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The relaxational models introduced in a previous treatment of critical dynamics are studied in detail using

renormalization-group methods. The earlier results are justified by an analysis to all order in e = 4 —d, where

d is the dimensionality. The diagrammatic formalism of the full dynamic renormalization group is presented,
and applied to the earlier models. A generalization of Wilson s Feynman-graph expansion method is used to
calculate the exponents to second order in c. In model C, where a nonconserved order parameter is coupled
to a conserved energy field, ambiguities were found in the earlier recursion-relation treatment for 2 & n & 4,
d = 4 (n is the number of components of the order parameter). These ambiguities are discussed in the present

work, but are not fully resolved.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I),
the renormalization-group method for critical dy-
namics was applied to a number of purely relaxa-
tional models. Results were presented for dynamic
critical exponents, and various universality class-
es were found depending on the dimensionality d,
the number of components n of the order param-
eter, and the conservation laws in the system. The
present paper details the renormalization-group
analysis which led to the results of I, and in addi-
tion presents the F. eynman-graph expansion of the
critical exponents to order &' for model C, in
which the nonconserved order parameter couples
to a conserved energy field, This expansion dis-
plays singular behavior in the limit where the
transport coefficient X~ for the energy vanishes,
leading to ambiguities in the critical behavior for
2&n& 4, d- 4, which we have not resolved. The
principal results of our analysis are the proof of
scaling relations to all orders in e, and the deter-
mination of some of the boundaries of regions with
different dynamical behavior for model C, near
d = 4. We also calculate a physical amplitude ratio
of characteristic frequencies for the energy and

the order parameter, to linear order in & =4-d.
In Sec. II recursion relations valid to lowest order
in E = 4-d are written down in a somewhat more
general form than in I, and their fixed-point be-
havior is determined. Section III presents the
diagrammatic formalism used to justify the
recursion-relation analysis to all orders in &, In

Sec. IV the dynamic renormalization group is
studied for case C, and the different regions are
determined. It is shown that the first-order re-
cursion relations studied in I and in Sec. II become
invalid in the domain 2&n&4, near d=4, where
A, z-0. Section V describes the dynamics of the
energy field for the different models studied, while
Sec. VI contains the second-order z expansion for
case C. Comparison with other renormalization-
group treatments of relaxational models is made
in Sec, VII.

II. RECURSION RELATIONS

In I we defined one-field models (cases A and B),
and two-field models with conserved energy fields
(C and D). We shall generalize the discussion
slightly by introducing two-field models with non-
conserved energy fields, which we call A' and B'.
The defining equations of A' and B' are the same
as for C and D, respectively [Eqs. (I2.15)-(I2.27)],
except that we replace -XosV2 by I'0, in (I2.28) and

(12.27).
Recursion relations valid to first order in e for

the static coefficients are the same for cases A',
B', C, and D, and are given by Eqs. (I4.5)-(I4.8),
except that (14.8) contains several misprints. The
correct form is

y„,= b ~ gy, 4(n+ 2)u,-y,B Inb-2ny, 'C,B lnb].

(2 I)
Recursion relations for the dynamic coefficients of
cases A and C were given by Eqs. (I4.21), (14.23),
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1/X„,=(1/X )b~ ~" '
1/r. ..= (I/r, )k" " +-y-',I, + o(&'),

I /gs —(I/yE)54-2os~2-I

I/rs„=(1/rs)5 -~E +y J yO(e ),

(2.2)

(2.3)

(2.4)

(2.5)

where y,'I, and y,'J, are the contributions from the

diagrams in Figs. 1(a) and 1(b) of I, written down
in Eqs. (I3.27) and (I3.28}. There are, however, a
number of errors in (13.27), so we reproduce the
correct equation here:

Z, (k, ur}

and (I4.25). (We shall see below, however, that
the equations for model C are valid to first order
in e only if p, , =X, /r, C, is not zero. )

It is convenient to restate the recursion relations
for the dynamic para, meters of all the cases under
consideration (where applicable) in a somewhat
more general form:

Xs(k, ur) = C, + D,(k, e), (2.8)

where D, (k, &u) is the response function for the var-
iable y,Co~/(r)~' in case A. Equation (2.8) applies
asymptotically for the critical behavior when 1/I'o
is finite. The energy relaxation will be discussed
further in Sec. V below.

In a similar manner we may show that cases B
and B have identical critical behaviors. Thus, the
addition of a non-conserved energy field makes no
difference to the dynamic critical behavior. In
case D, we find that I/XP is a strongly irrelevant
variable which approaches zero as l- ~. Again it
is clear that we could have set I/Xos= 0 in the first
place, which gives an instantaneous interaction be-
tween fluctuations of the order parameter, so that
the order-parameter correlation functions in mod-
el D are identical in the critical region to those in
model B. The energy response functions are also
identical for models B and D if we consider the
limit T- T„with k/z fixed. If we let k- 0 for any
fixed finite value of a', however, the energy will
eventually change to a diffusive behavior, with

&us(k) = A.,k'/C ~ a i"k' (2.9)

I/rs, - const x e/r, , case A',

—constxc/&„case B'. (2.7)

If a & 0, then I/r~s- 0 for large l.
We may further note that I, vanishes in the limit

I/rf -0. Hence the second term on the right-
hand side of (2.3) is of order e', for large I, in
model A', and the recursion relation for 1/I'„, is
the same in that case as for model A, y, = 0, to
first order in E. In fact the two models are iden-
tical in their critical behavior to all orders in &.
Indeed, since 1/I', is irrelevant, we may set I/ros
= 0 to begin with, In this case the interaction be-
tween order-parameter fluctuations via the energy
field is instantaneous in time, and the order-pa-
rameter response functions in model A' are then
exactly the same as for model A. Furthermore,
when 1/I', = 0, we have for the energy response in
case A', the exact relation

(2.6)

We note that z is equal to 4+0(e) when g is con-
served, and z = 2+ 0(e}when P is not conserved,
while as=2+0(e). Since the exponent of 5 in
Eq. (2.5) is & 2 in all cases, the coefficient 1/r,
is strongly irrelevant in all cases. If y, 40, and
the specific-heat exponent e is positive, then yf
approaches a finite fixed-point value of order &.

[We choose C, to be O(1).] We see that for any
finite value of I/rs, including 1/rs = 0, we have
for large l,

The crossover between the two behaviors occurs
for k/t& of order v/A,

A. General formulation

In order to discuss the renormalization group
properly, we shall first define a diagrammatic for-
malism. This formalism must be capable of de-
scribing equations of motion more complicated
than the simple Markoffian forms (I2.11), (I2.25),
and (I2.26), since these will arise in the interme-
diate stages of the renormalization group beyond
first order in &. We have chosen to use a formal-
ism similar to that employed by Tucker and Hal-
perin, ' although a number of other methods may
be used equally well —e.g. , the formalism of Mar-
tin, Siggia, and Rose, ' which was used to study
planar models, ' or a number of other methods, "'

We shall begin by treating the single-field case
appropriate to model A. The general equation of
motion to be considered will be described by a
"bare" propagator G, and a set of vertices U,'",
Uq, U', ",.... The propagator G, is represented
diagrammatically by a directed line, carrying a
wave vector k, a spin index o. , and a frequency ~,
and is assigned the value

G, = [(-iv)/r, )+r, +k'] '. (3.1)

Note that G, is the frequency Fourier transform of
a retarded function G, (k, f), and the direction of the

III. DIAGRAMMATIC FORMALISM AND RENORMALIZATION

GROUP TO ALL ORDERS IN 6
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B. Bare perturbation expansion

For the simple Markoffian starting equations of
motion (I2.11), the only nonzero vertices are the
"noise vertex"

U(2) I -1
++ p

and the interaction vertices

(3.3)

(3.4)

(These vertices are all independent of frequency
and wave vector. ) Furthermore the bare propagator
is given by (3.1) with the values r, and I', equal to
the corresponding constants in the equations of
motion.

The frequency-dependent susceptibility y„(k, (d)

is given formally by the sum of all topologically
distinct connected diagrams that can be formed
with one incoming external line and one outgoing
external line. All intermediate propagators are to
be integrated with weight d'k' d(0'/(2w) ", and

summed over spin index, with frequencies running

from -~ to ~, and wave vectors running from 0 to
A. The correlation function C„(k, (d} is similarly
given by the sum of all connected diagrams with

two outgoing lines, carrying k, ~ and -k, -(d, re-
spectively. We may define a self-energy Z(k, co}

in the usual way as minus the sum of all irreduc-
ible contributions to X~, without the external legs,
and we may write

G(k, (d) '=y„(k, (d) '=G, (k, &u) '+Z(k, ur). (3.5)

Similarly, we may identify a complete (dressed)
four-point interaction U,'4', in terms of the sum

arrow represents forward propagation in time.
The vertex of degree m, U,' ', is represented di-

agrammatically by a dotted line with an even num-
ber m of distinct positions for attaching propaga-
tors, each of which may originate at the vertex
(propagating forward in time from the given ver-
tex), or may end at the vertex (having originated
at some earlier time). The value of each vertex
must be represented by a set of functions

(m) — (m)...,..., (k„„k„...,k, (o )

XQ 5 ~ ~ ~ 5
1 2 3 4 fft 1 m

x (kx) k Z x&k,) (kx)k(Z x&kk) . (3.2)
f~l 5=1

Here k, and (d, are the wave vector and frequency
of the propagator attached to the ith site, and the
index o,. is equal to +1, according to whether the
attached propagator originates (o, =+ 1) or ends

(o,. = -1) at the vertex. Note that the 5 functions
in (3.2) assure conservation of wave vector and

frequency at the vertex.

of a11 connected diagrams with three incoming and

one outgoing external lines, divided by the values
of the external propagator s.

In drawing diagrams in terms of the bare ver-
tices, we shall make use of a number of simpli-
fying conventions. In accord with traditional us-
age, we shall draw the interaction vertex U'" as
a single point, rather than a dotted line with four
distinct sites. Also we shall not indicate the di-
rection of the propagators. This leads toavast re-
duction in the number of diagrams to be drawn, at
the price of introducing combinatorial factors
whose verification will be left to the reader. As a,

further simplification we sha, ll not indicate the lo-
cations of the noise vertices U,',". It should be
noted that at most one noise vertex can occur on

any propagating line, between two interaction ver-
tices. Furthermore, the insertion of a noise ver-
tex converts the value of a line from the bare pro-
pagator G,(k, (d) to the bare "correlation function"

C (k, (k)) = 2G (k, (d)I' 'G (-k, -(d)

= 2(d 'ImG, (k, (o). (3.8)

Thus the values of diagrams quoted in the text re-
present the sum over all possible ways noise ver-
tices may be inserted in the lines. It can be shown
that the eva. luation of diagrams may be accom-
plished by using the rules of finite-temperature
perturbation theory in quantum statistics (the Mat-
subara formulation), and letting 5- 0 at the end of
the calculation. "

C. Renormalized perturbation expansion

At the lth stage of the renormalization proce-
dure, we define the constants r„ I'„and u, as

r, = lim {G,'(k, (d) + Z(k, (d)), ,

—= lim —{[G,'(k, (k))+ Z(k, (d)]], ,
1= iB

I
g

& o8('d

iim {V(4' ), ,al ltd ( a k.~p

(3.7)

(3.8}

(3.9)

lim, {G,'+ Z j, = 1. (3.10)

In general we define vertices U', ' from the dia-
grammatic expansions of the dressed m-point in-
teraction according to

where the symbol { ), indicates that all intermedi-
ate wave vectors in the diagrams are to be inte-
grated from A/b' to A, and that the external fre-
quencies and wave vectors, as well as the overall
magnitude of G„Z, and U' ' must then be rescaled
according to the operation (Rk)' [see Eqs. (I4.3a)
and (14.3b)]. The rescaling parameter a is chosen
such that
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U~(m~) (U(aj ) 4 5 (3 11)
~ U(2) ~ U(21 {G-x~ g] G-i (3.12)

(3.13)
It may be shown that if just one of the indices 0, is
positive, and if all frequencies are set equal to
zero, then the value of U,'.,'„„,(k, &u, ) is just equal
to the usual static (renormalized) vertex U', '(k, ).

D. Renormalization group to all orders in e

The justification for our renormalization-group
analyses, to arbitrary order in &, in the limit
& -0, closely follows the lines of reasoning given
by Wilson and Kogut' and by Wilson' for the static
case. We shall not retrace all of their steps, but
shall indicate the principal modifications neces-
sary for the dynamic case.

The first step is to show that the self-energies
and vertices generated by the renormalization
group are regular functions of the wave-vectors
and frequencies, in the limit k, -0 and (d, - 0. It
is clear that the integrals arising from any dia-
gram in our perturbation theory have integrands
which remain finite and regular for any frequency
on the real axis as long as all intermediate mo-
menta are restricted to a shell, with b 'A &p & A.
Furthermore the integrals over intermediate fre-
quency variables can be carried out from -~ to
+ , without any difficulties, because the inte-
grands fall off sufficiently rapidly at infinity and
contain no poles or singularities closer to the real
axis than I',A'b '.

The integrations over intermediate wave vectors
can lead to no divergences, because the regions of
integration are finite. Unfortunately, however, the
use of sharp cutoffs in k space does lead to non-
analyticities of a weaker sort, e.g. , a term in the
self-energy proportional to

~
k~, because the vol-

umes of integration in various diagrams are non-
analytic functions of the incoming momenta. '
These spurious singular terms lead to no funda-
mental change in the renormalization group be-
cause the singularities introduced at any stage l
are canceled by singularities of the opposite sign
in the next stage of the integration. Alternatively,
one may employ a renormalization group with
"soft" cutoffs, and avoid these difficulties. "We
emphasize that these problems of sharp cutoffs are
also a feature of the static renormalization group,
and are not consequences of the extension to dy-
namics.

Our next task is to examine the effects of the re-
scaling operations R;, [Eq. (I4.3)] on the dynamic
vertices U~(™.If the vertex in question approaches
a constant when all wave vectors and frequencies
approach zero, then

lim R'(U'~'. .. )=b ' " '" lim U'~'. ..
kf tdf~ b leal am

&» kd 0 l, fyy "fym

(3.14)

where q is the total number of plus signs in the set
(&r, o"] A. ny diagram for a vertex must have at
least one external line propagating forward in
time, sn that 1 «q ~ m. Near d = 4, we have z = 2
and a = 1. Thus the multiplicative factor on the right-
handsideof(3. 14)isSb ', ifm~6, orifm=4and
q ~ 2. The multiplicative factor is of order b, for the
case m=4, q=1. However, if we assume that U', "
is a regular function of its wave vectors and fre-
quencies, the difference U,",' -u, is at least of
order ~ or k', and hence decreases as b ', under
the operation R~. We may also see that U", ,' is at
least of order k', ~k', or co', and similarly de-
creases as b '.

The noise vertex U,'" is rescaled under R~ by a
factor =b'. As a manifestation of the fluctuation
dissipation theorem, however, it may be shown
that

(3.15)

The second term on the right-hand side of (3.15)
will be proportional to k' or (d, and will decrease
as b'.

We therefore see that the only parameters of the
renormalized perturbation theory which do not de-
crease as b ' or faster, under the action of R~,
are r„ I'„and u, . It is just these parameters
which must be kept in the recursion relations to
lowest order in z. As is discussed by Wilson and
Kogut' for the static case, all other parameters,
specifying the higher-order vertices, represent
"fast transients" which, for large l, rapidly ap-
proach quasistationary values, determined by the
values of the slow parameters r„ I'„and u, .
Therefore, the remaining variables may be elim-
inated from the recursion relations for the slow
variables, and a closed set of recursion relations
may be written for the variables r„ I'„and uf.
Furthermore, the quasistationary values of the
eliminated variables are small (generally of order
e' or higher) and it may be shown that they do not
affect the recursion relations for the slow vari-
ables, to lowest order in &.

In our actual calculations" of various critical
exponents and ratios, beyond the lowest order in

e [cf. Sec. VI], we do not directly use the recur-
sion relations. Rather we employ a trick, which
is a generalization to dynamics of Wilson's Feyn-
man-graph technique. " Critical ratios and expo-
nents can be read directly from the coefficients of
the various powers of z and of the logarithms in a
Feynman-graph expansion of X„(k, u&) ', provided
that the initial equations are chosen in such a way
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as to eliminate all slow transients. From the re-
normalization-group analysis we know precisely
how many slow transients must be eliminated. In
the case of model A, the constant 1", determines
the overall frequency scale, while r, must be ad-
justed so that one approaches the fixed point. The
only slow transient corresponds to u„and this
may be eliminated by proper choice of the bare
static coupling constant u, . The correct value of
u, may be found in various ways. To lowest order
in & it is determined by the recursion relations.
To higher order, it is most conveniently deter-
mined from the conditions that the expansions for
the four-point vertex and static susceptibilities
exponentiate properly. "

E. Formalism for case C

D '(k, n)) = i&a/X-sk'+ C ' (3.16)

Vertices now have m order-parameter lines and n
energy lines, with m even, and carry a weight

x(2 )45 ggk) (2 )))(g, ,), (3.)7)
f~l j=l

The variables entering the recursion relations
may be identified as

r, = lim (G,'(k, &u)+ Z(k, co)), ,

I '= lim —(Q '+F,j, = lim (U&"'))
td&k 0 8(d au ~ k 0

u, = lim (U,'4'"J, ,
Ql ~ s g~0

(3.18)

(3.19)

(3.20)

(3.21)

A number of modifications in the above formal-
ism are necessary in a two-field model. We shall
illustrate this by discussing case C. In addition to
the order-parameter propagator G„defined by
(3.1), we must define a propagator for the energy
field

rather than r„since it is then not necessary to
keep track of r™,and 5P, separately. In order to do
this consistently (i.e., in order to make UI.",o)

small) we shall redefine the operation ( ), to in-
clude integration over the zero-wave-vector en-
ergy propagator, as soon as the w'ave vectors of
the propagators in the attached loops have been in-
tegrated out (see Fig. 1). With this convention,
the vertex (U,'""), is equal to zero, for all I.

The next step in the development of the renor-
malization group for case C is to demonstrate that
the vertices and self-energies generated at any
finite E are regular functions of wave vector and

frequency. The argument may be carried out just
as for model A, provided that I', , and X, , are
both finite.

Finally, we must examine the effect of Rb on the
vertices. It can be shown that

lim it'(U'e'"')
k td -0i'

kd~a no& (e 1)s Iim [U(m~))))
lta

k]s 4l )~0
(3.26)

where q is the number of positive values in the set
o, . Since a=1, az=2, and z =2, for d=4, the only
parameters for which the factor in (3.26) is not of
order b ' or smaller, are the parameters already
considered in (3.18)-(3.25). Note that since
(II(k, n))j, is regular as )d, k- 0, there will be no re-
normalization of the transport coefficient A,„ex-
cept for the simple rescaling induced by R'b. We

may also note that the renormalized vertices and

propagators at stage I remain regular functions of
k and &o/F„ if &so is set equal to ~. In fact the in-
teraction between order-parameter fluctuations
mediated by the energy propagator becomes an
instantaneous interaction in this limit; it is clear
that the dynamic critical exponents and scaling
functions for the order parameter will then be the
same as in model A.

On the other hand, in the limit A., - 0, the ver-
tices and propagators develop singularities, which
invalidate the above derivation of the renormaliza-

6P (U(0, ) )) (3.22}

C, '= lim lim(Dc'+ Ii), ,
k 0 au 0

X,'= lim ik' —(D,'+ll),
k&co 0

= lim k (U, ~ ))l

(3.23)

(3.24)
P

rr 27' Ci ~pr (3.25)

[The function II in the last two equations is the
self-energy for D defined in (13.26}.] We shall de-
fine the propagator G, in terms of tbe parameter

FIG. 1. Example of a term to be included in the partial
self-energy (Z) &

when the intermediate wave vector P
is greater than hfdf~ even though the wave vector p' of the
energy mode is identically zero.
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As we have argued above, the renormalization-
group equations for F, must reduce to those of
model A as p., —. Furthermore, all diagrams
for the renormalization-group equations are regu-
lar functions of p, , in this limit. Thus we may
write

f,(p)- f,'"'p, ', as ii-~, for

alii�.

(4.3)

FIG. 2. Contribution to the renormalization of UI2 2i,

which has a singular dependence on the transmitted fre-
quency if A, , =0.

tion group. In particular, consider the contribu-
tion of the diagram in Fig. 2 to the renormalization
of U,",;" . Let us suppose that all external wave
vectors are equal to zero, and that the wave vec-
tor p transmitted by the internal propagators is of
order A/b. If the times associated with the ver-
tices are such that ty t2 t3 t4 but t, is much
later than t„ then the value of the diagram will de-
cay as exp[-2X(p2(t, —t,)/C, ]. This leads to struc-
ture in U", .,' when the transmitted frequency is of
order Xs2A2/C, , which must be considered a singu-
larity at zero frequency, if ti, = X, /C, I', = 0.

b2+00 2 f(i2 y2C )
1+i 1

f(ii„y2C, ) = 1+y,'C,f,(i2&)+ y fC,'f,(u, )+ . ~ ~ ~

(4.1)

(4.2)

Here we have assumed that p, and r, have taken on
their fixed-point values, and that all "fast tran-
sients" have died out. The quantity 2+ cg is by
definition the value of z for model A, at the given
n and d.

IV. RENORMALIZATIONNROUP ANALYSIS FOR

CASE& REGIONS IN THE n-d PLANE

The key equations controlling the dynamic criti-
cal behavior of model C in the approximate recur-
sion formulas of Sec. IV of I were the recursion
relations for I'„, and X2z„[Eqs. (I4.21) and (I4.25)].
The equation for X„, contained only a trivial re-
scaling due to the operation R'„because the self-
energy corrections to D '(k, &o) given by diagrams
2(c) of I do not give a singular contribution behav-
ing like i&a/k2, as &o-0 and k-0, when the inter-
mediate wave vectors are restricted to a shell
A/b&p&A. In fact, as mentioned above, this is
true of any diagram contributing to the self-ener-
gy, no matter how complicated. Equation (I4.25)
should therefore be correct to all orders of &.

Equation (I4.21) for I',,', will be modified when

terms of order a' and higher are taken into ac-
count. According to our renormalization-group
analysis, the equation for I'„', may be written for
large l, in the form

In contrast to this, we have seen in Sec. III E,
and shall verify explicitly in Sec. VI, that f(p, )
is singular as p. O'. Nevertheless, the lowest-
order recursion relations are regular as p. -0',
so that

f,(ti) f,"-'+f ',"t + (4,4)

y 22C cf t0)
Cg ——+ 1 (0

v lnb
(4.6)

which occurs when 2(n(4 and z 0. It is then
clear that if y*'C* were sufficiently small, and if
f,(p)+ y22C ~f (y, )+ 2", were finite and bounded for
alt p, , then the only stable fixed point of (4.5)
would be at p.*=0, and we would have

2+ cq& z & 2+ n/v, (4.7a)

Now, f, is a monotonic decreasing function of p,

at least for small z, with f,"'&0, f',"&0, f~ &0.
If we assume that y, and C, have reached their
fixed-point values, the equation for p. j y becomes

u...= b'" '"tt, [I+ y "C*f,(ti, )

"C*'f (ii )+ "'] ~ (4.5)

Note that y~C* is of order a/v, which we shall as-
sume to be positive.

Next we note that if Eq. (4.5) has a stable fixed
point at a finite positive value of p, *, for &-0,
and if f, , f„etc., are regular functions of i2 near
this value, then the higher-order corrections will
at most perturb the fixed-point value of p. , by an
amount of order &, since y*'C* is of order z or
smaller. Comparing (4.5) and (4.2), we see
that if p, , approaches a finite nonzero value as
I- ~, toe must have z = 2+ n/v to all orders in z.
This, of course, is the situation in region II.

From (4.2), (4.5) we see that there always exists
a fixed point with p, *=~, finite 1"*, and z =2+cd.
It is also clear that if y*'C*f,'"'+y*'C~f,'"'+"
is positive, as will certainly be the case for y*'C*
small and a not too large, then the fixed point at
ti*= ~ will be stable if and only if cii& a/v. This
then is the condition for the existence of region I.
The above analysis is valid. to all orders in &, and
establishes the behavior in regions I and II, as
well as the criterion for the boundary between the
two regions.

The situation in region III (p, - 0) is more prob-
lematical. Consider the case when
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z = 2+ cq+ lnf(0)/lnb . (4.7b)

V. RELAXATION OF THE ENERGY

A. Case C

For sufficiently small values of ~, the energy
response function Xz(k, &u) may be written in the
approximate form

'(k &)= b(''&' — b"+C' bXE y &Ek2 (5.1)

where b' is the minimum of A/k or A/z. The co-
efficient 1/I'f is of order &, and is defined as

The inequalities in (4.7a) are just the defining
relation for region III, and would imply that the
recursion relations are indeed correct to order g,
for 2&n&4. However, our previous discussion
has shown that the recursion relations (4.2) and
(4.5) are not expected to be correct, even to low-
est order in g, when p, =0. Furthermore, our ex-
plicit calculations of Z(k, e) in Sec. VI indicate
that f,(p, ) diverges as ~In'~, when g 0', for
e -0. If we neglect the contributions to (4.5) of

f, and higher terms we see that the "fixed point"
p, *=0' is never stable, and that there is always a
fixed point at finite positive p, *, with z= 2+ a/v,
provided that a/v&cq [see Eq. (4.5)]. In the re-
gion 2&n&4, however, the fixed-point value p, *
would be very small, with ~In'~ of order s '.
This reasoning would predict that region III does
not exist, and that the phase diagram is that given
by Fig. 4(b) of I.

In fact, the situation is not entirely clear. It
seems likely that f, contains terms that behave
like ~In', ~', as p-O, and it is not known whether
the sum of all the terms in (4.2) will be convergent
or divergent as p. - 0. To put the problem in a
slightly different language, it is not clear that a
well-behaved recursion relation can be written for
the single slow variable p.„when p. , is extremely
small. It may be necessary to introduce one or
more additional parameters, in order to develop
a renormalization-group analysis which will cor-
rectly describe the situation &-0, 2&n&4. Thus,
for the moment at least, we must leave open the
possibility of the different phase diagrams indicat-
ed in Figs. 4 and 5 of I.

The second term on the right-hand side of (5.3) is
negligible compared to the first if k«x, and is
small but finite (order e) relative to the first
term, if k& a. It follows that

u&z(k) ~ z ~"k' for k ~ z,
(x:k" " for k& I(. . (5.4)

=k '" for k& rc,

whereas for a/v& -cq, we find

uP'"(k)=tc' ' "k' for k-O, fixed z

=k"' ' " for k& z.

(5.5)

(5.8)

The existence of this last region was overlooked
in I, and hence the description of energy relaxa-
tion in region II was incomplete.

In region III, if it exists, we expect that rela-
tions (5.4) should apply.

B. Cases A and B

The energy relaxation in cases A and B may be
most easily discussed by using the equivalent two-
field models A' and B'. Equations (5.1)-(5.3) are
still applicable in these cases, if we set 1/Xf = 0.
The exponent z is chosen so that r, remains finite
in case A', or so that X, remains finite in case B'.
As in case C, we have

In region I, where z = 2+ cq & 2+ o/v, the situa-
tion is somewhat more complicated. We must dis-
tinguish between the cases where e& 0 and at &0.
In the former case, I/I'f approaches a finite val-
ue, of order e relative to 1/1"*, while 1/Xz, -0 as
b "~ "'. In the limit k-O, with fixed I(. , we see
that the first term on the right-hand side of (5.3)
is dominant, and urz(k) ~ a' ~"k'. On the other hand,
if k& z, the second term in (5.3) is dominant, for
sufficiently large I, and we have ~z(k) ~ k~~.

When @&0, the coupling constant y', C, approaches
zero for large I, as b '~". Consequently 1/I', ap-
proaches zero as b '+, while I/&, - 0 as b '"'. lf

~

a
~

/v ~ cq, then the first term in (5.3) is domi-
nant for all values of k/z. If

~

n
~

/v( cq, then the
first term dominates for k-O, but the second
term dominates for k & I(.'. Using the definition
(I3.13}we find that for cq & a/v & -cd,

~"z(k)=z'~' "k' for k-0, fixed K

= lim —(II(k, v)), .1 . ie
(5.2) 1/I', -const if o. &0,

1/I' ~b'+" if a&0 (5.7)
Thus

2l t(c-2- A)77 v)
XE -

XEk2+~r b b
~*0

(5.3)

For model C, in region II, we have z =2+ a/v,
while both X, and rE remain finite for large l.

We thus find, for cases A and B,

&d~ ~(k) - const x z ' for k —z

-constxk for k& K. (5.8}

The constants on the right-hand side of (5.8) are of
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order &, relative to the corresponding constants
in m&.

C. Case D

As was discussed in Sec. II, the energy relaxa-
tion in case D is the same as for case B, given by
(5.8), provided that k/z & a. In the limit k/a'«z,
however, &us(k) is equivalent to the first lines of
Eqs. (5.4), (5.5), or (5.6). These results follow
from Eqs. (5.3) and (5.8), if we note that for case
D,

I/ys (I/ys)b l(e 2tallv)

with @=4—g.

(5 8)

VI. FEYNMANWRAPH EXPANSION FOR CASE C TO

ORDER e2

A. General formalism

In this section we shall carry out the renormal-
ization-group calculations for case C, using a gen-
eralization of Wilson's Feynman-graph expansion. "
This method consists in matching the bare pertur-
bation theory for the response functions )(„(k,&u)

and Xs(k, &o) to the expected critical behavior. As
is well known, the series will only exponentiate if
certain parameters in the starting equations are
fixed at particular values" which depend on E.
These parameters correspond to the slow transients
of the recursion-relation analysis, namely, u„
y',C„and p,, [Eq. (I4.28)].

The general diagrammatic formalism for carry-
ing out the renormalization-group analysis was de-
scribed in Sec. III. For the present purposes we
need only the bare perturbation theory mentioned
there. In order to carry out calculations most
conveniently, however, we shall redefine the bare
propagators as

u, = 8v'e/4(n+ 8)+ O(e') . (6 4)

Note also that when Xos- ~ (or y,, -~), Do goes to
zero, and the present model reduces to case A.

B. Vertex yp(e)

The vertex y, (e) is determined by calculating
the static energy correlation function at k= 0, and
identifying its c expansion with that of the specific
heat

Xs(k = 0) = C -r (6 5)

where r —= X„'(k= 0, &a=0). The calculation is quite
analogous to Wilson's determination" of u, (e),
Eq. (6.4). The specific heat is obtained by calcu-
lating the static self-energy II(k = 0, &u = 0) to sec-
ond order in &. The relevant diagrams are shown
in Fig. 3, and lead to the following contributions
at k=v)=0.

II, = -2nyPIo(0, r), (6.6)

II, = 2nyg8u, + —,'n(8u, + 4y', C,)][II,(0, r)]', (6.7a)

II =Ilq=0,

where

(6.7b)

11,(k, r) =
d'P 1 1

(2vt' r+P' I+p'

1 1
1+

When computing a contribution to the self-energy
II such as II, in Fig. 3, however, we must add back
a term &ypCp to the vertex, so as not to include the
reducible part of the energy propagator. We shall
eventually choose u, to have the usual Ginzburg-
Landau-Wilson value""

k

p pk —$(d
(6.2)

and use the bare three- and four-point vertices y,
and up The coefficient p, p is equal to

po= p/ pCo (6.3)

The subtraction in Eq. (6.1) provides a smooth ul-
traviolet cutoff, so that wave vectors may be inte-
grated from 0 to ~. (This contrasts with the sharp
cutoff A employed earlier. ) The use of the propa-
gator D,' which vanishes at or= 0, in place of Dp,
means that the four-point vertex should include the
static value of the energy-mediated interaction.
The four-point vertex is therefore given the value
u, =u, —2y,'C„ instead of u, . [See Eq, (12.20).]

FIG. 3. First- and second-order diagrams for the
self-energy II of the energy field.
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and

11 (O, r)=-K~(1+ ~lnr)(1 ——,"einr)+O(e'}, (6.9}

K, = 2'~v~ "/r(d/2) (6.10)

is the volume element in d-dimensional space (K,
was denoted B in I). Adding up the contributions
from Eqs. (6.6) and (6.7) we find

C,C ' = C,D '(k = 0 (v = 0)

= 1+ 2vyg(1+ —,
' lnr)

x [I —~ e lnr + [2v,n+ 4K,uo(n+ 2)](1+—,
' Inr)]

with

+ O(e'}, (6.11)

V =-K~ypC, .
Comparing E(I. (6,11) with the expansions'

C,C '= 1+ (a/y) lnr+ ,(n/y)' -In'r+ O(e'),

where 5 = max(o, , 0), and

—= —+O(e )
Ck Q 3

2v

4 —n, (n+ 2)(13n+ 44)
2 n+ 8 2(n+ 8)'

(6.12)

(6.13)

(6.14)

we find from the exponential condition

v,(e) =- K,y', (e)C, = (c(/2nv)(1 - -, e)+ O(e'), (6.15)

for n) 0, and

v, (&)= 0,
for a(0.

(6.16)

FIG. 4. First- and second-order diagrams for the
self-energy ~ of the order parameter.

C. Determination of the dynamic exponent z for po ) 0

In order to determine the dynamic exponents
from the Feynman-graph expansion, it is neces-
sary to calculate the self-energies Z(k, (d) and

II(k, (v} in perturbation theory. This may be done
either by using the general rules of Sec. III, or,
in the present case of a "bare" perturbation the-
ory, by a number of more compact techniques
(see, e.g. , the rules given in Refs. 5 or 6).

We shall determine the exponent z =-z~ and the
parameter p,„by requiring the exponentiation of
G(k, (d) at k= 0 and T= T,. The condition T= T, is
equivalent to x = 0, and is imposed by making the
usual "mass renormalization. '"' The self-energy
Z(k, (v) [Eq. (I3.25)] may be obtained to second or-
der in & by calculating the contributions from the
diagramsinFig. 4. For k=0, ~=0, with ur small
but finite, we find"

Z, = 2i(()vo ' ——ln(1+ p ) — 0 [—, In~(-i(()) —In(-i(()) In(1+ l(0)],
ln(-i9,' Z (7PVpE y 2
1 + Pp pp 1 + pp

(-'9) ) (-(9) ) 4 ) g, (( —g, )ln()+ g, ) (2 ~ V,)) (2 ~ V.))' 2(1+ u.)' (I+ I(.}2 u. 1+ I . v.(I+ vo} &0(I+ &0}

4i(()va Inp, — + 3 In~ ——(1+ p, ) ln(1+ p, )+—(2+ i(,,) ln(2+ p, )
2 ln(-i(d) ln4, 2 1

Pp Pp

Z (OV
Z~= +~ {zInm(-i(()) —In(-i(d)[31n~+ go+ In(1+ Vo)]],(1+I.)' '

(6.17)

(6.18)

(6.19)

(6.20)
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Z, = 8i~K,uovo (-,
' ln'( i-&o) —ln(-i9) [3 ln —,'+ ln(1+ po)]],1+ JLLO

Zi = -8iGK,u'o(n+ 2}3ln —,
' In(-im),

with

Putting together Eqs. (6.17)-(6.22), we may express G(k= 0, &u) via Eq. (I3.25) in the form

G '(k = 0, &o, r = 0) = const && (-i2)[1+a, In( iv-)+ a, ln'(-i oo)+ O(e')],

with

(6.21}

(6.22)

(6.23}

(6.24}

(6,25)

a, = [1+ze ln(1+ p, o)]1+ p,+, ln(1+ po)+ Inpo+ln(2+ po)]+ 2
— o ln(1+ p, )+(1+zn)31no+znpo

4vo' 1+ po 2+ po 2po'+5@, +1 1 3 I
1+ po po 1+ po u.(I+ ~.

[31n~+ in(1+ po)]+ 8EPuo(n+ 2)31n~,1+ po

a, = ~oe+ ., [I -on(1+ po)] —4K uo4(2+n)1+ p, o (1+ P,o)'
(6.26)

The above expressions may be related to the dy-
namic exponent z by observing that according to
the general scaling forms (I3.14)-(I3.17), applied
to G (k, ~) = X„(k,&u), we have

G(k-0, (u, r=0)-k ""(-i(o/k') '" '. (6.27)

(6.28)
and

In Eq. (6.27) we have used the value x& = -2+q
[see Eq. (I3.16)], and we define 1+P as the lead-
ing power of the scaling function [Eq. (I3.14)]
f„(u)-u '" ' as u- ~. In order that the right-hand
side of (6.27) remain finite as k-0 for finite &o we

must have
z =z„= (2 —q)/(I+P)

G (k=0 &u, r=0) (-i~)"
- (-ir7r)[1 +P ln(-jg)

+ 'P' ln'(-i~)-+ O(P')] .
(6.29}

P= a, ,
1

Q2= gQ ~

(6.30)

(6.31)

The exponent z is then obtained from (6.28) as

Equation (6.29) agrees with the perturbation ex-
pansion (6.24)-(6.26) to order &' if and only if

z = 2+ ' [1+ze ln(1+ po)]+ 8K4uo2(n+ 2) (6ln&4 —1) + ~ o o [31n&-In(1+ po)]
4v, 16K~ttovo(u+ 2)

1+ p.o
0 4 0 Y 1+~

8 2+,[31nv4 —po —ln(1+ po)]+ o ., [1+ po —(2+ po) Intro+ 3(1+ po) Inv4
(1++ o 0 1+ poj

+ (3+ go) ln(1+ po) —(2+ po) ln(2+ po)] . (6.32)

D. Determination of regions in the n-d plane This equation has three possible solutions for p.„
Inserting the expressions (6.25) and (6.26) for

the constants a, and a„ into the exponentiation
condition (6.31) yields to lowest order in &

~(I)
0 0

2(2)

~(3) 0

(6.34a)

(6.34b)

(6.34c)
(4-n)' n "'2

u (u+8) (I+i )

(6.33)

corresponding to the three solutions found in I
from the recursion-relation analysis. The cor-
responding exponents are, from Eq. (6.32), to



R ENORMA LI ZAT ION-GROUP METHOD S FOR CRIT I CA L. . . 4129

lowest order,

z ' = 2+ (6 ln —', —1)—,= 2+ ctI,
(n+ 2) e'
2(n+ 8}'

z' =2+ o./v,
z' =2+ 25/nv,

(6.35a}

(6.35b)

(6.35c)

„(&)
Pp

z('i =2+ eq,

(6.36)

(6.37)

in accordance with the first-order results of Sec.
IV of I. In order to find the higher-order correc-
tions to Eqs. (6.35} from the Feynman-graph ex-
pansion, we would have to calculate third-order
diagrams for Z. We may, however, apply the
general results of the analysis of Secs. III and IV,
and see if these are consistent with the explicit
e expansion.

We shall first discuss regions I and II, for which
the renormalization group is well behaved. We
saw in Sec. IV that region I is characterized by
the exact conditions

(6.43)

where A~ and I are the dressed values of the
transport and kinetic coefficients, defined in Eqs.
(I3.7) and (I3.8), C = IIz(k= 0) is the dressed specific
heat, It&(k=0)=r ' is the order-parameter suscep-
tibility, and z is the inverse correlation range.

The kinetic coefficient l may be found to order
e from the diagram Z, of Fig. 4, whose contri-
bution we rewrite here in terms of the smooth
cutoff introduced in Eq. (6.1), as"

E.(k, ~) = -4r.'C.

p'+r+ p„(p —k)'
~ P*+r u, ,U —&)*) '

(6.44)

Applying the definition (I3.7) and evaluating (6.44)
to order e, we find

2v„ln(1 ~ g„))
p, ,( 1 + p, ,)

where 2+ cq is defined as the dynamic exponent in
the absence of energy conservation (case A).
Similarly, region II has

2vpx 1+ ' Inr +O(z').
1+ pp

(6.45)

0&~(2) &~

z' =2+5/v,

(6.38)

(6.39)

In region II, p. p is given to first order in e by Eq.
(6.34b) and v, by (6.15), so Eq. (6.45) becomes

gI,2 = 1+ z( —", ln2 —~ ln3 ——",, ) . (6.40)

Note also that for p, ,—~, Eq. (6.32) reduces to
z=2+eg, as in case A.

The boundary between regions I and II, which
goes through the point e = O„n = 4, is seen to cor-
respond to the relation z ' =z ", i.e. , ft/v= cq.
Inserting the e expansions (6.14), (6.35a), and g=
z z'(n+ 2)/(n+ 8)'+ O(e'), "we find that this is
satisfied along the curve n=n„(z) given by

to all orders in e. In fact the value of p, ,' can be
found to the next order in region II, by imposing
the scaling condition (6.39). Inserting the expres-
sion for z in terms of p„Eqs. (6.32), into Eq.
(6.39) and using (6.16), we find for n = 1

r=r, 1+ ln — r" '" +O(e}. (6.46)22 —nv n

The renormalization of C is found from Eqs.
(6.6) and (6.8),

C = C,(1 —2nv, ) (1 —nv, Inr ) + O(e')

= C,(1 —n/v)r (6.47)

In addition, the inverse correlation range is given
by" z'=r+O(e'). Finally, according to the dis-
cussion of Sec. III above, the transport coefficient
X~ is unrenormalized, i.e. ,

(6.48}

Putting together Eqs. (6.43) and (6.46)-(6.48}we
find

n»—- 4 —4e(1+ c/16)+ O(e'),

with"

c=61n-', —I+O(z).

(6.41)

(6.42)

1+ 2v, n — ' + O(e') . (6.49)
ln(l+ p, ,}
&0 I+ &o

For n= 1 we may use (6.40) and the value v, = e/6,
to find

For comparison we note that n = 0 along the curve
n = 4 —4@ + O(e').

p = 1+ z(9 ln2 ——", ln3 —-'„' ) = I+ 0.5004e . (6.50)

E. Amplitude ratio in region II

A physical result which may be obtained in
region II is the value of the universal amplitude
ratio

F. Limit pp ~0 and region III

The third solution of the exponentiation condition
(6.33) given in (6.34c) corresponds to the fixed-
point value p. *=O discussed in I and in Sec. IV.
Although the first-order recursion relations do not
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show any singularity in this limit, the second-
order expression for a, in Eq. (6.25) contains terms
of order e'lnp. „which indicate a breakdown of
perturbation theory when p, - 0. Indeed, we may
repeat the second-order calculation for the case
where p, , is identically zero, and find that the con-
tributions from diagrams (b) and (c) of Fig. 4 de-
pend on the ratio (v/p, when u&- 0, p, - 0. In the
case p, ,=0, ru finite, we find

Z, (k=0, (v, r =0, p, =0}

4i (-v v', [ln(-i (d) + ln'(-i (v)], (6.51)

Z, (k=0, (d, r=0, g, =0)

= 4i (vv', [3 ln -,
' ln(-i (v) zln-'( i(d-)], (6.52)

while the contributions from diagrams (a) and (d)-
(f) of Fig. 4 are continuous as I(,,- 0. We there-
fore have

6 '(k=0, (d, r=0, p, =0)

= const x ( i(())[-1+a', In(-i (())+ a2 ln'( i(()))-,

(6.s3}
with

a', = —2 v, + v,' {z —8 (n+ 2) ln ~)

n»=4-4e(1+-,' c)+O(z'). (6.57)

Thus we claim with some confidence that scaling
applies with z=2+ a/v, for n&n» and n»&n&u»
It seems likely that z= 2+ a/v also for n»&n&n»,
i.e. , that region III does not exist, but further
analysis of this case is required, as mentioned in
Sec. IV.

G. Energy-response function D(k, u)

The energy-response function is obtained by cal-
culating the self-energy II(k, (d), defined in (13.26).
At finite (d, the second-order diagrams for II (k, (d)

are the ones already considered in the static cal-
culation. The generalization of Eq. (6.8) to finite
(v is the analog of Eq. (I3.28), with the smooth
cutoff, and r, replaced by r, i.e. ,

d "P |
rl (a~a)=

( ), , —, )
1"((- )*" ((- )* )

(
P'+ r + (P —k) + r

—.-,„,(, .).,)
(6.58)

In the limit 0 & (v/p, k'« I, r = 0, we have

II,{k,(d, r=0) = —K~ lnk —(i (d/k')K, ln —,
' (1 —z Ink)

-6K,u,v, (u+ 2) ln & —24(s+ 2) K,'u', ln r, (6.54) + O(e'), (6.59)

a,'= 8 vow —~3vo(n —2) —(u+ 2)K,uov, . (6.ss)

It is easy to check that the coefficients a', and a',

do not satisfy the exponentiation condition (6.31)
when u, and v, are given by (6.4) and (6.15).
This failure is another indication that there is no
well-behaved solution with p, ,= 0, and the vertices
Qp and v, fized at their static value s. The non-
uniformity of the p, p 0 limit was also noted by
Brbzin and De Dominicis. "

On the basis of our second-order calculation,
and of the renormalization-group analysis out-
lined in Sec. IV, we feel that we can have confi-
dence in our calculations of exponents and critical
ratios provided that iln pi» I/z. Using this cri-
terion we can calculate "conservative" boundaries
for region II, for e-0, and n-2 or n-4, namely,

u» = 2+ ~ e i ln e
i

+ O(e ), (6.56)

from which II, and II, can be obtained via Eqs.
(6.6) and (6.7a). The contribution from Fig. 3(c)
yields, after a lengthy calculation,

+ O(z'), (6.61)

b, =(5/v)[1 —2n, '(1+ y, ,) ']+O(z'), (6.62)

where we have used Eq. (6.16) for v,.
If extended scaling" holds, we expect that at T, ,

for k fixed and (d - 0, D(k, (v) will have the form
(I3.14),

II, (k, (v, r = 0) = 8v', n(1+ V,,) "ln —', ( i(v/k '-) ink .
(6.60)

In addition, we may show that Iiz (k, (()) does not
possess any term of the form (i (d/k') ink to order

Collecting the terms in II we find at r = 0,

11(k, (()) = II (k, 0) + (i (d/k') n V, ,v, ln —', (1+b, ink)

D (k, (())=k i"[fz(((()/k z}) ' -D '(k, 0)+ constxk@" +(' 4z'~"') (-i(v/p, k')"'
-D '(k, 0)+ constx(1+ [a/v+ (2 —zz)(1+ q)] Ikn(]-i (d/P, k')[I+ qln( i(v/I). ,k')-],

(6.63)

where [fz(u)] '-1+ constxu'+' for u-0. We may
compare Eq. (6.63) with the perturbation expansion
(6.61), and conclude from the absence of a
In( i(d/g, k') ter-m in (6.61) that

q=0+ 0(z ),
whence

ft/v+ 2 —zz = b) .

(6.64)

(6.65)
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In region I, Po = P 0 -~ and we have from Eq.
0)

(6.62),

b = cR/v+ O(e ) ~

so that

z~" = 2 + O(e')

(6.66}

(6.6V}

This means that energy conservation does not in-
fluence z~ at T, , as already seen in Sec. V. In
region II, Eq. (6.34b), we have b~P = 0, and

z~ze = 2+ n/v+ O(e')

=z ' +O(e') (6.66)

in accordance with extended scal~ng (see Sec. VA).
In region III, if it exists, we have, at T, , p, p 0,
b„' =(a/v) (I —2n '), and

z"' = 2+2ft/nv=z"' .E (6.69)

VII. COMPARISON WITH OTHER WORK

The two-field models introduced in I have been
considered in two recent papers, "'"both of which
used the CaL&an-Symanzik formalism Murata"
has carried out calculations for models corres-
ponding A', B', C, and D of the present paper.
He obtains exponents to order c', which are in
agreement with ours. Murata also calculates a
ratio of relaxation rates at T= T, , for the order
parameter and the energy fields, in the various
cases. It is not possible to make a direct compar-
ison with our result (6.50), however, because our
calculation was performed for the limit b/z- 0
(T& T, ). (The ratios are expected to differ by an
amount of order z. )

With regard to the ambiguous region 2& n& 4,

for model C, Murata's calculation suggests that
z=2+a/v, with ~lnp~~l/e. This is in agree-
ment with the speculations at the end of Sec. IV
of the present paper. However, as in the present
paper, Murata has not been able to provide sup-
port for this conclusion by a detailed renormali-
zation-group analysis or by explicit calculations
to order e'.

Brdzin and De Dominicis" restrict their atten-
tion to model C. They calculate exponents to or-
der e' which are in agreement with ours for n& 2

and n& 4. Similarly their analysis of the boundary
between regions I and II, in the vicinity of n=4,
agrees with ours. With regard to the ambiguous
region where the lowest-order recursion relations
give p, *=0, however, these authors assume that a
breakdown of scaling occurs, and that region III
exists as in Figs. 4(a) or 5(a} of I. They propose
a form v& (b) ~ b* in'b in this region, where z is
given by z~' [Eq. (6.35c)] to lowest order in e,
but they warn that this may not persist in higher
order. Consistent with these assumptions, they
have calculated initial slopes of the boundaries
between regions II and III. These boundaries coin-
cide with n»(e) and n»(z), given in Egs. (6.56) and

(6.5'I) of the present paper.
Brdzin and De Dominicis also consider some of

the corrections to scaling, and in a related paper,
with Zinn- Justin, '~ they have calculated the expo-
nent z to order e', for case A.

It should be remarked that the second-order ex-
pressions for z in terms of the ratio p, ,(e) in the
present paper, R in Ref. 16, or A. in Ref. 14, can-
not be directly compared, since the quantities
p.„X, and R are defined differently and will pre-
sumably differ from each other in order e.
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