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High-temperature spin dynamics in the one-dimensional (1d) Heisenberg system (CH, )4NMnC1, (TMMC), is

investigated through EPR and proton spin relaxation-time measurements. When the magnetic field H is

parallel to the chain axis c the field dependence of both the relaxation rate T, ' and the relaxation rate in the

rotating frame T,p' fits well an expression of the form PH '"+ Q. The H '" term in this expression proves

that the spectral density f (ao) ~ (S,+ (t)S, (0)) behaves according to a 1d diffusive law f (eo) ~ (Dco)
where D represents the diffusion coefficient of the electronic two-spin correlation functions. When Hlc the

T
&

' and T,~' data show a quite difFerent behavior, being almost constant or decreasing slightly at low field.

Such a behavior is interpreted in terms of cutofF effects which limit the 1d diffusive behavior of the spectral

density f'(co) ~ ( S,*(t)S,(0)P. A cutofF frequency co,
' is defined as the frequency at which the co

'" divergence

in f'(eo) is truncated. The value, the field dependence, and the orientation dependence of co,
' show that the

cutofF mechanisms are originated from electronic intrachain dipolar and interchain Heisenberg interactions. A

theory is presented taking into account both intra- and interchain interactions. Self-consistent expressions are

given for evaluating the cutoff frequencies. When Hlc, '
the field dependence of the cutoff frequency fits the

diffusive law: (ao,'), = AH '"+ B. This is explained by considering that the cutofF mechanism is dominated by

the intrachain dipolar interactions X}.It is formally shown that the H '" dependence of (co,'), and the non-

Lorentzian shape of the EPR line have the same origin: They both express the diffusive behavior of the total

spin torque (TST) correlation function ~ (fS+,Q](t)[Q, S ] ). Quantitative determinations for the

diffusion coefficients of the two-spin and TST correlation functions yield D = (2.2 ~ 0.2)4JtS(S + 1)/3]'"
and DrsT ——(4.8 + 1.2)4JtS(S+ 1)/3]'". When Hll c the cutoff frequency is almost field independent. This

result agrees with a cutofF mechanism originated from interchain Heisenberg interactions. The interchain

coupling is evaluated to be J/k 1.3 X 10 ' K.

I. INTRODUCTION

Early theoretical studies of magnetic linear
chains were mainly motivated by the much greater
simplicity of calculation as compared with corres-
ponding three-dimensional systems. ' Exact calcu-
lations in one dimension (ld) are of particular im-
portance to obtain the general behavior of the mag-
netic systems and to learn about approximation
procedures to be used in higher dimensions. The
recent discovery of a large number of magnetic
systems which behave approximately like 1d sys-
tems has given the calculations in linear magnetic
chains a real and concrete interest since the pre-
dictions of the theory can now be compared directly
to experimental results. '

The study of spin dynamics is particularly chal-
lenging since no exact theoretical solution can
usually be obtained over the whole time interval
and for all wavelengths even for 1d models. In

the long-wavelength and long-time limit the tem-
poral evolution of the spin correlation function
can be described in the hydrodynamic approxima-

tion. The appropriateness of the hydrodynamic
description for the transport of spin excitation in

Heisenberg magnetic insulators was first pointed
out by Bloembergen' and van Hove. 4 The idea is
that for an exchange-coupled spin system obeying
a Heisenberg Hamiltonian, the total spin S =+,. S&

is a constant of motion. Therefore in the high-
temperature limit, where no short- or long-range
order is present, the microscopic spin fluctuations
are governed by a diffusion equation. This means
that the local two-spin correlation function

(S,(t)SP (0)), where S, is the n component of the
spin at lattice site i, should be described at long
times by the diffusion equation

DV'g(r, t) =—g(r, t),

where D is the spin-diffusion coefficient and g(r, t)
is the correlation function for two spins at a dis-
tance r from each other. This is equivalent to say
that at long times the contributions to the two-spin
correlation functions
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(S;. (t)S,". t(O)& P(S;(f)S (0)&e ~

come mainly from the long-wavelength (q =0}dif-
fusive terms

(S (~)S, '(0)&

The diffusive behavior of the spin correlation
function results in dramatic effects in lower-di-
mensional magnetic systems. In fact a diffusive
process gives a decrease of the spin correlation
function as t ', where d is the dimensionality of
the system. Therefore the Fourier transform of
the correlation function, which defines the spectral
density fP, (u&), diverges as e '~' in 1d and as -In~
in 2d systems. Before mentioning the experiments
which have proved the correctness of the hydrody-
namic description for the high-temperature spin
dynamics in a Heisenberg linear chain we would
like to mention some theoretical attempts to derive
the diffusive behavior from a microscopic formal-
ism. Exact numerical calculations for finite chains
(up to 11 spins for S= —,') extrapolated to N ~ were
performed by Carboni and Richards. ' A com-
puter simulation of an array of 4000 spins for
a classical Heisenberg linear chain was reported
by Lurie, Huber, and Blume. ' Also a theoretical
analysis, based upon a two-parameter Gaussian
representation of the generalized "diffusivity" was
reported by Tahir-Kheli and McFadden7 and a
more complete self-consistent theoretical deriva-
tion was presented by Mc Lean and Blume. ' All these
treatments yield basically the same results that

f;, (cu)- ~ as ~- 0, as expected from the diffusion
in one dimension. The microscopic theories and
the computer simulations allow one also to evalu-
ate the diffusion coefficient D for the two-spin
correlation function and the diffusion coefficient
D~ for the energy correlation function. '

To date, the main experimental verifications
of the theory are based on magnetic resonance
measurements. In fact by magnetic resonance one
can probe the low-frequency part of the spectral
density of the spin fluctuations. Earlier EPR stu-
dies have given an indirect but striking evidence
of the strong effects of spin diffusion in one dimen-
sion where deviations from Lorentzian behavior
are expected. ' First, in a study by Rogers et &l."
it was found that a simple Gaussian correlation
function was not able to explain the frequency de-
pendence of the exchange-narrowed dipolar line-
width in quasi-one-dimensional copper salt
Cu(NH, },SO~ ~ H,O (CTS). Later, the EPR investi-
gation of (CH, )4NMnC1, (TMMC)" has shown de-
viations from Lorentzian line shape and an anom-
alous angular dependence of the linewidth. Both
effects could be explained in terms of spin diffu-

sion in one dimension. The function which has a
diffusive behavior in the EPR case involves some
four-spin correlation functions. It is the total-
spin-torque correlation function (hereafter TST
correlation function}. The corresponding diffusion
coefficient will be denoted by D»T. One can point
out that similar four-spin correlation functions
appear in the correlation function of the exchange
energy. Qn the other hand, from measurements
of NMR spin-lattice relaxation rate one obtains di-
rectly the shape at low frequency of the spectral
density of the two-spin correlation function. ~'"
The co

' ' dependence predicted by spin diffusion
in one dimension was well verified by proton relaxa-
tion measurements in TMMC."'"

In a, "real" chain and/or for a spin Hamiltonian
which is not completely isotropic, modifications
in the very-long-time behavior of the correlation
function are expected. In fact the t ' ' persistence
of the correlation function due to the spin diffusion
in one dimension is disrupted by a number of
mechanisms. The problem can be discussed qual-
itatively" in terms of a cutoff time t„or a cutoff
frequency e„which can be defined as the time at
which the t ' ' behavior of the spin correlation
function is truncated, or the frequency at which the
~ ' ' divergence in the spectral density is t:run-
cated. As a consequence, the nuclear relaxation
rate remains finite at low resonant frequencies
and, in systems in which the cutoff frequency is
large, the EPR line shape is Lorentzian like in a
3d exchange-narrowed paramagnet.

The first cutoff mechanism investigated explicitly
is the mechanism involving interchain interac-
tions": the magnetic interaction of the electronic
spins belonging to dif'ferent chains, be it an ex-
change interaction or a dipolar interaction, intro-
duces a diffusion in three dimensions and therefore
limits the long-time persistence of the correlation
function. Later, it has been shown that intrachain
interactions can also be an important cutoff mech-
anism" since in the interaction Hamiltonian there
are terms which do not commute with the total spin
component and consequently the total spin is no
longer a constant of motion. Finally, the presence
along the magnetic chain of impurities or defects
which tend to dissipate into the lattice the spin
polarization could act as a cutoff mechanism. "
However, this cutoff effect is negligible in practice
because one would need a too high concentration of
impurities with a very fast spin-lattice relaxation
time.

The choice of TMMC for a general study of spin
dynamics in Heisenberg linear chains is justified
by the fact that this compound is an excellent mod-
el system; the magnetic properties are well known,
the intrachain interactions are much larger than
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the interchain interactions and the only noniso-
tropic terms in the spin Hamiltonian are the small
intrachain and interchain dipolar terms.

Another important motivation for the present
work relies on the results already published"'"
which show that the cutoff frequency is strongly
field dependent for some directions of the mag-
netic field; this is in qualitative agreement with
a cutoff mechanism due to the nonsecular intra-
chain dipolar terms.

In this paper we present an extensive experi-
mental and theoretical study of the high-tempera-
ture spin dynamics in TMMC. This includes (i)
the analysis of the diffusive behavior of the two-
spin correlation functions and their cutoff mech-
anisms; (ii) the analysis of the diffusive behavior
of the total-spin-torque (TST) correlation function
and its cutoff effects.

The theory is reformulated in more general
terms taking into account the non-Markoffian fea-
ture peculiar to the hydrodynamic region in 1d

systems. The connection between the cutoff pro-
cess and the EPR line is clearly established. A

self-consistent procedure is developed which leads
to new expressions for the EPR linewidth and the
cutoff frequencies due both to interchain and intra-
chain interactions. It is shown that from a careful
analysis of the mea. surements of nuclear spin-lat-
tice relaxation rates and EPR linewidth and line
shape one can obtain reliable values for the diffu-
sion coefficients D and D»~ and for the cutoff fre-
quencies of the two-spin and TST correlation func-
tions, to be compared to the theoretical calcula-
tions. For this purpose, previous measurements
of T, ' and EPR have been completed and, in order
to prove definitely the role of the intrachain inter-
actions in the cutoff mechanism, measurements
of T,~ have been performed.

In Sec. II we present a summary of the magnetic
and structural properties of TMMC and a brief
description of the experimental methods utilized.
In Sec. III we summarize the theoretical expres-
sions for the quantities which are measured and
we give a detailed discussion of the calculation of
the geometrical coefficients which relate the nu-
clear relaxation ra, te to the spectral densi ties of
the electronic spin fluctuations. In Sec. IV we
present the experimental results. In this section,
after having introduced in the expressions for the
magnetic resonance parameters the spin-diffusion
coefficients D and D+s+ and the different cutoff
frequencies in a phenomenological way, we extract
an "experimental" value for these quantities. In
Sec. V the theory is presented and theoretical pre-
dictions are compared with the experiments while
Sec. VI contains the summary and conclusions of
the work.

II. SAMPLE AND EXPERIMENTAL METHODS

Tetramethyl ammonium manganese chloride
[(CH, )~NMnCI, ] provides one of the best examples
of a one-dimensional Heisenberg paramagnet. The
room-temperature crystal structure of TMMC
was determined by Morosin and Graeber" and is
shown in Fig. 1. The crystal structure is hexago-
nal with lattice constants a=9.151 A and c' =6.494
A and the space group is P63/m. The unit cell
contains two molecules and has a center of inver-
sion. Each molecule can be considered as made
up of two ions, namely MnCl, and N(CH, )~'. In
a hexagonal reference system having x=-a, y=—5,
and z =—c the mirror planes are normal to the z
axis and are situated at z =-,' and z =4 while the
manganese ions are at the origin and at z=-,'. Be-
tween two manganese ions situated along the c axis
there are three chlorine ions lying on the mirror
plane. These five ions form an octahedron which
is slightly elongated along the c axis. The octa-
hedra are linked to each other in chains parallel to
the c axis. The tetramethyl ammonium ions are
situated between the chlorines; the nitrogen atom
lies on the mirror plane while the carbon atoms
form a distorted tetrahedron around the nitrogen
with two possible orientations of the tetrahedron
both equally probable. This situation leads to a
disorder in the orientation of the (CH, )N~ ions in
the crystal. It has not been established yet if the
disorder has to be regarded as static or dynamic,
i.e., due to a rapid reorientation of the ion.

The static and dynamic magnetic properties of
TMMC have been investigated by susceptibility, "
specific-heat, "and neutron scattering measure-
ments' and also by nuclear" ""and electronic
magnetic resonance" and other techniques. " All

CH3

FIG. 1. Structure of TMMC (a) Chain of MnCl& ions
and projection on the (a,b ) plane; (b) model for the pro-
ton location in the N(CHz)+4 ions.
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these experiments agree on the fact that TMMC
behaves like an almost ideaL linear antiferromag-
netic Heisenberg chain. The exchange Hamiltonian
can be written

X=-2Z Q S, ~ S„,,
with an intrachain exchange interaction 4 =6.5 K
and a Mn" magnetic moment p, ,«=g[J'(J+1)]'~'
= 5.92 Bohr magnetons corresponding to g = 2,
5= —,', and I.=O. The interchain interactions which
lead to the three-dimensional order"" at T~
=0.8 K are very weak.

The hyperfine interaction of the protons with the
Mn" magnetic ions is predominantly dipolar.
This can be understood by the fact that the protons
do not participate to the Mn" —Mn" exchange path
a,nd are relatively far away from the magnetic
ions. The exact position of the protons in the
methyl group has not been established. Some rea-
sonable models for the proton location will be dis-
cussed in Sec. III B.

The measurements were performed on single
crystals grown both at Pavia and at Grenoble. The
crystals were grown by slow evaporation of an
aqueous solution of equimolar manganese chloride
hexahydrate and tetramethyl ammonium chloride.
In some cases it was found useful to acidify the
solution with 10% HCL and to use a slight excess
of MnCL, ~ 6H,O. The typicaL size of the crystals
is 0.5 cm'

~ The c axis can be easily identified
since the crystals tend to grow in the shape of
roughly hexagonal prisms elongated in the direc-
tion of the chain axis c.

The measurements of T, and T,p
were performed

at room temperature both at Pavia and at Gre-
noble using Bruker pulse spectrometers operating
in the frequency range 2-100 MHz. The measure-
ments of T, were performed with a 180 -90 or
90'-90'pulse sequence. The recovery of the mag-
netization was exponential in all cases over more
than a decade. The measurements at 2 MHz done
in Pavia, were performed with a Varian wide-line
spectrometer by using a saturation technique. The
rf calibration and the other unknown constants en-
tering in the formula for the saturation where de-
termined by comparing the result obtained at 4
MHz by the saturation technique with the one ob-
tained directly by the pulse technique, These mea-
surements were also performed by puLse tech-
niques at St Martin d'Heres, University of Gre-
noble, by Chabre and Segransan. The measure-
ments of spin-lattice relaxation in the rotating
frame T,p

were performed with a rf-field inten-
sity H, ranging from 4 to 10 G. No dependence of
T z p

on the strength of 0, was ob se rved in the range
2-60 G. At very Low rf field T&p decreases as ex-

pected when cross-relaxation effects between di-
polar and Zeeman levels start playing an important
role.

The EPR experiments were performed at rela-
tively low field, the central value being Ho- 3.3 kG.
The frequency of the cavity was ~, -9.3 GHz —while
it was (d„-24 GHz in Ref. 11. All the measurements
were made with a magic tee microwave using a
phase detection. The magnetic field was modulated
at very iow frequency (-40 Hz) with a peak-to-peak
amplitude of about 30 G. For recording the EPR
line the magnetic field was swept from 0 to 10 kG.
The phase of the spectrometer was tuned in such
a way as to get a nearly symmetrical derivative
curve.

III. EXPRESSIONS FOR NUCLEAR RELAXATION RATES

T, ' AND T, ' AND FOR EPR LINE

In this section we give the explicit theoretical
expression for the quantities which have been
measured experimentally: in Sec. IIIA we give
the expression for T, ' and T, p

while in Sec. IIIC
we give the expression for the EPR line. These
expressions will be utilized in Sec. IV in order to
extract from the experimental data the values of
the quantities which characterize the electronic
spin dynamics, i.e., the diffusion coefficients and
the cutoff frequencies. The nuclear relaxation rate
can be related to the two-spin correlation functions
through geometrical coefficients which depend on

the hyperfine interaction of the nuclei with the
electronic spins. The precision with which one can
evaluate quantitatively the relevant parameters
which describe the spin dynamics is determined
in a crucial way by the precision with which one
can calculate the geometrical coefficients. For
this reason it seems justified to include in Sec.
IIIB a detaileddiscussion of the results obtained
in the calculation of these coefficients in order to
assess their reliability.

A. Nuclear spin-lattice relaxation rate

The dominant contribution to the spin-lattice re-
laxation of protons in TMMC comes from the fluc-
tuations of the dipolar interaction which couples
the nucLei with the Mn" electronic spins. The
relaxation rate in the Laboratory frame can be ex-
pressed in terms of the spectral densities of the
electronic spin correlation functions at w„and at
!

I

(de+ (d~ ]
—R~'.

where
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+ oo

fP((u) =— dt e'"'g,"(t).

is the spectral density of the two-spin correlation
function defined as follows:

(3.2)

g,". (t}= &s,"(t)s,'(o)&/&Is, I'&,

and f",. (cu) is the spectral density of

g", (t) =g;(t)e '"',
with a = z or + (E axis parallel to H) (referring to
the longitudinal or transverse components of the
electronic spin S, respectively}.

The corresponding expression for the relaxation
rate in the rotating frame is"

motion of the protons between N sites, one has to
average over the amplitudes of the couplings,
while for the static case, the average has to be
performed over the transition probabilities. A
second averaging is necessary because of the dis-
order of the N(CH, )~' ions, which have two sym-
metrical configurations with respect to the mirror
plane. Here again two possible cases can be con-
sidered: (i) static disorder throughout the crystal
and (ii) dynamical disorder resulting from a rapid
motion of inversion of the N(CH, )~' ions. The dif-
ferent possibilities have been discussed in details
in Ref. 20.

In Table I we compare the different values ob-
tained for the sums:

= Q ]n.'(8, P)f;(~,) + -'n', (8, 4)f;(~ )
1P nt(8)= g njt(8, P) (with (=0, 1,2), (3 4)

+ [n', (8, p)+ zn', (8, p)]f,'(&u, )}. (3.3)

In Eqs. (3.1) and (3.3), &u„and &u, are, respective-
ly, the nuclear and electronic Larmor frequencies
in the static magnetic field H while +, is the nu-
clear Larmor frequency in the rotating rf field
H, . The n', 's (with $ =0, 1, 2) are the usual factors
associated with the dipolar couplings between pro-
tons and electrons spins. "'

B. Geometrical coefficients

In the case of TMMC the positions of the protons
are not exactly known. Calculations have been
performed with the protons at the carbon sites. '
Such a simplification may be justified to some ex-
tent because the methyl group rotation at high
temperature results in some average of the posi-
tions. However, because of the rapid dependence
of dipolar interactions with distance, we have
tried to improve the model of the proton loca-
tion. ""The protons are certainly located on the
circles which are generated by the rotation of the
methyl groups around their ternary axis (the C-N
bond). On these circles, we have positioned the
protons in such a way that every C-H bond is in
trans-position with respect to the opposite N-C
bond [see Fig. 1(b}]. This assumption can be justi-
fied from steric hindrance considerations. It has
also the advantage of simplicity since all the pro-
ton positions are then automatically determined.

The geometrical coefficients 0'& have to be aver-
aged over the three proton positions in each methyl

group. The averaging is dynamical, or static,
depending on whether the rotation of the methyl
group is fast or slow, compared to the character-
istic frequencies of the electronic-spin-fluctua-
tions spectrum, namely the exchange frequency co„
and the cutoff frequency ru„which will be dis-
cussed later. For the dynamical case, i.e., rapid

g n', (8, y) = -n', (0') .
gWP

C. Electron-paramagnetic-resonance line

In the high-temperature limit the EPR line is
the spectral density F(&u) of the macroscopic two-
spin correlation function

G(t) = (s'(t) s-(o)&/&Is'I '&, (3.5)

where S' represents the transverse component
of the total spin:

s'=g s',

A very general form for E(&u) is the following:

( )
1 M'((u)
v [(u —(u, + M "((u}]'+M'((u)z ' (3.6)

where the frequency functions M'(&u) and M"(&o) de-
fined below are related by the Kramers-Koenig
rela, tions. An alternative description for the EPR
line is obtained within the Laplace transformation:

for the two cases H II c (8=0'} and H&c (8=90').
For a given proton we took into account the di-
polar couplings with six Mn+' ions in each of the
three nearest-neighbor chains.

It turns out that the model chosen to calculate
the geometrical coefficients does not seem very
crucial, except for the coefficient n, (8}, particu-
larly for 8=0, in which case the two manners of
locating the protons leads to results which are dif-
ferent by a factor of 3.

An important point is that the coefficient n, (8)
vanishes for 6) =O'. It can be shown that, in the dy-
namical case, the cross terms cancel exactly the
self term:
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TABLE I. Values of the geometrical coefficients corresponding to the different models for
the proton locations.

Model 1
Protons at

carbon
sites

Model 2
Static
case

Model 3
Methyl groups
rotate; static
disorder of
N(CH3)4+ iona

Model 4
Dynamical case:

methyl, groups
rotate and

dynamical disorder
of the N(CH3)4+ ions

Q ((0')

Q, (0 )

Q,(0.)

Qo(90')

Q1(90 )

Q2(90 )

0.33

0.013

7.20

1.44

1.79

1~ 98

0.009

7.64

1~ 89

2.00

0 ~ 12

0.004

8.18

2.06

2.07

2.18

0.12

0,000

8.18

2.06

2.05

2.15

and one has

(3.7)
IV. EVALUATION OF SPIN-DIFFUSION COEFFICIENTS

AND CUTOFF FREQUENCIES FROM EXPERIMENTAL

RESULTS

F(&u) = (I/v) Re[F(ru)], (3.8)

(3.9)

Mo (u) =Ma;„„,. (u&) = 3S(S+ 1)&a&DV24&(&u —u&,),
(3.10)

where 4(&u) is the Laplace transform of the total
spin torque (TST) correlation function. The TST
correlation function involves some four-spin cor-
relation function and will be defined explicitly in
Sec. V. In Eq. (3.10) one has

&uz,
—-Iy', /c' =9.7 x109 rad sec '

and

where Re means "real part, " and the frequency
spectrum F(&u) is given by

F((o) = [i ((o —(u,) +MD ((u)] ',
with Mo (&u) =M'(w) + iM "(&u).

The shape and the width of F(&o) are therefore
determined by the function M;(&u). In Sec. IV it
will be shown that in TMMC the dominant contri-
bution to M;(~} comes from the fluctuations of the
intrachain dipolar interactions which couple elec-
tronic spin belonging to the same chain. When the
magnetic field is parallel to the chain axis (H ~~ c)
one has

The spectral densities of the two-spin and TST
correlation functions appearing in Eqs. (3.1),
(3.3}, and (3.10) can be written in terms of a spin-
diffusion coefficient which determines the long-
time behavior of the correlation function and a
cutoff frequency which limits the diffusion process
in one dimension. After having presented the ex-
perimental results in Sec. IVA we show that
one can extract numerical values for the diffusion
coefficient and for the cutoff frequency from the
nuclear magnetic relaxation (Sec. IV B) and from
the EPR data (Sec. IVC).

2-

where y, is the electron gyromagnetic ratio, c
is the Mn-Mn distance along a chain, and r&& is
a vector joining two electron spins located on the
same chain.

5 10 &5 H(kG)
FIG. 2. Experimental proton-spin relaxation rate T&

'
as a function of the applied magnetic field for H paral. lel
and perpendicular to the chain axis. The open and black
circles correspond to the measurements performed at
Pavia and Grenoble, respectively.
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A. Experimental results

The measurements of proton spin-lattice relaxa-
tion rate in TMMC as a function of the static mag-
netic field are presented in Fig. 2. These mea-
surements were published previously and inde-
pendently. ""The agreement between the two
sets of data obtained in different crystals is ex-
cellent. As it can be seen from Fig. 3 the T, ' re-
sults for H

~~
c fit very well an expression of the

form

i0 (sec )

X X

X
X

~ C/I H

x CJH

I/T, =PH ' '+Q

with

P = (6.1 g 0.3) x 10 Q'~' sec ',
Q =(3.5+0.5) &10' sec

(4.1)
~ ~

~ OQ ~

]/T =P yy- ~'+Q'

with

(4.2)

P'= (3.0+0.3)X19' G' 'sec '

Q'= (5s 1) x10' sec

and is shown in Fig. 3.
Measurements of the absorption derivative of

the EPR line at 9.3 GHz are in agreement with
previous results obtained at -24 QHz. '"" The
half peak-to-peak derivative linewidth 6H is
strongly anisotropic with respect to the direction

The results for H &c show a quite different be-
havior, T, ' being almost constant above -2 kG and
decreasing slightly at low magnetic fields (see Fig.
2).

The measurements of proton spin-lattice relaxa-
tion rate in the rotating frame are presented in

Fig. 4. The magnetic field dependence of T,~ is
similar to the one observed for Ty (see Fig. 2).
In particular for H

~~
c one can obtain a good fit

with the expression

I

10 is HT«)

FIG. 4. Experimental proton spin-relaxation rate in
the rotating frame T

&&
as a function of the magnetic

field for H parallel and perpendicular to the chain axis.

of H. %hen H is parallel to the chain axis

5H=500 G. (4.3)

1~

4 HHo 2

.J (H)/J(Ho S H)

Il
200

As 5H is so large, the high-field resonance con-
dition (Ho»5H) cannot be completely satisfied for
the low-field part of the curves. Therefore, for
studying the shape of the EPR line, only the high-
field region was considered, i.e., H&H, . The
EPR line shape is analyzed in Fig. 5 where the
quantity

10'(sec)

3A

2-

4 io'H' (a~)

FIG. 3. Nuclear relaxation rates T& and T&& as a
function of H . The straight lines correspond to Eqs.
{4.1) and {4.2).

20
I I I

0 40 80

X H-Ho

FIG. 5. Line-shape data. The full lines are theoreti-
cal curves for two values of the parameter e. The
dashed line corresponds to a Lorentzian EPR line.
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(4.4) TABLE II. Diffusion-coefficient values obtained from
Tf and &&& data for the different proton location models.

is plotted versus D (from T&)

(rad sec ~)

D (from T&&)

(rad sec ~)

The function J(H) is the derivative of the absorption
line at the field H &H, . The straight dashed line
in Fig. 5 corresponds to the case of a Lorentzian
shape for which

7 =3+X.

B. Analysis of T, ,T, data

Model 1
(H =—C)

Model 2
(static)

Model 3
(static-dynamic)

Model 4
(dynamic)

(10+1) x10~2

(11.3 + 1.1) x10~2

(12.9+ 1.3) x 10"

(13.0+ 1.3) x 1012

(10.5+ 2) x1012

(12~2) x10»

(13a 2) x 10&2

(13+ 2) x]P»

As it has been proved experimentally and cal-
culated theoretically, the two-spin correlation
function behaves diffusively at long times. The
diffusive behavior of the correlation function,
which for a linear chain leads to a t ' ' time de-
pendence, is valid for times longer than the ex-
change time 7„and for times shorter than the
cutoff time 7;. This implies that the spectral den-
sities f, ((d) appearing in Eqs. (3.1) and (3.3) should
display a frequency dependence of the form

fa( )~ -z/2

in the frequency interval &, & +&&„. Since one
finds that in TMMC (d, &~,&co„one expects that
f+(~ }(x ~-(/2 (x H 1/2
j e e

Let us consider first the nuclear relaxation rate
in the laboratory frame for H&c. In this case no
contribution is expected in Eq. (3.1) from the
spectral densities f;((d„) since the corresponding
geometrical coefficient Q, (0') is negligibly small.
In order to explicate the expression for f/((d, )
we shall assume for the long-time behavior of the
two-spin correlation function

g& (t}= I/(4((Dt}' ', (4.5)

both for the auto-correlation (j =0) and the pair-
correlation (j =1,2, 3) functions. Thus one obtains
for the spectral densities

f/(((/, ) = I/2v(2Du, )'/'

= [I/27f(2Dy )~/~]H (4 6)

where D is the spin-diffusion coefficient, mea-
sured in units of rad sec ', of the two-spin corre-
lation functions. Therefore by substituting (4.6)
into (3.1) one can conclude that the constant P ap-
pearing in Eq. (4.1) is given by

P = 0 (0') /2v(2Dy, )'/' . (4.7}

From the comparison of the theoretical expres-
sion (4.7}with the experimental value of P one can
deduce the value of the spin-diffusion coefficient

D, provided that the geometrical coefficients can
be calculated with good accuracy. In Table II we
have summarized the values that one obtains for
D by using the geometrical coefficients presented
in Table I which were calculated from the different
models discussed in Sec. III B. The experimental
value for P is 6.1x10' G' 'sec ' [see Eq. (4.1)].

As it can be seen in Table II the values of D
range from 10x 10" to 13 x 10~ rad sec '. The
difference among the results shows that the value
obtained for D is sensitive to the model chosen for
the proton locations.

It should be noted that a constant term like the
one observed experimentally [see Eq. (4.1)] is not
present in the theoretical expression (4.6} for the
spectral densities because we have considered only
the diffusive part of the correlation function valid
for long times. The constant term may be attri-
buted to the short-time nondiffusive behavior of
the correlation function. ' However, since the
constant term is small and its experimental de-
termination is uncertain we shall not try its theo-
retical evaluation.

If we consider now the expression (3.3) for the
relaxation rate in the rotating frame, we can see
that the expression contains a contribution from
the spectral density f&((d,) since the corresponding
geometrical coefficient is not negligible. Since
~, «(d„one has f;(&o,) =f;(0}. Let us assume that
for H~~ c, this term is field independent. Then
from the plot of T,~

vs H '/' (see Fig. 3) one can
obtain an independent determination of the diffu-
sion coefficient D. In fact the coefficient P' in
Eq. (4.2) is given by

P' = [Q,(0')+ —,'A, (0')] /2v(2Dy )' '

and therefore from the experimental value of P'
= 3 x 10~ G'~' sec ' one obtains the values of D
listed in the last column of Table II. The agree-
ment with the values of D obtained from T, ' mea-
surements is very good and this confirms the as-
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sumption that for H
~~

c the term fI(0} is field in-
dependent.

In the previous part we have described the be-
havior at long times of the two-spin correlation
function with a (Dt) 'I' diffusive law which is justi-
fied for an ideal Heisenberg chain. In a real Heisen-
berg chain the persistence at long time of the correla-
tion function is limited by a number of possible mech-
anisms which will be discussed in Sec.V. Here, we
limit ourselves to introduce the cutoff frequency in a
phenomenological way and to show how one can de-
termine the value of the cutoff frequency from the
NMR data.

The effect of the cutoff on the spectral densities
f I'(ttI, ) is negligible since ftf, &(ttf, . On the contrary,
since +„~N «co„ the effect of the cutoff is very
important on the spectral densities fI(ttI„) and
f'I(trf, ) which would oiherwise diverge at zero fre-
quency. Starting from the expression (4.5) for the
two-spin correlation function one can introduce an
abrupt cutoff at t =co, ' and thus write

~a-y

f, (of„,) = — (4frDt) 'I ' dt = (ff'D&u ) 'I '
0

f (ttI ) = — (4ffDf) e c rff = (4ff Dtrf )
1

N. l C
0

(4.9)

Since the relation between ffr(&u„,) and &rr,
* is not

very sensitive to the exact form of the cutoff func-
tion, we will adopt in the following analysis the
simplest model for the cutoff as expressed by Eq.
(4 .8).

The cutoff frequency for the case in which H&c
can be obtained from the T, ' measurements. In
fact since II,(0'}-0one can use the expression
(3.1) and (4.8) to obtain

(&u,'), , II,(90'), (ft'Dof, )'I '
n (0'} '" n (90 )

(4.10)

where T,~ and T,~j' refer, respectively, to the re-
laxation rate for H& c and H(( c. We have nor-
malized the cutoff frequency to the exchange fre-
quency co„, which is defined as

&rr, = J[fzS(S+ 1)]'I', (4.11)

where z is the number of nearest neighbors.
In TMMC, J'/0 = 6.5 K (Ref. 21) and therefore &rt„

~6x10~ rad sec '. One can obtain an independent
determination of of;~(H J.c) by using the experi-
mental data for T, ' and T, q' From Eqs. (.3.1),

(4.8)

A similar result is obtained by using an exponen-
tial cutoff function"

~ (Lfor(H J C) from T,

ttfr(H J C) from Ttf

Qr(H II C) from Ttf
«P»

0 ~
0

06 ~ » ~0 ~ ~
0

~ 0 ~
0

h h

FIG. 6. Experimental cutoff frequency or~ as a function
of the field for H parallel and perpendicular to the chain
axis .

h

10

(3.3), and (4.8) one has

II, (90 ), (v'D~, )'I'- -'
1qi z 1J II (Qo) 1 tt II (9QO)

(4.12}

(of,},/&u„=II+ BH 'I'

with

A=(2.2+0.4) x10~,
B= (240 p 50) x 10 6 ' ' .

(4.13)

As it will be shown in Sec. V the field-dependent
part of the cutoff frequency for H&c is explicitly
given by

The values of u,' will depend on the model adopted
for the proton location since the geometrical coef-
ficients and the experimental value for D depend
on the choice of the model.

The values of the cutoff frequency for IT&c ob-
tained from Eq. (4.10) and the experimental data
of Eq. (4.2) are practically independent from the
model adopted for the proton location. These val-
ues of co,

' are plotted in Fig. 6. On the other hand
the values obtained for (of,'), (H &c) from Eq.
(4.12) depend very much on the model adopted for
the geometrical coefficients. By adopting the
geometrical coefficients pertaining to model 3 or
model 4 (see Table I) one finds for (&u,'), values
which are in good agreement with the one obtained
from Eq. (4.10) and the data of T, ' The mode.ls
1 and 2 instead would lead to values smaller by
a factor of three. This fact represents a strong
argument in favour of the adoption of model 3 or
model 4 for the location of the protons and also a
confirmation that the procedure adopted for the
evaluation of (o&,')~ is quite reliable.

As seen in Fig. 6 the cutoff frequency (trt,'), is
field dependent with a divergence at low fields. In
Fig. 6 it can be seen that the values of (&rt,') fit
well a law of the type
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10 C. Analysis of EPR data

For interpreting EPR data in 1d Heisenberg sys-
tems, a diffusive behavior has been assumed also
for the TST correlation function. ""For co =0, the
function 4(&u} expressed in Eq. (4.14) exhibits a di-
vergence. In order to remove it, the following
more realistic description will be used:

4(u&) = I/[4D»r(i~+ r)]'~', (4.16)

0,5

~ 10 H (G~)

FIG. 7. Experimental cutoff frequency (~~ )j as a func-
tion of H . The straight line corresponds to Eq. (4.13).

where the constant I' plays the role of a cutoff
frequency, and its physical meaning will be dis-
cussed in Sec. V.

Expression (4.16) defines completely the EPR
line by means of the two parameters D»~ and F
which can be determined experimentally since two
independent quantities are accessible from EPR
experiments. One is given directly by the line-
width hH. The second one comes from the non-
Lorentzian line shape. By using Eq. (4.16}for
4(&d} in the evaluation of the EPR line shape, one
obtains that the quantity F [Eq. (4.4}]depends only
on the parameter

e = 3S(S+ I)~', V'/r(4rD„, )'~'. (4.17)

4 ((u) = I/(4D»~ i u))'~ ', (4.14)

(u&,*)~ = 3S(S+ 1)&u D
V' Re [4(2&v, ) ],

where k(&u) is the spectral density of the TST cor-
relation function [see Eq. (3.10)]. Therefore the
H ' dependence found gives evidence for the dif-
fusive behavior of the TST correlation function.
(See Fig. 7.) Then, by giving to k(&u) the following
diffusive law:

y, 6H/r = 0.46 . (4.18)

From the experimental values e =0.5 and OH=500
G one gets from Eqs. (4.17) and (4.18)

In Fig. 5, two curves are drawn for different val-
ues of e. The curve with a=0.5 fits the experi-
mental data fairly well. For this value of e the
"reduced" peak-to-peak linewidth of J(H) is given
by

Eq. (4.13) allows an experimental determination
for D~s~. We obtain

D»~ =(2.9+0.7) x10 rad sec ',
I' = (1.9 + 0.4) x 10'p rad sec ' .

(4.19)

D»~ -—(3.7+1.5) x10" radsec '.
The determination of the cutoff frequency for

the case in which H ~~c is more uncertain. In fact,
since Q, (0') = 0, the cutoff frequency for H~~ c ap-
pears only in the expression for T,z]]. Further-
more, even in the expression for T,zii [see Eq.
(3.3)], the geometrical coefficient Q, (0') is small.
From Eqs. (3.1), (3.3), and (4.8) one obtains

IP il 2 ill I fl (0o) (4.15)

The important feature of the results shown in
Fig. 6 is that, while the cutoff frequency for H&c
displays a strong field dependence, the values of
(ld )ii are almost independent of the magnetic field
H. One has (~;)„/&u„=10 '. We can note that this
value is of the same order of magnitude as the val-
ue of A in Eq. (4.13}. The implications of these
results are discussed in Sec. VI.

It is interesting to note that the value of F is
quite comparable with the half linewidth ~ at half
power of the EPR absorption line. For e =0.5 one
has dH/6H-1. 3, and then

y,~= 1.14 & 10' rad sec '.

D. Summary of experimental results

In the previous paragraphs we have proved the
diffusive behavior of the two-spin and TST correla-
tion functions from the analysis of the field depen-
dence of the nuclear T, and Tzp and of the EPR
line. These diffusive behaviors are character-
ized by diffusion coefficients D and D»~, respec-
tively, and by corresponding cutoff frequenc ie s
~, and I'. The experimental values obtained for
these parameters are summarized in Table III,
where [+,(~)]~ is the infinite field extrapolation
for the cutoff frequency [see the term A in Eq.
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TABLE III. Recapitulation of the experimental results: D and D»T are the diffusion
coefficients of the two-spin and TST correlation function, respectively; (~~) ~~

is the cutoff
frequency of the longitudinal two-spin correlation function for H ~ [ c; (&u', (~}l& is the extra-
polated value for H&c; I is the cutoff frequency of the TST correlation function, and ~ is
the EPR linewidth.

[~( )]

2.2 + 0.2 (Tg)

2.2+ 0.4 (Tgp) 4.8+ 1.2 (EPR)

0.6 x10~
radsec '

1.3 x10~
radsec ~

]..9 x10&0

radsec '
1.14 x10~O

radsec '

(4.13)j.
One should point out that the values for D cor-

respond to model 3 or 4 and the uncertainty takes
into account only the T»~ measurement impreci-
sion. In particular, the uncertainties coming from
the J value and from the fact that the proton loca-
tions are unknown have been ignored. For D»T
the values obtained by T, ' and EPR measurements
should be considered in agreement, taking into ac-
count the experimental uncertainty attached to
their evaluation. Furthermore we would like to
draw the attention on the following points: the ra-
tio between D»T and D is of the order of 2, the
values of (&o,')~~ and [4) (~)), relative to the cutoff
process for the two-spin correlation function, are
of the same order of magnitude; the same is true
for the quantities I' and y,~.

the Zeeman interaction and 3C~ represents the
spin-spin couplings. The latter is the sum of four
terms

Xss = 8+S+e+d.
(i) 8 is the intrachain Heisenberg Hamiltonian

8 =-2Z Q S; S&~, .

(ii) & represents the intrachain dipolar interac-
tions. The secular part is given by

3

uc = ~(1 —3 cos'8}(uc Q — (3sts( —S, S~);
ig

and the nonsecular parts are

V. THEORETICAL DESCRIPTION OF SPIN DYNAMICS

INCLUDING INTRACHAIN AND INTERCHAIN

DIPOLAR INTERACTIONS AND COMPARISON %PITH

EXPERIMENTAL RESULTS

The two-spin correlation functions g&(t) in-
volved in the expressions of T, ' and T,~' will be
described in terms of the expectation values of
the fluctuations of the spin-wave vector:

(5.1}

so that

gP c(t}= Q g, (t},

3 ~

3
X)"=-

& sinecos8e" @reD ~
t J

x(s(sq+S;S~),

3S"= —'-sin' 8e' "@(d ~ —S 'S'.
D ~

where 8 and P are the polar angles defining the
orientation of the vector r;, which joins two elec-
tronic spins on the same chain —i.e., defining the
orientation of the c axis —in the reference system
having the z axis along the magnetic field H.

(iii) e represents the interchain Heisenberg
hamiltonian

e=-J' $8; S).
fj

with

In these expressions, the time modulation of the
spin operators S,(t) is governed by the following
Hamiltonian:

X = (daS ++ss

In this expression, the
on different chains and
only the nearest spins.

(iv) d represents the
tions. The secular and
spec tive ly,

spins S, and S& are located
the coupling J' connects

interchain dipolar interac-
nonsecular parts are, re-

expressed in units of rad sec '. The first term is
p 1d'= g(u„Q A'„(3Sfs; —S, ~ S,),
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d ' = —4 hu~ Q A;,'(S ( Sq + S('S h),

d' = ——+ ~~A';,. S,'S',

with

A;& = (1 —3 cos' 8,.&)(a/r, h)',

A;,' = sin 8&h cos 8;&e"~~)(a/r, &)',

A;&' = sin'8, ~e"'~~~(a/r„)',

f, ((u) = [t((u —n„(u,)+M, (hu)] ', (5.2)

where the memory spectrum M,"(ur) is given by

C;+iT",(+)
M,"((u) =-i(&u —n (u, )

of expressing the memory effects in terms of the
correlation function of the torque ds,"/dk so that
the connection with the previous Markoffian de-
scriptions can easily be made. The result is that
in the Laplace representation [Eq. (3.7)] the fre-
quency spectrum of g, (t) may be expressed as
follows:

where 0,~ and (II),-, are the polar angles defining the
orientation of the vector r, ~ which joins two elec-
tronic spins belonging to different chains in the
same reference system as previously. The dis-
tance between two neighboring chains is a and

with

(5.3)

u~ = tfy', /a' = 4.26 x 1(y' rad sec ' .

In TMMC, one expects the interchain Heisenberg
interactions to be very small. By assuming that
the three-dimensional order at T„-0.8 K is only
due to the interchain Heisenberg couplings, an
evaluation of J' would give J' =3+~."

For systems of spins coupled predominantly by
Heisenberg interactions, many derivations of the
wave-vector correlation function f, (t) have been
proposed. The first descriptions were of Markof-
fian type. Such descriptions lead to a Lorentzian
shape for the spectral density. Basically they
rely on the assumption that the fluctuations of the
torque dS, /dt are definitely faster than the char-
acteristic time of the fluctuations of S, (t). In
other words, possible memory effects are ne-
glected. Such is the Kubo-Tomita" derivation of
the EPR line. For pure Heisenberg systems the
spin-diffusion theory of Mori and Kawasaki, "for
instance, relies also on such a fast-torque-fluc-
tuation assumption. In three-dimensional sys-
tems these descriptions are very successful as
the fast-torque-fluctuation assumption is correct,
at least if only diffusive modes, i.e., those as-
sociated with small values of the vector q, are
considered. In the general case, more sophisti-
cated derivations have to be used which precisely
take into account the memory effects.""

In one-dimensional systems, the EPR line is
observed to have a characteristic non-Lorentzian
shape. This has to be understood as a consequence
of memory effects attributable to the long persis-
tence of the microscopic fluctuations. The speci-
fic problem of the EPR line in TMMC is studied
in details in another paper' where the "memory
function" is calculated following the projection
operator technique proposed by Mori" and devel-
oped recently by Reiter." In Appendix A we pre-
sent a different derivation which has the advantage

The first term C, gives a shift of the central
frequency of the mode q, which vanishes at infi-
nite temperature. Therefore one has

M, ((o) = T,(cu) (5.5)

for

A. EPR line(mode q = 0)

The EPR frequency spectrum P(w) [Eq. (3.9)]
describes the mode q=0 of the transverse spin
component (n =+). Therefore Eq. (5.2) leads to

F(~) =f;,((u) = [h(u) —u), )+M; ((u)] '.
As [S', 8 ] = 0 the paramagnetic shift Co of the

EPR line is just given by

(the interchain dipolar contribution is definitely
much smaller). The quantity C,' has been shown
to be quite negligible in TMMC at room tempera-
ture. " Hence Eq. (5.3}becomes

Mo(cu) = ((u —(u,}TO((u)/[(u —(u, +iTO ((u)] .

For calculating Ma(&a) we shall consider sepa. —

rately the "high"- and "low"-frequency regions

In Eqs. (5.2) and (5.3), n„=0 for o. =e and n„= 1
for n =+. The function T, (~} is the Laplace trans-
form of the torque correlation function

T, (t) = &e' [X S, ]e ' '[S, , 36 ])/&Is, I').
(5 4)

Equation (5.3) gives an exact expression for
M", (&u). Let us note that a.s long as

I
~ —n &u, I»

I C, +iT, (&u)I, M, (&u) can be approximated as

M, ((u) = iC, +-T, ((u) .
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3C' = +,S'+ $ + e .
This means that in the wings of the EPR line,

the behavior of F(~) displays the spin fluctuations
of a quasipure Heisenberg system. This basical
feature also comes up in the Kubo-Tomita for-
malism.

1. Intrachain dipolar interaction

The main contribution to T;(t) comes from the
intrachain dipolar interactions. (It will be shown

that the interchain dipolar interactions give to the
EPR line a very negligible contribution. } Hence
for 3C»=$ in Eq. (5.6) one obtains:

To,„„,(t) =4(t)e' "[F',(8) +F',{8)(3e ' "+2e'~')

iF2(8) 2lUJgf)

(5.7)

where

Fo(8) = ~s(s+ 1)(1-3 cos'8)'ueV',

F',(8) = —,'S(S+ 1}sin'8cos'8uP~V',

F',(8) = 3~S(s+ 1}sin'8m~V',

and where 4(t) is the TST correlation function ex-
plicitly given by

4 (t) = v-'ti-' g p —'
i ~m &&

r™
( igtse+S+e-i ts-sS-}

a[s(S+ 1)]2 {5.8)

In the modulation of 4(t) the interchain Heisenberg
Hamiltonian e has been neglected. First, let us
recall that Eq. (5.8) is only valid in the wings of
the EPR line, i.e., for t «(AH) ' and that the EPR
linewidth is originated from the intrachain dipolar

defined by the conditions
I

&u —&u, I» IT,(~) I and

I ~ —&u, I
s IT;(~) I, respectively. Physically, the

high-frequency region corresponds to the wings
of the EPR line (Im —u&, I »y, ddsc) while the low-
frequency region describes its central part
(I ~ —~. I

& r&&)
In the high-frequency region, Eq. (5.5) can be

used. Hence

M,'((u} = T;((u) .

An additional approximation can also be made
concerning T;(t}: one can neglect the influence of
the dipolar terms (B+0) upon the modulation of
T;(t) On.e can write

T,'(t) = (e' '[x», s,', )e "'[s.:., 3t:»] & /(Is;, I'},

(5.6)
with

4 (t) = I/(41rD , t)' ', (5.10)

where DTST is the diffusion coefficient of the TST
correlation function.

In the low-frequency region, i.e., for I&a —~, I

s IT;(e) I the description of the memory function of
the EPR line is definitely more difficult. Such an
attempt has recently been made by using a self-
consistent description. '~ Here we simply propose
to limit the diffusion of 4(t) by introducing a cutoff
function such as

4 (t) -C (t)e-" .

The corresponding memory spectrum becomes

Mo;„„.,(u)) =F2O(0')4{(u —(u, ),
with

4((o}= 1/[4D TsT (iv) + r}]
'~ ' .

(5.11)

(5.12)

Rigorously I in Eq. (5.12) is frequency depen-
dent. However for the purpose of studying the dif-
fusive behavior of the TST correlation function
4(t) the frequency-independent cutoff approxima-
tion is quite sufficient since it gives the correct
behavior in the wings of the EPR line. On the
other hand, this approximation leads to a qualita-
tive but convenient definition for F as being the
cutoff frequency of the memory function. From
the qualitative argument that the memory function
of a correlation function cannot last longer than
the function itself, it seems reasonable to write for
the EPR line

r '&(r,~a} '.
Moreover, as previously for the two-spin cor-

relation function the different cutoff mechanisms
to be considered are related to the interehain in-
teraction and/or those interactions which break
the spherical symmetry of the Heisenberg Hamil-
tonian S. In our case, the former are negligible
and the latter are the intrachain dipolar interac-
tions which gives also the EPR linewidth ~.

interactions. Then, since in TMMC J'«+~ we ex-
pect the role of e to be negligible in the evolution
of 4(t) in the wings of the EPR line. In Eq. (5.7)
use has been made of the relations given by Car-
boni and Richards [Eq. (46) in Ref 5). which ex-
press the rotationally invariant property of the
four-spin correlation functions at infinite tempera-
ture.

For HIIc (8=0') expression (5.7} is reduced to

T;,„„,. (t) = F20(0')4(t)e' " . (5.9)

The diffusive law attributed in Sec. IV to 4(&u) for
interpreting the frequency dependence of (&u,

' } and
for interpreting the EPR line shape allows one to
write
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y,4H = Re [M';„„,(tzt, + y, AH)],

and one gets the self-consistent equation

y, AH = 0.78F', (0 )/(4D„, y,AH)" ',
which leads to

y,~= 0.85 Fo(0')[E (0')/4D ]i&&

(5.13)

(5.14)

(5.15)

A theoretical calculation of 4(t) has been per-
formed by using the q-mode decoupl. ing approxi-
mation for the four-spin correlation functions. "
Then, by using a diffusive law for the two-spin
correlation function, one gets

Therefore one expects that I' would be rather of
the order of y,~. Such a value is precisely what
we obtain in the interpretation of Sec. IV (see Table
III). This experimental agreement reinforces our
euristic argument, explicitly expressed as I'
=y,hH. Hence a theoretical evaluation for ~
can be obtained from Eq. (5.11):

In this expression, the exponential factor takes
into account the fact that the two spins S, and S
are separated by the distance

~ r; ~
on the same

chain p. . A similar factor comes up for the spins
S& and S, of the chain v. The sum over all the in-
dices in Eq. (5.17) attributes to these exponential
factors an important role which results in giving
the torque function To,„„,(t) again a linear diffu-
sive law, the diffusion coefficient being exactly
2D." For the full dipolar interchain Hamiltonian
the complete expression is given by

T' (t) =4(t)et~z'[E" (8')+ F"(0')(3e ' z'+2e"""}
+ Ez2(0 z) e -2 ttzzt

)

with

2F"(0') =-,' S(S+ 1)hatt'„A, .t

2

E,"(0') =9S(S+1)cog A,",
4t(t} =I/[4tt(2D)t]' ' (5.16)

The comparison with Eq. (5.10) shows that the
independent q-mode approximation predicts the
diffusion coefficient D»T of the TST correlation
function to be twice the diffusion coefficient D of
the two-spin correlation functions. This result
seems to be quite consistent with our experimental
determinations (see Table III).

2. Interchain dipolar interactions

We now consider the contribution to To(t) of the

interchain dipolar interactions d. As previously,
the short- and long-time behavior will be studied
separately.

For example, for the secular term d' [XGG ——d
in Eq. (5.6)] the short-time behavior &s given by

T&'t,„„,(t) = ~z~ Q. Q A', ,A,o—
$,j l, m

ettzzt(etgt 5zSze-igtS-Sz )

There, the spins S, and S&, S, and S belong to dif-
ferent chains and therefore an exact decoupling
becomes possible. The four-spin correlation
functions in Eq. (5.17) can be written

(eigtS zS+e -igtS-Sz )

(eigtS ze-igt Sz ) (elg tSz e igtS-}-
where p. and v label different chains. For cu, t » 1
each term of the product behaves diffusively:

(e'GtSze 'g Sz}cc(4ttDt} ~ exp
/C2

m 4Dt

(0 z)= -,'t + z)'z,' 1Q z",,

4 (t) = I / [4tt (2D) t]' '. (5.18)

In conclusion, by summing the interaction cou-
plings over an infinite number of spins along each
chain, taking into account the intrachain pair-cor-
relation terms, one is led to the noticeable result
that 4'(t) is also diffusive. Therefore, in nearly
1d systems, also the interchain dipolar interac-
tions can be in principle responsible for giving a
non-Lorentzian shape to the EPR line. However,
another important feature results from this calcu-
lation which shows that among the different inter-
chain dipolar terms, when the magnetic field is
parallel to the chain axis, only the nonsecular
term d ' leads to a non negligible contribution.
For the secular term d', the sum of the geome-
trical coefficients in Ep (0 ) over all the spins i
of the chain tt, is very small and negligible (this
sum is exactly zero if a continuous integration is
used). For the nonsecular terms d", the corres-
ponding sum involved in F,"(0') is exactly zero for
reasons of symmetry. For d, the sum over the
geometrical coefficients in F,"(0') is Q,". A,'. i' = 3.76,
and one gets

F"(0') = 10t' (rad sec ')'

This term adds to the memory spectrum Mo (ttt) a
contribution which is approximately a constant
when the magnetic field H is swept around Hp This
can be evaluated by considering, as done previous-
ly, that the long-time behavior of 4 (t) is described
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by a cutoff function exp(-Ft)with 1'=y,aH. This
procedure leads to

Mq;„„,(ip) = E,'2(0'}4'(ip —ip, + 2(d, ),
where

4(id) = 1/[8D(i id+ y, aH) )
't ' .

By assuming
~

&p —id,
~

= y, titI «id„one gets

Re[M;,„„,(id, )] = E,"(0')/4(2D&d, )'t',
which evaluates the interchain nonsecular contribu-
tion to the EPR linewidth hH. By using for D the
experimental value for the diffusion coefficient
(see Table III) and for H = 3 kG we obtain AH = 1.2
G. The comparison with the experimental value
OH= 500 G leads to the conclusion that the inter-
chain dipolar interactions are quite negligible for
the EPR line in T MMC.

B. Diffusive modes (q 40)

For describing modes for which the vector q is
different from zero but small (q,c«1) we shall
follow the same "self-consistent'* procedure as
developed previously for the EPR line (q =0). The
high-frequency region of the mode, i.e. , ~ip —n~id,

~

»5 "(q), where

5 '(q) = Re{M,'[n id, + 5 "(q) ] )
represents the width of the mode q, is first con-
sidered. For this region which corresponds to
the wings of the mode q, the expression for the
torque correlation function can be written

T"(t)=&e' "[X„,S;] -' '[S" X,]&/(IS,I'&,

(5.19)

with K'=~,S'+ g. Again, the dipolar and inter-
chain Heisenberg terms are neglected upon the
time modulation of T;(t) as in Eq. (5.6). Then the
central part of the q mode, i.e. , for ]&p —n id, ]

~ 5 (q), is described by introducing a cutoff func-
tion in T™(t)

T,"(t)- T, (t)e

By Laplace transforming this expression one
obtains the memory spectrum M, (u) of the q
mode. Finally, the self-consistent feature of this
procedure is achieved by writing that the cutoff
I' is of the order of the linewidth 5 (q) of the q
mode.

Since Xss =8+5)+e+d, the memory spectrum
is the sum of three terms

M, (ip) =M,"„„,(hl) + 1e, ,„„,(pp) + M,',„„„((p), (5.20)

corresponding to the intrachain Heisenberg, the
intrachain dipolar, and the interchain interactions,
respectively.

1. Heisenberg interaction: diffusion coefficient

The Heisenberg Hamiltonian 8 is expected to
yield the diffusive character of the spin system.
Different derivations have been given for the dif-
fusion coefficient D which is defined by

M, „„,. (ip - 0) = Dq', c ' .
In Refs. t and 11 a Gaussian shape was assumed
a priori for T,"„„., (t) [3Ce~ = 8 in Eq. (5.19}].This
calculation has been improved first by considering
higher-order moments in the description of the
short-time part of this function (&p„t& 1)." Second,
we have treated the long-time part in the q-mode
decoupling approximation. This procedure leads
to a self-consistent equation for D which is solved
for the value D/id, = 0.91." Compared with the
simple Gaussian description this value can be
considered as a net improvement (+42/p) but it is
smaller than the experimental value. Our results
and different theoretical determinations of D/id,
are listed in Table IV.

2. Intraehain dipolar interaction

Let us consider the expression of T;;„„,(t) for
the secular term XP [3C«=XP and cL =+ in Eq.
(5.19)]:

3 3

T+,„„,(t}=V E. p(9}N ' Q ij Lm

l &m

( iice' t cSS+e -ix' t S zS-&

a[S(S+ 1)]
'

Since the spins S,. and S are on the same chain,
only the q, component enters in this expression.
On the other hand in the expansion of the cosine
function the lowest-order term corresponds to the
value q, =0. Therefore one can write

T;,„„,(t) = T;,„„,(t) + O(q', c'),
where T,';„„,(t) corresponds precisely to the case
of the EPR line [Eq. (5.7)]. For q,c«1 the higher-
order terms O(q', c') can be neglected in compari-
son with the q', c' contribution of the Heisenberg
term. Therefore, for 8~~ c (6=0') the expression
for M', ,„„,(cu) is obtained directly from Eqs. (5.11)
and (5.12) in which the cutoff I' is to be replaced
by 5"(q). One obtains

M+, ;„„,(u)) =M,';„„,((d) = E', (0')4 ', ((d —(d, ), (5.21)

with

@ ((p} =1/(4D [i(d+ 5 (q)D'i'.

For n=z, a similar analysis can be developed,
and we get
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TABLE IV. Comparison of the different theoretical values of the diffusion coefficient D
with the experimental determination.

Gaussian
approximation

Present
model

Theory of
McLeane

and Blume
(Ref. 8)

Computer
simulation

(Ref. 6)

Experiment
(see

Table III)

5

0.63

0.64 0.91

1.20 1.3+ 0.1

2.2+ 0.2

where

( ) = ( )[F'(8)( '""+ '"")
+ 2j' (8)(e- &~e +e ~~e~}]. (5.22)

It should be pointed out that only the nonsecular
terms 5)~ and S~ enters in T;(f). The secular
term S does not play any role for the very reason
that S; commutes with the part Z „S;S;of the
Hamiltonian. The Heisenberg part of Q adds only
a negligible contribution to the diffusion coefficient
D. Consequently, for 8 =0 (H

~~
c) one has

T; ...„,(f) =0. (5.23)

3. Interchain dipolar interactions: e+ d

Finally, we have to consider the interchain in-
teractions. The Heisenberg and dipolar Hamilton-
ian will be treated together. Two kinds of terms
which play different roles have to be distinguished
in T;(t). Some are associated with the transverse
components q„and q, of the wave vector q. They
provide a three-dimensional character to the dy-
namical process. The others depend only on the
parallel component q, . For these terms the main
contribution is independent of the q, value. As in
the case of the intrachain dipolar interactions it
corresponds to q, = 0." We present here the result
concerning the a = z component which is the only
case of interest, especially since for 8=0' the in-
trachain contributions are zero [see Eg. (5.23)].
Because of the specific properties already noted
about the geometrical coefficients Z, A",

&
(n = 0,

+1, +2) when H I c, we can write

T; „„,(t}= 4'(i) [n(q„q,}(u,"
+ P(q. , q„)F,'(0')(e'""+e '"")],

(5.25)

where &u„=4J' [S(S+1)]' ' is the characteristic fre-

There is no contribution to the memory spectrum
coming from the intrachain dipolar interactions.

For 8 = 90' (H J.c) one obtains from Eg. (5.22)

Mo „„,(&u) = 2E', (90') [C;(&u - 2 &v, ) + C;(&u+ 2 &v,)] .

(5.24)

with

4"(&u}= 1/(8D[i &a+ 5'(q}]}'~' . (5.27)

C. Two-spin correlation functions

In this paragraph we establish the expression
for the quantities which are connected with the ex-
perimental data. The expressions for T, ' and

T,,' depend explicitly on the spectral densities
f'(&u„) and f'(&u, ). From the definitions (3.2) and
(3.7) one has

f (~) =(2v) '[f (~)+f *(~)], (5.28)

and f (w) is related to the spectral density of the
q modes by

f (~)=gf;(~). (5.29)

As we are interested in the very-low-frequency
behavior of f'(r~), only diffusive modes will be
considered in the sum of Eq. (5.29). Furthermore
f'(&u„}-f~(0)since v„«& „&u„~„. First, we shall
deal with the case of pure diffusion. Then we shall
consider disturbance from the 1d diffusion by in-
tra- and interchain interactions.

1. Pure diffusion

For o=+ and H ~~c (8=0'), one obtains from Eqs.
(5.2) and (5.20)

1
(0) ~8 i

0, intra

(5.30)

quency of the Heisenberg interchain interaction and

n(q„q, ) = —,
' {(1—cosq,a)+ [1—cos(q, ~a+ q„a2 v3)]

+ [1—cos(q„2a —q,a2 D)D,

P(q, q ) =
3 {(1+cosq„a)+[1+cos(q„2a+q a~A)]

+ [1+cos(q„~a —q,a—,'v 3}]].
The corresponding expression for the memory

spectrum is given by

M;,„„,(~) = o(q„,q,)~„"q"(~)+P(q. , q,}F'(0')
x[@'((v+2(u,)+4'*(&u —2a),)], (5.26)
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where the interchain contribution to M,'((d) has
been neglected. The intrachain contribution is ob-
tained from Eq. (5.21):

f'((d, ) =1/2v(2D(d, )'~'.

This explains why experimentally any cutoff ef-
fect was not observed on T,((' ~ f'((d, ).

F2(0')
[4D ( iu-, + 6+(q))]"' ' (5.31} 2. Intrachain cutoff

where the width 6'(q) of the q mode is given by the
definition

6+(q) = Re {M,'((u, + 6'(q})},

which in the present case is reduced to

6'(q) = Dq,'c'+ Re {MD . („(&v,+ 5'(q))}.

Therefore, it seems appropriate to define an
effective cutoff frequency by

6~!(q) = Re{MO, i.t,.[~.+ 6~f(q) l} (5.32)

and also quite sufficient to use this expression in-
stead of 5'(q) in Eq. (5.31). From Eq. (5.21) one
gets the explicit expression

0.78F,'(0')
5ett(q} = 4D'

TST eff ~

which displays the self-consistent feature of the
present description and which establishes that the
effective cutoff for the TST correlation function is
the EPR linewidth [compare with Eq. (5.14)]

6'„,(q) =y, n, H.

Consequently, M; „„,(0) does not depend on q,
and, since it is just a constant in the sum of Eq.
(5.30), its real part plays the role of the cutoff
frequency for the two-spin correlation function
f '(((()

((d+) ((
= Re[MD, ~ (0)]

and one gets

F',(0')
( -+ ")P-)

Before going further in the calculation of Eq.
(5.30) an important remark is in order about the
expression to be considered effectively for 5'(q).
As long as q, is such that Dq', c' » Re[MD „„,(0)],
the term Mo „„,(0) is quite negligible in Eq. (5.30)
and the expression for 6'(q) does not matter really.
On the other hand, for Dq', c' «Re[M«„„(0)]the
diffusive term Dq',c' can be neglected in the ex-
pression of 6'(q) itself, more especially as

Re[MD. . .(0)](Re{MO, , [(d +6'(q)]}.

For c(=z and Hsc (8= 90'), again the interchain
part is negligible in Eq. (5.20), and from Eq. (5.2)
we can write

1

The expression for M; „„,(0) is obtained from
Eq. (5.24). One gets

F', (90')
(4(( (2 '(('( &D"*) '

where we may assume that the cutoff 6'(q) is much
smaller than 2(d, and negligible. The expression
of Mo „„,(0) becomes independent on q, and,
therefore, represents the cutoff frequency ((d',),
for f'(&u). From Eq. (5.33) one can write

((d'„), F', (90')
~~(DTsr ~(,)

This cutoff is field dependent, and its behavior
displays the diffusive law of the TST correlation
function. It is precisely the experimental result
reported in Sec. IV.

3. Interchain cutoff

For c(=z and H~~c (8=0') only the intrachain
Heisenberg and the interchain Hamiltonians con-
tribute to M,*((d}. One has

1
(5.34)

The expression for M,* „„,(0) will be obtained
from Eq. (5.26). For evaluating the cutoff 6'(q)
which enters in the function (P'(ar} [Eq. (5.2'1}] the
analysis previously developed for 6 (q) can be re-
peated here, leading to the following definition for
the effective cutoff frequency:

6; (q) =Re{M;,„„,[6;,(q)]}.

This equation allows first a self-consistent de-
termination of 5;„(q}from Eq. (5.26)

P(q. , q, )F,"(0')
((«(q) [6D$~ (q)] &~2 (6D(d ) ('

This cutoff frequency is field dependent, and we
note that for H=0 it is of the order of y, nH [see
Eq. (5.14)]. However, for &o,)y, n.H its value de-
creases rapidly, and in Eq. (5.30) the term Mo „„,
becomes negligible. Hence, f'((d, ) behaves prac-
tically according to a pure diffusive law:

and also to rewrite Eq. (5.34) as

1f ()-Z,D, ,6, () ~

(5.35)

(5.36)
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Furthermore, we note that if 6;«(q) depends on

the transverse component q„and q, it does not de-
pend on q, . Therefore, this quantity will lead to a
cutoff effect on the 1d diffusive behavior of f'(ur).
After integration over q, in Eq. (5.36) and by use
of Eq. (5.28} one gets

v,~ [4D6;„(q)]'" '

The comparison with Eq. (4.9) where an expo-
nential cutoff function is used leads for the cutoff
frequency (&u,') g

to the following expression:

This cutoff is field dependent. However its be-
havior expresses the diffusive law of the two-spin
correlation functions. In high field, a constant con-
tribution remains, which comes from the first
term in Eq. (5.35). For this part, a numerical de-
termination gives

(~c)ll 0 53 xco„c0„8D
By using for D and (&u) [~

the experimental values
given in Table III, one can determine the interchain
Heisenberg coupling

J™17&10' radsec '

J'/k = 1.3 x 10 ' K .

VI. SUMMARY AND CONCLUSION

The main feature of the high-temperature spin
dynamics in 1d Heisenberg system is the diffusive
behavior of the microscopic fluctuations, which for
the corresponding correlation functions results in
a divergence of the spectral densities as (d -0. In-
deed such a behavior was already recognized for
both the two-spin and the TST correlation func-
tions, but here we have presented an attempt of a
purely experimental determination of the corre-
sponding diffusion coefficients D and D»~, re-
spectively. This study has been performed on

TMMC which is an excellent 1d Heisenberg model
system of spins S =-,'. For D, two independent de-
terminations whose the values agree fairly well
(see Table II}have been obtained from the field
dependence of the proton relaxation times T, and

Tj
&

In fact, the expe rimental value for D depends
strongly, within 30%, on the model chosen for the
location and the motion of the protons. However,
the further analysis of the experimental results
concerning the cutoff effects tends to show that the
most reliable value for D corresponds to the mod-

els which take into account the geometry of the
methyl groups and their possible motion (models 3
and 4 in Table II). For Dr8r, also independent de-
terminations have been obtained. One results di-
rectly from the analysis of the EPR line and the
others from the analysis of the field dependence of

T, ' and T,,' at very low magnetic field, which was
interpreted in terms of cutoff mechanisms.

Basically our experimental method stems from
an exhaustive analysis of the different cutoff mech-
anisms which may limit the divergence of the
spectral densities f '(&u) of the two-spin correla-
tion functions. In particular, the role of the intra-
chain and interchain dipolar interactions have been
analyzed in great detail. First, for the intrachain
dipolar interactions, we have established formally
that they lead to cutoff effects. We have shown
that for f'(ro} the corresponding cutoff frequency
co', is directly related to the EPR linewidth 4H. In
fact, (d; and y, AH are both the width of the uni-
form mode (q = 0), but associated with the parallel
and transverse spin components (S' and S'}, re-
spectively. Since S' commutes with the secular
term XP, v'„unlike y, b, H, depends only on the
nonsecular terms of the intrachain dipolar interac-
tions. For this reason, , one can actually compare
~', to the part of the EPR linewidth which corre-
sponds to the so-called "'-,' effect. " The field and
angular dependences of the two quantities are the
same. The field dependence reproduces the fre-
quency dependence of the TST correlation function
and the angular dependence predicts that &,' is to
be maximum for H zc and exactly zero for H ~~c.

Experimentally we can consider that the correct-
ness of this description has been proved since:
(i) a diffusive law H '~' is actually observed for
(v,'), as expected from the diffusive behavior of the
TST correlation function; (ii) the two values for
the diffusion coefficient D»~ obtained from T, and

EPR measurements compare well (see Table III);
and (iii) for H

~~
c the cutoff frequency is definitely

smaller than for the other directions of the field
and is almost constant: (+',) ~~

can be interpreted in
terms of interchain cutoff mechanisms. It has
been shown from geometrical considerations,
specific to 1d Heisenberg systems, that the inter-
chain dipolar contribution to (~;) ~~

is quite negligi-
ble in TMMC. As a consequence, the interchain
cutoff effect has been attributed to Heisenberg in-
teractions. From the experimental determination
of (~;) ~~

a value has been obtained for the inter-
chain exchange integral, J =17 &10' radsec '.
This is four times the value of the interchain di-
polar coupling (d~, in agreement with the evaluation
of the interchain effective fields from the Neel
temperature presented in Ref. 22. In addition, it
should be noted that the values for ((0 ) ~~

and the
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infinite field extrapolation [&u',(~)], are of the same
order of magnitude (see Table III). Because of the
diffusive field dependence of the intrachain dipolar
cutoff frequency, one can expect that the intrachain
contribution to (&u,'), becomes negligible for H- ~.
Hence, the remaining contribution should come
from the interchain interactions, and this explains
the comparable values observed for (&u',)

~~

and

[~:(")]'
The theoretical derivation that we have presented

for describing the diffusive q modes refers to the

language of non-Markoffian processes where the

memory function plays an essential role. In 1d
Heisenberg systems such a description is quite
appropriate, particularly for the mode for which
anon-negligiblepartof the width 6 (q) is given by
the cutoff frequency &u, : 5 (q) =Dq', c'+ ~,'. In
this case, the memory function of the mode be-
haves at long times according to a 1d diffusive
law, no matter if the cutoff mechanism is gener-
ated from the intra- or interchain dipolar interac-
tions, the corresponding diffusion coefficient being

D»~ or 2D. The resulting long persistence of the
memory function may last up to times of the order
of the inverse of the width [f = 6' '(q)] and cause a
deformation in the shape of the mode which is no

longer Lorentzian: such an effect is directly ob-
served on the EPR line. A precise description of
the memory function at t&6 -'(q) is certainly a
difficult problem. However, one knows intuitively
that a cutoff mechanism will short circuit the 1d
diffusive law, and since we are only interested in
an evaluation for +, we have used the simplest
description giving an exponential law to the cutoff
function of the memory function: e "'. The cru-
cial point is rather in the value of I'. The expec-
tation that I is to be of the order of the width of
the mode is confirmed experimentally since, for
the EPR line, we obtained I =y, ~H. In fact this
situation corresponds to the limiting case when the
EPR linewidth 4H and the cutoff frequency I' are
generated from the same interactions, i.e. , the
intra- and interchain dipolar interactions in the
present case. In the more general case, an extra
cutoff mechanism may be due to some interchain
Heisenberg interactions and the cutoff frequency l"

is larger than y, 4H. For strong interchain Hei-
senberg couplings, one may have I'»y, 4H and the
EPR line becomes again Lorentzian. However,
the interchain Heisenberg interactions are smaller
in TMMC. As a consequence of the value of I", the
theoretical procedure that we have developed pre-
sents an evident self-consistent feature which we
made use of for getting compact expressions not
only for the EPR linewidth but also for the intra-
and interchain cutoff frequencies. Our expression
for the EPR linewidth [Eq. (5.14)] is slightly dif-

ferent from the expression previously given for 1d
Heisenberg system" and leads to smaller value
for C H(- —30%). On the other hand, concerning the
intra- and interchain cutoff effects, the present
derivation is the first treatment which takes into
account the dipolar interactions.

Concerning the experimental results for D and

D»~ reported in Table III, we would like first to
point out that their relative values are consistent
with the theoretical expectation obtained when the
decoupling procedure is used for treating the four-
spin correlation functions, namely Drsr/D = 2. Re-
cently, the simulation techniques have shown that
for 1d Heisenberg systems of "classical" spins
(S- ~), one observes the same ratio between the
energy diffusion coefficient D~ and D,' and this re-
sult agrees also with the expectation of the decou-
pling procedure. Then, at this stage of the discus-
sion it is worth drawing again the attention on the
very consistent feature displayed by all the results
of the present experimental study. Certainly,
this consistency is the strongest argument in favor
of the chosen value for the diffusion coefficient,
D=-13 @10"radsec ', despite of the uncertainty
on the exact model for the protons. This value
is surprisingly much larger than any theoretical
expectation (see Table IV). It is almost a factor of
2 greater than the result given by the simulation
technique which corresponds to S- ~."Onepossi-
ble cause of the discrepancy might be the spin
value which is S=-,' instead of ~ as in simulation
methods. Repeating for S &-', the calculation of the
diffusion coefficient developed in Sec. V, one ac-
tually obtains smaller values for D/&„. However
the difference is only of few percent, and we may
expect that it would be the same in any improved
description. Therefore, one is led to seek for
another explanation which could be simply that the
value of the exchange integral could be larger than
J/k-6. 5 K. By using the values D/&u„=1.3 corre-
sponding to S-~ and D=13 &&10" radsec ' one ob-
tains j/k = 10 K. One should note that the value
Z/k =7.7 K was used for interpreting neutron
data. "
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—S;(f)=i n~,S;(f) +i e~[3C„,S;]e-'~, (A1)

where 3'. = (d,S'+X», and where X» represents the
Hamiltonian for the spin-spin interactions [cf. Eq.
(5.3)] the evolution of &S, (t)s, t& is readily obtained
to be

&S™—(t)s, t
& =in, &u, &s;(t)s;~ &

d

APPENDIX A GENERAL EXPRESSION FOR f q (~)

Here, we present a derivation for f, (&o), the La-
place transform of

g, (f) = &s™(f)s"&/& Is™I'&.

From the equation of motion of S'(f)

m,'(f} is called the memory function, and the La-
place transform of m'(t) is precisely M;(ru):

M (&o) = dt e '"'m (t) .a 0

For the numerator of Eq. (A6) one can write an
equation of motion similar to Eq. (A4):

i(~-n. ~,)&&[x„,s;]Is )&„

=&[x„,s;]s &+i«[x„,s;] I
[s;~,x„]&& .

(A6)

Inserting Eqs. (A8) and (A4) in Eq. (A6) then leads
for SI;(ru) to the following expression:

+z&e'm[36 S~]e nc'S '& (A2)

Cg +i Tg((u)
M;((o) =- i(u)- n, u), )

( )tlo(0 2

In the following, we will use the Laplace trans-
formation: with

(A9)

(A3)f((o)= dte ' 'g(f),
l3

which yields a convenient frequency description.
One defines

and

ge &[36 s o]se't&/& Isa I2&

T;(~) = &&[3c„,s;] II s, sc,g&&./& Is; I'&.

«s™Is )&.
=

~0
d$ e-&alt&So(f)sot&

With the transformation (A3), Eq. (A2) is changed
into

i((o-n &o,)«s, Is, »„
=&s;s"&+ «[3c„,s;]Is»„. (A4)

This expression can also be written in the follow-
ing form:

«s; Is&&.=&Is™I'&/[i(~-n.~.)+M;(~)] (A5)

with

M:(~}=-i&&[3csss.]IS &&./&&s;ls &&. (A6)

An alternative expression corresponding to (A5)
can be given for Eq. (A2):

The function T, (~) is nothing but the Laplace
transform of the Torque correlation function

T, (f) =&e'~[K, s;]e '~'[s, xg&/(Is; I'&.

(A10)

As a matter of fact, if we ignore the first term in
(Al) which corresponds to the Zeeman Hamilton-
ian, T, (t) is readily seen to be exactly

T (t) = —
(

—S —S '
(~ S ~').

d d
dt ' , dt

Therefore, Eq. (A5) gives f, (&u) this general form:

f, (e) = [i(e —n„&o,) +M, (&u)] ',

&S, (t}s;t &
=—in &u, &s '(t)s, t

&

d

t

dT PB (T)&s,'(t —r)s
0

(A7)

where the memory spectrum M, (ur), given by Eq.
(A9) is expressed in terms of the torque correla-
tion function (A10).
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