n- 1

components of s, and s, are coupled isotropically
one has a situation similar to the isotropic
Heisenberg model below 1', , where a spin-wave
analysis leads to a divergent longitudinal suscept-
ibility as &-0." We have not investigated this in

the present context, but by considering only the
region &Ii &&&, where the parallel components
order, we can easily see that there is a critical
surface in the (T, &g hg) space with Ising-like
exponents. Again, the balloonlike surface is
expected to terminate in a line of tricritical points,
in agreement with the results of mean-field theo-
ry.4' The phase diagram in this space is thus
shown in Fig. 9.

XY (n-1)
Edge

Y.'0' y
0

Bicritical
Point

~ ~

P. :,

~
~

~ ~ l ~

~ ~
~

~

~ ~ ~ ~

~ ~

Is tng
Surface

FIG. 9. Phase diagram of an n =3 uniaxial antiferro-
magnet in the presence of fields H

II
and Hi~. Here, the

Ising transition surface is divided by a line (-0 -0-)
of tricritical points into regions of first order (clear)
and continuous (stipled) transitions.
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