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Using the Landau Hamiltonian for the description of second-order phase transitions, we give a proof of
scaling for any continuous number of dimensions below four. The proof is based on a summation of diagrams
having a power-law divergence and standard renormalization-group methods. The proof is constructive in that
it leads to an unambiguous calculation for the critical exponents 7) and y. We present in this paper a detailed
discussion of the proof; we also compare our method with the € expansion leading to an interesting aspect of
that theory: We find that the contribution to the critical exponents of order € can be gotten without any
calculation of diagrams. In this paper we have only made a lowest-order calculation in three dimensions. To
this order we are of course unable to locate the relevant fixed point, but it leads to a relation between 7 and
y—also to lowest order—which is such that if vy is fixed to be 1.25, then 7 turns out to be 0.12.

I. INTRODUCTION

The methods based on the renormalization-group
approach initiated by Wilson have had a tremendous
success in our understanding of second-order
phase transitions.!'?> Especially the € expansion of
Wilson and collaborators using the formalism
of field theory led to a deep understanding of the
essential properties of phase transitions. How-
ever, one of the drawbacks of this method lies in
the expansion parameter € itself: in principle,
one has to restrict oneself to small €. Neverthe-
less, one strange feature of the e-expansion is the
reasonable success one obtains when one puts in
the calculations € =1 (and even € =2), which natu-
rally makes this expansion very interesting.

In this paper we present a field-theory-like for-
mulation of second-order phase transitions which
is, in principle, valid for all continuous dimen-
sions below four: the formulation itself constitutes
a proof of scaling—accepting renormalization-
group arguments and some other qualitative as-
sumptions—and allows an explicit and analytic
evaluation of the critical exponents.

This approach starts from the Landau Hamil-
tonian®

3= (VD) + 3mP®% + fAD  + - ¢, 1)

where ¢(x) is the microscope order parameter.
In this section we do not discuss the effect of higher
powers of ¢(x) in (1); we consider here only one
degree of freedom and restrict ourselves to the
three-dimensional case. The problem of second-
order phase transitions consists then in finding
the full infrared singular behavior of the correla-
tion functions generated by (1). We will set m

=0 (which corresponds to 7'=T,) from the begin-
ning and determine the behavior of Green’s func-
tions when the external momenta go to zero.

13

Inspection of the Feynman diagrams one obtains
from (1), shows that the one loop diagram of Fig.
1(a) (bubble diagram) behaves like £~!; clearly
then, a chain of m bubbles [see Fig. 1(b)] will then
behave like £-™. The first step in our procedure
consists in “summing up” these strong infrared
divergences; in Sec. II, we show that this sum
goes like k for small 2. The sum of all original
diagrams can then be replaced by a new sum, in
which each diagram contains as elementary “ex-
changes” the summed up chain diagrams. Power
counting then shows that all the infrared diver-
gences are only of logarithmic type.

We then establish that these logarithmic singu-
larities can be “summed” with a Callan-Symanzik
type of equation, familiar from the renormaliza-
tion-group methods of field theory. It then follows
automatically that we have scaling behavior for
all the correlation functions in the limit 2—~0. At
the same time, this equation then also allows us
to calculate explicitly the critical exponents n and
y without any ambiguity. In this paper we have
only performed a lowest-order calculation, which
does not yet give the critical exponents, but it
leads to a not unreasonable consistency check of
the formulation.

The paper is organized as follows: Sec. II con-
tains an extensive discussion and justification of
the bubble summation for &*; in Sec. III we estab-
lish scaling of this theory via a Callan-Symanzik

(a) (b)

FIG. 1. One-bubble diagram (a) and the diagram with
a sequence of bubbles (b), also called the chain diagram.
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equation; Sec. IV contains a detailed discussion of
the meaning of the bubble summation by comparing
it with the € expansion; Sec. V contains a discus-
sion of the effect of higher-order interaction
terms.

II. FORMULATION OF THEORY

In this paper, the formulation of second-order
phase transitions is based on the Landau Hamil-
tonian

3= 2(VO +3m2p% + (A, /A1) % +(A/61)° + o2+,
(2)

where it is understood that the real order param-
eter ¢ has N degrees of freedom, i.e., each ¢*
stands for 7 ¥_ (¢°¢°). All indicated parameters
are renormalized ones; counterterms have not
been written explicitly. The coupling constants
A4, Agy ... have a dimension depending on the
number of dimensions, called n, in which we con-
sider the problem: in general, the coupling con-
stant in front of (¢*)?, called ),,, has the dimen-
sion

Nop™ pn-Ln=2)/2T2p 3)

The problem of critical behavior is to study the
infrared behavior of the Green’s functions, or cor-
relation functions of (1) when the temperature T
approaches the critical temperature T, the limit
T =T, corresponding to m?=0. For our purposes,
it is enough to consider only the case T=T, and
we will from now on always put m?=0.

Only these interaction terms in (1) will influence
the infrared behavior for which the coupling con-
stant gets a dimension with a non-negative power
of M, i.e., for integers p =2, which satisfy

p2-n)+n=0. (4)

Clearly, for n<2, all powers contribute. If n>2,
one gets p<n/(n -2). These results are easily
understandable by observing that the field ¢ is
dimensionless for n =2.

For n=3, only the terms ¢* and ¢° contribute.
Naturally, we will be interested mostly in this
case. Below n =3 the closer one comes ton=2,
more and more terms contribute.

From general principles, we should in (1) also
include terms of the form (V¢)*¢?, .... However,
these terms do not in general modify the infrared
behavior; a term of the form (V¢)?¢* would only
start to be relevant for n =2.

It is important for what follows to give a better
specification of what one means with the limit 2
=0. From (3), one sees that there are in (2) dif-
ferent “coupling” constants with a dimension; from
the meaning of ¢(x) as microscopic order param-

eter, these constants must somehow have a dimen-
sion specified by the microscopic dimensional pa-
rameters, which one can parametrize by the range
of the microscopic forces, called a (this could
also be the lattice distance; we assume as usual
that there is no essential difference between the
two). The limit of small k is then assumed to
mean that k<< 1/a. Later on, we will neglect
terms which are on order (ka) smaller than the
leading ones.

For T+ T, one has another dimensional param-
eter ¢, the correlation length: by considering di-
rectly T=T, (and therefore £=«) one has one pa-
rameter less and the formulation of what one
means with small £ becomes much simpler (es-
pecially in the calculations). Moreover, for the
determination of the critical exponents 1 and v,
the only exponents that one obtains directly in a
field theory approach, one does not need to con-
sider T+ T..

These points can be understood better by looking
at the Ising model. As is well known,* the singu-
lar behavior around 7T =T, of the Ising model is
equivalent to (2), as it should, since (2) is the
most general form that one can write down (as-
suming of course “locality,” i.e., short-range
microscopic interactions). The results one ob-
tains in this case about the role of a and the cou-
pling constants with a dimension are equivalent
with the discussion above.

In the first part of this paper, we will not con-
sider interaction terms in 3 except for ¢*, which
would be correct for n>3. However, in general,
one cannot do that for reasons of consistency,
e.g., for n=3, the interaction ¢® should be in-
cluded in order to arrive at a consistent formula-
tion of the field theory. One can in this case easily
draw diagrams involving only the ¢* interaction
which contribute to the six-point Green’s function
T'), which diverges logarithmically; clearly one
then needs a counter term in ¢°. What we really
have in mind when we neglect the ¢°® term is that
the “fixed-point” value of the coupling constant of
®° is assumed to vanish or such that its effect can
be neglected (for more details, see below).

The correlation functions can be calculated, in
perturbation theory, by using standard Feynman
rules which can be obtained from the path integral
for the partition function

z)~ | exp(— [ 1) - ¢aj]dx> 2. (5)

The resulting expressions can also be defined
for an arbitrary continuous number of dimensions
n.® When calculating the one-loop corrections to
the four-point correlation function I'(,,(k), one
finds
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F(4)(k)~k"'4. (6)

Note also that the functions I'(,,(k) represent one-
particle irreducible Green’s functions; the mo-
menta of the external lines are always chosen—
unless stated otherwise—as follows:

kl:o-. :kn_lzk; knz-—(n-—l)k-

Clearly, one finds a very singular infrared be-
havior for n<4. For n>4 there is no singular be-
havior; as is well known, this means that one has
the “classical” Landau theory for »>4, which cor-
responds to only taking tree-diagram contributions
into account. The loop corrections, corresponding
to statistical fluctuations have no influence on the
small momentum behavior of the theory. The case
n=4 is the dividing line; one has then only loga-
rithmic corrections, characteristic of a renor-
malizable theory and which can be “summed up”
with the renormalization group equations result-
ing in the limit 2=~ 0 in a scale-invariant result.
However, as it turns out, the fixed point value for
the coupling constant vanishes and the critical ex-
ponents are therefore not modified from the Lan-
dau values. All these results are well known and
have been formulated precisely by Wilson and
others. For n<4, Wilson introduces an expansion
in the parameter e =4 —n. Clearly, the expansion
can only be valid for € >0, which means that the
point € =0 is not a regular point; the series in € is
therefore expected to be only an asymptotic one.
For expression (6), one now gets the expansion

Pit=e=€Ink=] e lnk+---,

and one again finds only logarithmic corrections
that can be summed up with the renormalization
group equation leading to a nontrivial scaling in
the limit #= 0. One now finds that the fixed-point
value for the coupling constant is proportional to
€; also the critical exponents differ from the Lan-
dau value by terms of order €. Note however, that
if one loop gives a behavior like £"~*, then clearly
going to higher order will give an even stronger
singular behavior, e.g., the chain diagrams [Fig.
1(b)], with p loops will diverge like (¢"~*)’. For
small €, this is no problem however, since a dia-
gram with p loops contains the coupling constant

to the (p +1)th power and is therefore multiplied
by €*!. But this shows also that one can no longer
rely on a straightforward expansion in the coupling
constant when € ceases to be small, apart from the
expansion in € itself.

The first step in our procedure is to “sum” up
the very strong infrared singularities coming
from the chain diagrams [Fig. 1(b)]. To avoid
double counting in a later stage, this summation
can be done most elegantly by performing first a

canonical transformation®: we introduce in (1),
after some straightforward changes of notation,
an additional field y as follows:

H=3(VoP +(A/8N)p* — (N/2))[x + (A/2N)¢p? ]2 .
(M

It is clear from the path integral (5) that the addi-
tion of this last term does not change Z(j), since
the integration

2

fexpf%(x +—2%¢2> dx Dy
is Gaussian and gives only a trivial constant. One
might have some difficulty with the existence of
this functional integral, since the sign in front of
x? is “wrong” for the integral to be meaningful.
Observe however that we could have added also
the term (N/2A)[x = (ix/2N)¢?J?. The “i” in front
of x¢® gives no troubles with hermiticity, since
only Green’s functions without external y lines
have physical meaning. This implies that the cou-
pling constant is in fact ({A/2N)? which is real.
Actually, one can easily check that the Green’s
functions for the two different added terms are the
same as it should, since we really only use the
functional integral of Eq. (5) to read off the Feyn-
man rules. One has then that (6) is equivalent
with

J=3(VoF - N/2))x* - 2x 92 . (8)

From this expression one sees that the Feynman
rules involve two propagators and one vertex and
are given in Fig. 2.

The strong infrared singularities in the chain
diagrams are now present in the diagrams for the
full propagator —represented by a double solid
line (Fig. 3)—that we call S(V,n, k), instead of the
X propagator, and which is obtained by summing
all the bubbles present in the y propagator. It is
clear that the collection of all Feynman diagrams
generated by (2) is the same as the one we obtain
by taking all Feynman diagrams wherein we re-

X— mmmX
a b -A
1
—63p N
7
X a
6ab
b

FIG. 2. Feynman rules obtained from (8).
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FIG. 3. “Sum” of chain diagrams giving the new prop-
agator S(N, n,k).

place the y propagator by the new propagator
S(N,n, k), except that we have to leave out dia-
grams that contain the bubble diagram of Fig.
4(a).

The calculation of S(N,n, k) is straightforward:
from the diagrams of Fig. 3, we obtain

_ A (=AVPN (dp 1
S(N’"»k)--w*< N) 2 ) @1 p’(e-pr "
My x(4dp 1 .
= N(l 2) @oyr pPle-pr " )

9

The n-dimensional integral can be evaluated by
consulting the work of 't Hooft and Veltman.® We
find

Ll a1

"2 ) @n) Pk -pY

=F(n)K"™ (10)
= (@4m)-")/2 F[E(‘lr‘_[g()rerEl(')l]— 2)] s (11)

The power k"~* is expected from power counting
and dimensional reasons.

Note the poles at n=4 and n=2: the pole at n=4
expresses the logarithmic divergence of the inte-

-1

r[i(n -

ROYEN
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(a) (b) b

X—= »—x

a b
(c) (d)

FIG. 4. “New” Feynman rules; contributions containing
diagram (a) have to be omitted.

gral for n=4 as expected. The pole atn=2 is of a
different nature: it is an infrared singularity ob-
viously present in the integral. Clearly, it is im-
possible to formulate in perturbation theory a
massless theory in two dimensions. As we will
show later, our formulation, which departs from
perturbation theory by our summing of diagrams,
allows one to include the two-dimensional case.

If we formally sum up series (9), we find

)i

and in the limit of small % (k*-"< )), this becomes

S(N,n,k,>=‘—;( A (12)

1 +AF(n)k"*

1]

-1
4 =n 4_\(n=1)/2
S (N’ny k; )=NF(n)k = N (2 ﬂ)

Note the upside-down effect of the factors in (13)
compared with the ones in (11): especially, the
pole at n=2 in (11) has now become a zero; this
remark is important for later.

The summation we performed is by no means
justified: for small values of k2, each term in the
series (9) blows up and the series itself has no
sense anymore. However, one sees that the series
has alternating signs, a phenomenon familiar from
renormalizable field theory, called asymptotic
freedom, where one also effectively sums the
leading singularities which are in this case loga-
rithms. It is one of the basic results (in fact,
also an assumption!) of the renormalization group
approach in field theory, that the leading loga-
rithms (which also form a geometric series) can
be summed in the case of alternating signs and

I(z:(4 -n)]T

ECER) A

r

give then a first-order result; corrections come
in this case also from nonleading logarithms.
The method one uses here consists in replacing
the formal sum obtained in perturbation theory by
a differential equation, which expresses essen-
tially the effect on the Green’s functions of an in-
crease in the momenta. This equation is obtained
from the formal series expansion. One then for-
gets about the formal series and one solves the
differential equation, postulating then that the re-
sults one so obtains are meaningful statements
about the “summed up” theory (see also, Sec. III).
We can “imitate” this method also here in a
straightforward and simple way: one observes for
this that the series for Q(k)=-NS(N,n, k) (this new
definition is only for the convenience of the follow-
ing argument) satisfies the following nonlinear
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equation:

aQ(k) 2
(kn.4)—-F( n)Q*(k)=p(Q) . (14)

We can integrate this equation by starting from
a rather large value of 2 and then go to small k-
values. Figure 5(a) shows that the origin is a
fixed point for k= 0; this equation can then easily
be integrated to give [Fig. 5(b)]:

SWN,n,k)=-=(1/N)1/F@n)E*", (15)

which is the same result as obtained in (13). Note
that the formal summation as in (12) would not
have been possible in the case that the signs in (9)
would all have been the same; the equation corre-
sponding to (11) would have had a positive g and
then the point at infinity would have been a fixed
point, which would be in conflict with the limit of
the formal sum. This result is also expected
since in this case the naive sum is of the form
(1 = x)~! which has a singularity at x=1; one can
then no longer connect the domains x<1 and x>1.
If one now calculates Feynman diagrams using
(13) as a propagator, one immediately finds that
all the Green’s functions have only logarithmic
singularities (apart from a definite power of the
momenta present for dimensional reasons). One
can understand this as follows: the Feynman rules
one uses now correspond to a “field theory” in
which there are no explicit parameters with a di-
mension. The only singularities then allowed are of
logarithmic type. Note however that “no param-
eters -+« - with a dimension” does not imply imme-
diately scaling: in fact there is always implicitly
a mass parameter present, since one has to cut
off the logarithmic divergences somewhere.
These remarks imply also that the infrared di-
vergences can also be gotten from the calculation
of the ultraviolet divergences: e.g., a diagram
will give a contribution C In(k?>/M?) regardless of
whether k* <M? or k*>M? (M is here an arbitrary
scale parameter). This is a well-known result for
renormalizable and fully massless theories. But
for the determination of the large momentum be-
havior, one can simply use naive power counting
which makes the singularity structure of the

g(a) Q)
Q Qo

FIG. 5. Diagrams that illustrate the summation of the
chain diagrams in the limit # —0.

_©_

FIG. 6. One-loop diagrams.

Green’s functions very simple to discuss and to
determine.

The “primitive” Green’s functions can now easily
be determined: these are the two propagators and
the vertex function, i.e., the dressed up diagrams
corresponding to Figs. 4(b)-4(d). Note that here
we do not consider the Green’s function I'®’, QOne
can also easily convince oneself that the loga-
rithmic divergences in I'*) appear only because
of insertions of the dressed up vertex and propaga-
tors; this leads to a tremendous simplification of
the number of diagrams one has to consider.

The relevant one-loop and two-loop diagrams
can be found in Figs. 6 and 7, respectively.

An important question remains: which terms
did we neglect in using the expression (15) as a
propagator? It is clearly by no means trivial to
use this expression, obtained only in the limit for
small k, as a propagator since we have now to in-
tegrate over the momenta flowing through it. The
point is that we integrate only over those momenta
which are small compared with the cutoff A (the

AL N
A J@@*

(k) ()

=D =

(x) ty)

FIG. 7. Set of two-loop diagrams.
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inverse lattice distance); this is in fact implicitly
assumed in the field-theory formulation of second-
order phase transitions. The very use of the or-
der parameter ¢(x) as a “local” field, means that
we consider (2) only as a valid description for
distances large compared to the “lattice” distance.
More quantitatively, if one rather arbitrarily as-
sumes that the corrections in the “lattice” dis-
tance to the theory can be obtained from (2), one
will find corrections to the propagator of the form
k"~*(ka); i.e., in the small-momentum limit, the

ROYEN

singularities in the correlation functions would
have to be multiplied by a term [1 + (ka)f (¢)],
where f (k) has only logarithmic singularities. As
remarked before, we neglect in this work these
corrections.

III. SCALING

Using the results of Sec. II, for the Green’s
functions below, we will get expressions of the
form

2 2
T,,)WN,n,k)=a+a’C,,(N,n) 1n1%2— +a® <021(1V, n) lnk2 +C,y (N, n) I k—) ee, (16)
K K
T, oWN,n k)= [l—azD“N,n)an—a ( a0, n)ln 2+D22(N n)lnm>—--], )
k2
Tio,2)N,n, k)= -NF(n)k"* (1 -a*F,,(N,n) lnM .. > . (18)
Writing these expressions, we have chosen nor- C,,N,n)=(1/N)c,,(n),
malization conditions which take a simple form D, (N,n)=(1/N)d,,(n),
for ¥*=M>. InI'(,,,,and I, ;), we have left out
the factor 6, a and b referring to the internal CoiN,n) = (1/N*)c§(m) + (1/N)eff (), (19)
degrees of freedom carried by the fields ¢. The
D =(1
reader might wonder where the coupling constant 2 W, 1) = (1/N*)dyi(n),
a comes from, since the Feynman rules that we F, (N,n)=(1/N)f,,(n), i=1,2.
obtained in Sec. Il imply @ =1. We do this here B\ ; . :
only formally: we will introduce the equations of S(f)arly, c§7’(n) is completely determined by Fig.

the renormalization group which are valid for the
Green’s functions [Egs. (16), (17), and (18)] for
any value of o and therefore also for o« =1. This
is, however, only true if a is introduced as we
did it.

Moreover, in solving the renormalization-group
equations, the perturbation theory value of « is
not relevant: only the fixed-point value is relevant
(see below).

It is also clear that the coefficients in these ex-
pressions will depend only on N, the number of
degrees of freedom and on n, the number of di-
mensions; this will have as a consequence that the
critical exponents will depend only on dimension-
ality and degrees of freedom, an expected and
welcome result.”

Actually, the N dependence can be made explicit,
using the fact that each time the “new” propagator
occurs, we will get a factor 1/N and that every
closed loop of ¢ lines will contribute a factor N.
From the structure of the diagrams on Figs. 6 and
7, we will be able to write

One can now also see that there are no troubles
with the dimension n» =2 and that the coefficients
Dy;, Cy;, and Fy; have a regular behavior at n=2.
The point is that although each loop integration in-
troduces a pole at n=2, it is exactly cancelled by
the zero at =2 in the propagator (13), since each
new loop contains this propagator once.

We now observe that the Green’s functions I'(, s,
satisfy the Callan-Symanzik equation®

< 3M+B(C\!)——1’y{§"—3y )I‘(,s)(M a,k)=0.

(20)

This is a well-known result for a fully massless
and renormalizable theory. The essential criter-
ion for the validity of these equations is not in the
first place field theory, but a regularity structure
in the coefficients Cy;, D;;, and F;; which is satis-
fied in particular for a renormalizable field theory.
This structure, which is equivalent with the valid-
ity of (20) for T';,,), T'(;,0), and I'(,,), is such that
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of all the coefficients of the logarithms, only the
ones in front of the terms In(k%?/M?) are indepen-
dent; once all the coefficients C,,, D,,, F, (p
=1,...) are known; all the others are determined.
In field theory, these relations follow from the
topological structure of Feynman diagrams and
power counting. The theory we consider here is
certainly no longer a field theory, but the loga-
rithms are generated by the same mechanism as
in field theory: the “Green’s functions” in this
theory will therefore also satisfy the Callan-Sy-
manzik equation.

One can also see the renormalization-group
equation in this context as a quantitative expres-
sion of the observation we made at the end of Sec.
II: we arrived there at a “field theory” with no
explicit parameters anymore with a dimension.
The parameter M is then nothing but an arbitrary
scale that we introduced; clearly, any other value
of the scale would have been equally good and (20)
expresses nothing but the irrelevance of the par-
ticular scale value M that we have chosen.®

The functions B(a), ys(a), and ¥ (a) are deter-
mined from the perturbation expansions (16), (17),
and (18) by demanding the validity of Eq. (20) in
each order of the perturbation theory; by doing so
one also automatically recovers the constraints of
the renormalization group on the coefficients of the
logarithms, which are of no direct interest to us.

Introducing ¢ = 3 In(k?/M?), one obtains dM /M
=—dt (for fixed ¥?); and Eq. (20) then gives

vol@)=) a*D,,, 21)
p=1

(@)= a®F,, (22)
p=2

Bla)=2 ia”“‘C,1+a[2y¢(a)+)’X(a)]. (23)
p=1

The N dependence, including only diagrams up
to two loops, can be introduced explicitly and one
gets

vola@)=a?(1/N)d,, +a*(1/N?)d,, , (24)
vy (@) =a*(1/N)fy,, (25)
Bla)=a? (21170“ +21%du>

2 1
Fdzx +ﬁf21> .

(26)

+a5<2Lc(°"+2 L ® 4

NZCa N‘c

One now forgets about the perturbation expan-
sion and one tries to directly solve Eq. (20) using
expressions (21)-(23) for g(a), y4(a), yy(@) or in

an approximate way (24)-(26). At the same time,
one hopes that those aspects of the solution of this
equation which are relevant for the problem of
phase transitions will involve only small values of
a? so that one can use the perturbation-expansion
results. Observe, however, that even small val-
ues of @® do not really justify the use of the per-
turbation results; this is an assumption.

The solution of the Callan-Symanzik equation is
determined as follows'®: (i) Using the variable

= 3 In(k?/M?) which gives —8/8/=M58/8M and intro-
ducing

r(r's)(a’ k, M) =kn_r(n..2)/2 -2SF(r,s)(ay t) (27)
(the power of & in front of F, i, is for dimensional

reasons), one equivalently obtains

9 9
_5—Z+ﬁ(a)£—ry¢—8yx >F(r,s)(0£, £)=0.

(28)
(ii) Then solve the nonlinear equation
da'(a,t) _ ,
B,
with (29)
a'(0,a)=a

(one can of course take here @ =11).

Below, we will be interested in the fixed points
of this equation; these are values of @’ that do not
change anymore when one varies ¢. Clearly, Eq.
(29) shows that these points occur when 8(a’)=0.
Moreover, when one reaches such a fixed point
one often has |¢#| =«. This last point is always
true when B(a) is calculated in perturbation theo-
ry and truncated at a given order, which one al-
ways does in practice. In this case we generally
have

Bla')~c(a' —a*)"R(a’)

where a* is such a fixed point. In this expression
m is a positive integer and R(a*)#0. The solution
of (29) is then

a(t) da’
t—t =f YWY YW 30
0 L (to) C(a'—a*) R(a ) ( )

When «(t)= a*, one clearly sees that |¢| = . (iii)
The solution of (20) can then be written (as one
can easily verify)

F(r,s)(a) t; k) :k"-r("—zVz_st(r,s)(a'(ta (1), 0)
t
X exp (—f [ryfa'(t’, @)
0

+sy,(a’(t', a))] dt') .
(31)
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When =0 (i.e., t= =), and a’(t, a) goes to the
corresponding fixed point a*, one obtains

~ pn=7(n=2)/2 ‘zs(kz/Mz)"7¢(“*)/2 -SYy *y/2 .

I‘('.S) k+0

(32)

This is only the leading term in the asymptotic
expansion: we are not interested here in getting
the next-order terms, which are suppressed by a
solid power of (k*/M?). It would even not make
much sense to include these “correction” terms,
since we already neglected earlier such powers.

The result (32) corresponds exactly to the
scaling behavior of the correlation functions (for
the physical correlation functions, one puts s =0).

For the inverse propagator we obtain

~kz-2y¢(oz*), (33)

which leads immediately to the value of the criti-
cal exponent 7,

Lz,0)

n=2y4(a*). (34)

In field theory and also in the context of the re-
normalization group, one can determine the anom-
alous dimension of an infinite set of other local
operators as, e.g., :¢’(x):. Here one can also in-
clude derivatives. Here we will only calculate the
anomalous dimension of :¢*(x):, which is directly
related to the critical exponents y and 7.

This operator is also important for getting the
behavior of the theory for T# T,; it is of no real
interest to treat the term 3m?¢? in (2) to all orders
in m?, i.e., to calculate the correlation functions
with m?#0, since only the case of small m?(T=~T,)
is needed. Therefore one treats ;m?¢® as a per-
turbation: all correlation functions for small m?
can be obtained by first calculating them in the
case m? =0 and then adding a correction which can
be expressed in terms of correlation functions of
the type (:¢*(x):¢(x,)* ** ¢(x,)).**** This also shows
that the properties of the theory for m*=z 0 or m?®
<0 are equivalent, i.e., the scaling behaviors for
T2 T,and TS T, are the same. The relevant
equations and definitions follow.!!

(i) Introduce the one-particle irreducible Green’s
functions AT'(,,(k, M, a) connected in the usual way
with the Fourier transform of

PP (0): p(x)p(x,)) .

(ii) This function satisfies a Callan-Symanzik
equation of the form

S ?
(M mw(a)ﬁ'mz(“)) AL (k, M, @) =0.

(35)

The diagrams contributing to AT (,, are the same
as the ones for I'(, ,); one has
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AT (,,=1+0a%C ,(N,n) In(E®/M?) +-++ , (36)
and we have introduced the normalization condi-
tion AT,(M,M, a)=1. Combining (35) and (36),
one finds
ye(a)==2) a?*C,,. 37
]
Up to two loops, one obtains [using (26)]
1 1
'yoz(N,n, o?)=-2 <azﬁ cn(n) + a“Fcéf"(n)
ratl o) (38)
N 21 .
The connection with the exponent y is
1/y =1+y4,2/(2 - 1n). (39)

The singular behavior of some other physical
quantities parametrized by other critical exponents
are often expressed in terms of n and y,'* leading
to the so-called scaling laws. We do not go here
into a detailed discussion of the possible validity
of these relations in this framework: we give only
some remarks.

(a) From the scaling behavior of the correlation
functions (32) (which also contain the behavior of
the correlation functions involving :¢%(x):—each s
corresponds roughly to the insertion of one oper-
ator :¢?(x):), one can obtain the relation y =(2 - n)v.
In fact, (39) and v =(2 ~n)v are on the same foot-
ing: a direct reasoning gives first 1/v=(2-17) +Y o2
and then (39).

(b) An important set of scaling laws involves the
behavior of the energy correlation function, which
is directly related to the specific heat. The rela-
tion =2~ [y/(2-n)] n=2 - vn can be obtained by
assuming that the operator :¢?*(x): gives the most
singular behavior in the energy fluctuation, which
cannot in general be justified. Clearly, at T=T,
the term :$%(x): no longer appears in the “energy
operator.” One finds by direct calculation that the
relation a =2 - vn does not exist and that a there-
fore has to be treated as an independent exponent.

(c) The critical exponents 8 and § cannot be cal-
culated directly: as far as I know there is no ther-
modynamic relation that connects g and 6 to one of
the operators :¢?(x):. However, there is really no
problem: although it is impossible to derive an
explicit equation of state or to calculate the singu-
lar behavior of the total free energy, one can es-
tablish that these quantities scale. General ther-
modynamic considerations allow us then to obtain
B and 6—via scaling relations—as a function of the
other already calculated exponents.

A more complete discussion of these points—also
in the context of the ¢ expansion—is published else-
where.!*
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IV. NATURE OF THE FIXED POINT

Before discussing the possible position and na-
ture of the fixed point, it is of some interest to
study in detail the effect of the summation of the
bubble diagrams. From Egs. (32) and (34) we ob-
tain for the four-point function

T 4,0)R) =k*" (R2/M?)™. (40)

If we calculate the same expression by including
only the “Born” diagrams (see Fig. 8), one easily
obtains

L 4,0y(R) ~ B, (41)
while to lowest order in the coupling constant A,,
Lo~ A~ AT,

Remembering that 1 is very small (n=20.05), one
sees from (40) and (41) that the contribution of the
chain diagrams of Fig. 1 has almost produced the
correct k dependence of I' , ;,(k); the additional
small power of & has then to come from the loga-
rithms. Since in general the magnitude of this ad-
ditional power is a measure for the fixed point val-
ue of the coupling constant, one expects that this
value should be small.

This is a major difference with Wilson’s € ex-
pansion; in his approach the full 2 dependence of
T'(4,0)(%) has to come from a summation of loga-
rithms. For small € =4 - »n, (40) shows that the
power one has to generate is also small and the
fixed point value of the coupling constant is then
also expected to be small. The ¢ expansion shows
exactly this behavior: the fixed point value is ~¢.
However, when ¢ gets larger, the relevant coupling
constants get also large and one can expect difficul-
ties.

To get some better understanding of this, we
have to introduce more quantitative results.

(i) We define the renormalized and dimensionless
coupling constant in 4 — n dimensions as g,; the
usual coupling constant A, itself is then x,=M*"g, 1°
Sometimes one takes M =m; this is a misleading
procedure. Note that at T=T,, m=0, so that then
also A,=0. Of course, as long as m#0, one can
do the identification but then the small momentum
limit (but still 2>m) is not straightforward.

AN

FIG. 8. Set of the “Born” diagrams giving rise to 41).

(ii) If one calculates I, ,,(k) for small values of
€, one finds (up to the one loop diagrams and ex-
panding in €)

r(q.o)(k) =M*"g +g2a® In(k/M)+g2X O(e)+- -+ .
(42)

To obtain this expression, we have subtracted a
constant counter term of the form gf/e; the second
term in this expression refers to the four-dimen-
sional value of the bubble diagram. We have here
also properly taken into account the crossed dia-
grams; we also neglect any reference to internal
degrees of freedom.

(iii) Now we want the logarithmic corrections to
build up the correct & dependence of I', , as ex-
pressed by (40). To lowest order in €, this can be
achieved as follows:

T 0k ~g,+eg, InM +(1 - 8) g% a® In(k/M)
+6g2a%In(k/M). (43)
Taking ¢ =6a?g,, one obtains
T ,0)(k) ~g,+eg,Ink+(1 -05)g%a*In(k/M)
~g, kE(k/M)LO-0)/01e, (44)

Comparison with (40) would imply n~e¢; below we
will see that 6=1, giving n~O0(e?) as it should.

(iv) In our approach, as explained in Sec. II, the
chain diagrams led to expression (41) for I' , ,,; to
lowest order in ¢, this leads to the requirement
that the total logarithmic contribution of the single
bubble should be used up to produce k¢. This im-
plies that one should take 6=1 in (44).

(v) This result is also obtained directly via the
renormalization group, using the ¢ expansion.
Within the context of the Callan-Symanzik equation,
one can prove quite generally that the fixed-point
value of g, to lowest order in ¢ is given by*®

B(gryé)uﬁ(gr)_égr=0) (45)

where B(g,) refers strictly to the four dimensional
case.

For ®* theory, one has B(g,)=a’%+0(g3), lead-
ing immediately to the fixed-point value (called g¥)

gr=€/a+0(%, (46)

which is exactly the same result as obtained under
(iii) for 6=1. Here it is essential that the wave-
function renormalization does not contribute to the
terms of order g2 in B(g,), a well-known feature of
®* theory.

Of course, the arguments given here cannot be
considered as a justification of the summation pro-
cedure outlined in Sec. II; they nevertheless give
an indication that the assumption allowing a sum-
ming up of logarithms via a Callan-Symanzik equa-
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tion or of powers as we did, are presumably on the
same footing.

In three dimensions, we have calculated the co-
efficients defined by (19) for the one-loop dia-
grams. Using (24), (26), and (39), we obtain

B(a)=(2/N) a®[c,(3) +d,(3)],

n(a)=(2/N) a*d,(3), (47
yHa)=1- (1/N) e?{2¢,(3)/[2 - n(a) I},
with

c,(3)=16/(27)? and d,(3)=4/3n2.

One immediately sees that g(a)>0 for a close to
the origin [i.e., if a >0; this is not a restriction for
what follows, since one can also write da/dt =ad*a®
as da?/dt =% a*(a?)?]. This implies that the origin,
i.e., =0, is a possible stable fixed point for 2 —0;
this fixed point is of course not interesting. The
next stable fixed point would then be the second
zero of B(a) away from the origin: to find this we
would have to calculate p(c) at least up to order
a’, i.e., up to three loops. Logically, it is pos-
sible that this happens; the theoretical structure
of this paper would then lead to very difficult prac-
tical calculations.

In fact, we now present arguments indicating that
the first zero of g(a) away from the origin is pre-
sumably the relevant fixed point. If this actually
happens, then it is a priori possible to find this
zero if p(a) is known up to order o®, i.e., up to two
loops (the diagrams are represented in Fig. 7).

The first point consists in the observation that in
calculating the logarithmic corrections as explained
in Sec. III, we have used the propagator (13) for
which we have already taken the small momentum
limit; therefore, these corrections are strictly
speaking only valid in the small momentum limit.
In other words, this expansion should be taken at
the fixed point value a* and the usual arguments'®
that one makes in order to decide whether a fixed
point is stable or unstable cannot be used here any-
more.

Let us go back to the Wilson expansion to see if
we can understand this point better. Equation (46)
shows that the fixed-point value of the coupling
constant is mainly fixed (here to lowest order in ¢)
by the bubble diagram that builds up the k¢ depen-
dence of I' ,,(k). In our method, we loose the ex-
plicit connection with the fixed point value of the
coupling constant but it seems reasonable to extra-
polate that our summation of the bubble diagrams
(with £—0) leads us automatically to the fixed-
point value a*. At the same time, one can under-
stand why the ¢ expansion gives an approximate
expression for this fixed point value only by calcu-
lating the lowest-order corrections [see (46)],
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while we have to go to two loop corrections. In the
¢ expansion, the full power present in (40) comes
from the summation of logarithms, governed by a
Callan-Symanzik equation; in our approach we have
split up the limit 2 =0 by first doing the bubble
summation and then summing the remaining loga-
rithmic corrections by a Callan-Symanzik equa-
tion. Then we no longer have an equation similar
to (46). It is also no surprise that our 3(a) is
positive around the origin, since a large “negative”
piece present in p(g,,¢) has been used up for the
bubble summation. However, I have not been able
to make these points as quantitative as the ones
formalized in (42)-(46).

Clearly, the explicit higher-order calculations
can only give us more insight. From (47) and gen-
eral positivity arguments one finds that the fixed
point value a*? has to be in the range 0.1-0.2 in
order to have n=~0.05. One can also treat a*? as
an unknown parameter, leading then to a relation
between n(a*) and y(a*); one finds n(a*)~0.12 if
y(a*) is fixed to be 1.25.

It is often argued that the arguments presented in
Sec. III are of purely dimensional origin; this is
certainly not true, although as usual in physics
dimensionality plays a role. To illustrate this
point we will show that arguments apparently as
“trivial” as those used in (43) and (44) will allow
us to get within the ¢ expansion the terms up to
order ¢ in the critical exponent y, without doing
any calculation! Accepting then the scaling laws as
one usually does, it gives the terms up to order ¢
in all other critical exponents.

To see this, let us “calculate” the contribution
to AT ,, [for the definition, see (35) and (36)]: to
lowest order, this contribution will be

AT ,,=1+3ad%g,In(k/M), (48)

where a? is the same number as in (42). Note that
we never have to calculate a?! The factor 3 comes
simply from the observation that in (48), only one
bubble appears, while in (42) we had to take into
account three identical bubbles, coming from
crossing.

Summing up (48), using (46), we obtain

AT )~ (R/M)/2, (49)

This gives immediately y 4 =~ 3 € leading directly
[using (39)] to

y=1+%e+0(e?). (50)

For ¢ =1, this gives y =1.17 to be compared with
the correct value y =1.25. For fun, if we calculate
(39) exactly, we obtain 1/y =1- 1e, which for ¢ =1
gives y =1.20.

The same arguments can be given when there are
N degrees of freedom. Using then a property of
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Tpea = 0440 g+ 84c0pq + 0540,., Namely,

Z:Iabxylxycd = (N + 2) 6abﬁcd + 2Ialzcd,

Xy ¥

one finds instead of (42),

T 4,0y(F) =I1peq <M“"'g,+ (N+8)g2a? ln% I .>;
instead of (48),

AT (5 (R) =8 (1+(N+2)gia21n§ R .>;

and instead of (50),
y=1+[(N+2)/2(N +8)]e +0(e?), (51)

which is a well-known result.

Again if we use the exact result 1/y =1
- [N +2)/2(N+8)]e for N=3 and ¢ =1, we find y
=~1.30 as compared with the best-known value y
~1.38.

It is amusing to compare these simple argu-
ments with the rather involved calculations in
Ref. 1, especially the discussion in Sec. 4 and the
result after Eq. (4.50), v=0.5+ € +O(¢?), which
is exactly the same as (50), since v=3%y to this
order in €.

It should be emphasized that the arguments
presented here are by no means sloppy: it is clear
that the transition from (48) to (49) is as rigorous
as solving the Callan-Symanzik equation as one
can directly verify. In this respect some addition-
al clarification can be gotten by tracing back the
origin of the term -¢g, in (45): this term comes
from the dimensional factor M*" in (42). One has

Ble = (M5 ), (52)

where \4=M*"g, +- -+ and one gets directly in (52)
the term —-¢g,. Therefore, —¢g, is the amount one
picks up from B(g,) in order to obtain the jump in
I',, from M® to k% this is a dynamical phenomenon
and a very interesting aspect of the ¢ expansion.

V. CONTRIBUTION OF OTHER INTERACTION TERMS

When n becomes equal to 3 or smaller, one has
to include higher order terms in 3C as we explained
in Sec. II. For n=3, only (2,8°®°)? contributes:
for many of the later arguments it is instructive to
discuss this case first.

The calculation of the corresponding Green’s
functions is straightforward: we have calculated
the diagrams of Fig. 9, also including the many
diagrams one obtains by crossing and the already
calculated ones of Fig. 6. The details of some of
the calculations are collected in the Appendix.

We find

Nl
7K

(b)

(d)
(f) :

FIG. 9. Typical diagrams involving the vertex ®¢.

%

r _ 73 .. R?
(6’0)—)\+(3N+22)WX lnm

A8 15 i,
N @7 wr

16 1 k2

F(2'1,=a+—-ﬁ—w aslan

B 5(N+4) (N+2)m°

k2
Te@ne ~ “NIgE+,

4
1"(2'0)=k2 <l—m az an

N+4)(N+2)m® 2] k2
g X ),
(53)

8 L, (N+4)(N+2)7®
e, ) =gy &+ 5y

A2 4o (54)

In these expressions X stands for the coupling
constant corresponding to Fig. 9(a); in T, ,, we
have omitted the over-all factor (completely sym-
metric in all indices):

Iabcdef = 6abﬁcdaef'*' .

Similarly, inT', ,, and ', ;, we left out the factor
845 and T », has no contributions to this order.
The Callan-Symanzik equation will now contain
two B functions, B,(a,x) and 8,(a,r), which can
easily be obtained from (53). We do not go into a
detailed discussion of their properties: the results
are uninteresting and can be seen directly from
(53) and (54); one notes that because of phase space
factors—see also the corresponding formulas in
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the Appendix—the effect on a and the contribution
to n(a, 1) of ®° are totally negligible. Since the ex-
pression for I ,, shows that the origin is a stable
fixed point for A when -0, one expects that one
simply can put effectively A=0. One can also un-
derstand easily that the origin is infrared stable
for all terms (®2)* (p= 2), when n and p are related
as in (4). These remarks are of course only true
if the corresponding interaction constants are pos-
itive, which one expects from general positivity
arguments of the total energy when one considers
fluctuations around the equilibrium value.

We now consider what happens if n<3. If n is
close to 3 one can use an ¢ expansion for ¢, where
now € =3 —n. When this ¢ is no longer small, one
can again do a bubble summation, where the ele-
mentary bubble is now as in Fig. 9(b). To do this,
one first performs a canonical transformation
similar as the one done in (7) by adding a term to
the Hamiltonian of the form

_)\_1, T (P +NIE9E2) (4 + 118°82),
a

where 1’ is so chosen that the original term ¢ is
cancelled and instead one then obtains a new inter-
action of the form 27,x%®%®?, where the propagator
for the field ¥* is a constant. One then sums the
bubbles present in the propagator for y¢, leading to
a“new” propagator proportional to #*®~", After these
transformations, the coupling constant with a di-
mension has disappeared and one will again get
only logarithmic divergences for all dimensions.
The procedure sketched above can be repeated
each time a new interaction comes in the picture

[see (4)]. Obviously, phase space continues to be
J

very unfavorable for these new interactions. It is
therefore rather plausible that all these interac-
tions will have no real effect on the problem when
n comes down to 2 and the formulation as presented
in Sec. III remains valid. But clearly, one will
keep scaling for all dimensions even if some of
these new interactions would not disappear when
k=0,
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APPENDIX

To calculate Feynman diagrams coming from the
interaction terms :®%(x):, we use the method of
dispersion relations. A direct evaluation of the
relevant diagrams becomes soon very complicated;
via dispersion relation techniques, the evaluation
becomes, in general, trivial. We emphasize, how-
ever, that the simplification of this method is
strongly dependent on the condition » =0; but that
is all we need.

The important formulas that we need to know
correspond to the evaluation of the contribution of
a Feynman diagram as represented in Fig. 9(d),
where & is the external momentum. We consider
here a general diagram with » internal lines; again
the number of dimensions # is a continous variable.
Such a diagram gives a contribution equal to (we
consider here only one degree of freedom)

o ()7L (... (4D : ’
IE)(kz’”)'<(zn)"> 1) f_iffd"p"‘/ "‘(’“Z“)' (A1)

The index E refers to euclidean; to get a dispersion relation we make an analytic continuation of the
momenta, the so called Wick rotation. The corresponding formula corresponds then to the well-known

expressions of relativistic quantum field theory

lf,"(kz,n)=-(z')”((—2—}77,>mr—1! (—;iif%ﬁ---jd"pm (P2r.1+i€)[(k—zi:l>,->2+i€} (A2)

where we have used the correspondence (M stands
now for Minkowski space time)

(pz)M =P02 - (-f) )2 - (pz)g '—‘poz + (I’) )27
(%)=,
(d"P)y=9d"P)g,

I(R2,n) =1 (- k%, n).

(A3)

Expression (A2) is an analytic function in k2 with
a unitary cut along the positive k2 axis. From
Cauchy’s theorem one then gets

o p(r)(klz , n)

1
LP®s =gz ), ¥ - #Pric

dr", (A4)

where p‘”(k2,n) is up to a factor 1/i the jump over
the cut of (A2). We can get this jump by making



the substitution'® in (A2),
(P} +ie)™ = (-2m) 5(p?) 6(pY).
We then get

e m= (s ) 7 (LT J ampastonocs)
x (21r)"6""<k—zi:pi>, (A5)

which is nothing but the phase space for the decay
of a scalar particle of mass k2 into » identical
massless scalar particles.

Below we will derive the following result:

PPk ) =y RO, ), (a6)
, 2 _ T (n=1)/2 7l
Rk ’”)"<2"~2r Tn= 1)]>

w_ [T@-2)"T[3(n-2)]
I[Z7r(n-2)[T{Z(r- D](n-2)}

(A7)

J

kr(nqz )=n

13 SCALING BEHAVIOR OF SECOND-ORDER PHASE TRANSITIONS 4091

For the special case of #=3, one obtains

2(,”)3 /2(8.”)-"1

P ) = T AT - D]

k™S, (A8)

The derivation of (A7) is obtained as follows:

(i) One first calculates the decay of the particle
with mass k? into one zero mass particle (p2=0)
and another particle with mass (k- p,)?; then the
decay of a particle with mass (k- p,)? into a zero
mass particle (p2_, =0) and another particle with
mass (k=p,—p,.F, ...

R(R2,n) = f d"p,8(p%) 6(p?)
@

Tl
X 5(")(’3—1’,-— Z Pi)] .
=

The last factor is clearly R‘"""((k -p,)%,n) .

2
RO )= [ s, [ dmk, [ 7, 603, - M) 6(52) 07X (k= p,) ~ Ry ) ROV, )
[

7=1)

2
=f de_lS‘”(kz,M";_l,n)R""”(Mz n)
0

where S®(k2 M?,n) stands for the decay of a par-
ticle with mass k2 into a massless particle and a
particle with mass M2,

(ii) After a trivial calculation, one gets

S@) k2, M? 1) =Q, (k2 - M?)"3/2(2k)™2, (A10)

where the factor Q,=27"1/2/T'[3(n - 1)] comes
from the angular integrations.

(iii) Equation (A9) can now be iterated to give
(2=

(Mi - Mz_l)n-a

w2
(r)(p2 =@ )2 "amz
RM(k2,n)=(R,) . daMz,, 2@ )

M3 2
s o (M3 = M2)™S  (MZ)"
X J; sz 2(2M3)n-2 2(2M2)n-2 .

(A11)

(iv) In each of these integrals one introduces the
scaled variables x,

(A9)

Xy =M%/M21+1, dx{ =dM’3/M%ﬂ;

we then get

qin=1)/2

R(”(kz,n) = <Fer E(n— 1)

9 (ﬁ j: dx(l _ x)n\ax[ j(n-e)-n]/z).

i=2

rel
kr(n-e)-n

(A12)

The last integrals are well known

t a.p L(a+1)T(B+1)
J; dx (1 -x)*x “TT(a+B+3)

Writing the factors, one immediately finds (A7).
In integral (A4) one needs to introduce, in gen-
eral, subtractions and some care with the infrared

behavior.

We can now easily calculate, e.g., in three di-
mensions the contributions of Figs. 9(b)-9(d); us-
ing (A8), one gets
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p®(k2%,3)=1/3116m,
p(k2,3)=(1/412"72)k, (A13)

p®(k2,3)=(1/513x2° 1*)k2,

This gives (we give only the renormalized results):

I (k2,3)=- (1/313272) In(k2/M?),
I8 (R2,3)=(1/4128 72k, (A14)
IS (k2,3)=(1/513 X 21° 15) k2 In(k2/M>).

The diagram of Fig. 9(f) is now also easy to cal-
culate: using I{’(k2,3), it is proportional to the
vertex diagram of Fig. 6.
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