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Exponents for sound attenuation near critical points in solids*

K. K. Murata
Sandia Laboratories, Albuquerque, New Mexico 87115
(Received 20 October 1975)

The expansion in 4 — d = € is used to calculate exponents governing sound attenuation above a critical point.
For SrTiO;, exponents differing from previous predictions are predicted to govern the sound attenuation for
all directions and polarizations. The predictions are also compared with recent measurements on BaMnF,.

A number of authors''2 have discussed acoustic
sound attenuation above a critical point in solids
resulting from coupling to critical fluctuations.
The fluctuations occur in an n-component field ¢,,
i=1,2,...,n, describing the “soft” phonon nor-
mal modes at the phase transition. The most pow-
erful method invoked thus far for deducing attenua-
tion exponents involved the use of scaling argu-
ments?; however, several incorrect assumptions
were made.

The more general €-expansion analysis indicates
two or possibly three different exponents: p,, gov-
erning the attenuation of sound which couples
strictly to the scalar dot product %-3 and p, Or
p;, arising from coupling to any tensor &;®,. The
exponent p,, through Ward identities, can be ex-
pressed in terms of the usual static exponents
(v,m) and has approximately the value given before
within various approximations for longitudinal
sound. The exponents p,, pj = p, it turns out cannot

be expressed solely in terms of the static expo-
J

nents v and 7 but are also related to the so-called
anisotropy crossover scaling exponents® ¢. The
interesting prospect raised here is the observa-
bility of the crossover exponents in sound-attenu-
ation measurements. Estimates of the coupling
constants in SrTiO, show that p, or p} should domi -
nate for all directions and polarizations even far
from T.. This corrects the results of Ref. 2,
where the analysis was oversimplified. Attenuation
governed by only p, is, however, possible within

a recently proposed Hamiltonian* for BaMnF, and
the predictions are compared below with the mea-
sured exponents. From general arguments, the
new exponents are also shown to appear in the gen-
eralized elastic constants near T,.

For concreteness we shall discuss first the case
appropriate to the cubic perovskites with n=3. Re-
sults below not valid for general n will be indi-
cated. The Wilson functional, including coupling to
strains e;;, has the form®

Fdel}, {eh) =-12- qE (Z (W3 +20%2 +1,49)2,(q)2(~q) + Z:co(ri, wq%Q (i, 9)Q (, —q))

+Z[%(3 <3+ % (@} + P35+ D) +Ae, @@, +Be, (2,8 ,+8,9,)+ Ce12<1>1<1>2+permutations] ,
1

where we have assumed local coupling only and /
denotes a sum over lattice sites. The e(!) are to
be considered expressed in the acoustic normal
coordinates @ (i, q) in the usual way,® ¢,(g, 1) is the
generalized elastic constant in the absence of soft -
mode coupling, u denotes the polarization, and
Wi T - T

The dominant fixed point of (1), for »,#0 or X,
# 0, has not been resolved®” for n=3, even if
strains are neglected. The competing fixed points
are the isotropic Heisenberg fixed point (HFP) with
uf¥, A\¥=0, and the cubic fixed point (CFP), with
uf finite and A}=0.% The difference between the
Heisenberg and cubic exponents is found almost

®

negligible for n=3. However, the strain coupling
in (1) creates a complicated directionally depen-
dent ®* interaction, which has not been fully stud-
ied. We shall assume for simplicity in the follow-
ing that the Heisenberg or cubic fixed point is ap-
propriate in spite of strains.®

The attenuation exponents are deduced from the
time correlation functions

Tyy0(1-2)=(2;(1)2,(1)® ,(2)2,(2)),

where the brackets represent the canonical ensem-
ble for the Hamiltonian corresponding to (1). In

the limit of small -sound wave number ¢ and small-
sound frequency w (g§<<1and w7, <1 where ¢ is
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the coherence length and 7, is the ¢ relaxation
time), the attenuation is proportional to some lin-
ear combination of T';;,,;(¢=0, w=0). As shall be-
come clear below, the I',,,; (0,0) do not in gen-
eral behave according to a single power law in ¢
=(T -T,)/T,. Within the € expansion this is indi-
cated by the fact that if one assumes a single pow -
er law, then one does not in general obtain a well-
behaved ¢ expansion for the exponent. However,
one does obtain a well -behaved € expansion and a
good single exponent for the following:

Trl”“;”(o, 0) = K t™*1,
rxz;xz(o’ 0) ~ K,t™*z
and

Ty = Dipsoo ™ 2K5E2 .

11311 11522

One can now obtain the other I';,,, from symmetry;
for example,

| PP =K1+ 12K§t-pé/9

for n=3. At the HFP, a rotation in & space shows
that p,=p}. Note, however, that this does not im-
ply K,=K} unless u,=0, A, =0, since such coeffi-
cients depend on the approach to the fixed point.
We next discuss the exponent calculation. It has
been argued that the dynamic critical behavior of
& is not affected by coupling to propagating strain
fields.® We therefore expect the soft-mode dy -
namic susceptibility to retain its decoupled form:
x(g, w)=q"*"f(w/q**"", q¢). This form applies
if the soft-mode response is completely over-
damped. Neutron scattering measurements indi-
cate this behavior is present! within 6 K of T, in
SrTiO,. Second-order €-expansion results have
established that!! in the above 0=61n4/3 -1,
whereas conventional theories of dynamics assume
= -1, We shall use the former value, although
the distinction becomes significant only for d=2.
Through general scaling arguments, or even
less general mode-mode coupling arguments,® one
obtains p, = V[2y,(u.,) - (2 - 6)n+ 6 —d] where y,(u.)
is the exponent for the static vertex function

T@s, =3 S @M F1),2)2,6)

~t-‘r4(u.,,)v,

in which the sum is taken over positions only and
the times are set equal. The Ward identity I'®
=9x"1(0,0)/3(T - T,) allows us to equate v,(u.,) With
17 -2+1/v, and therefore one can express p, in
terms of usual static exponents:

P1=2+(2+0m)v —dv. (2)

Similar arguments lead to

P2 =Py + 274 (1) -7, )V,
@)
ph=py+ 2A v us) - v, )] v,
where v,,(u.) is defined as the exponent for (&,(1)
x &,(1)®,(2)#,(3)), and so forth. In contrast to y,,
a Ward identity which relates y,, or ¥4, to n and v
is not available. However, a straightforward dif-
ferentiation of the free-energy scaling function?
shows that the so-called crossover scaling expo-
nent ¢ for the variable ,®, is given by

(p =[74t(um) - Yq(un)]u"‘ 1
and that for the variable &% — &2 by

@' =y (ua) — v, )]V +1.

At the HFP, ¢ = ¢’ was derived to O(e€?) by Wil-
son.’2 At the CFP ¢’ was derived to O(e?) by Aha-
rony.** Our results for y,, (HFP) and v, (HFP,
CFP) below from Callan-Symanzik methods are
consistent with their expressions. However, ¢
at the CFP has evidently not been previously de-
rived, and thus the expression below for y,, at the
CFP is a completely new result.

The method for calculating v,, follows that of
Brézin etal.* The vertex I'® is Brézin’s I'%2
and he finds for the HFP

6e(n+3)
(n+8)°

(n+2)e l:l"’

Yalue)= = TE52 ]+0(<3) (HFP).

In addition for the CFP, we obtain

_ 2m-1)e
valua)= = =

€
x [1+ oz (- 212+ 1600 _11n2)]

+0(€®) (CFP).
The result for y,, can be calculated in a similar
way and we obtain

TABLE I. Sound attenuation exponents p;, P,, and pj
from the € expansion to O(€?) extrapolated to three di-
mensions.

n=2
n=1 Heisenberg n=3 n=2 n=3
Ising (planar) Heisenberg Cubic?® Cubic
py 1.39 1,36 1.34 1.39 1.33
Py 1.73 1.86 1.39 1.84
pY se 1.73 1.86 1.92 1.87

2 Has less stability than the Heisenberg fixed point
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TABLE II. Sound attenuation function g in Eq. (4) for various polarizations 4 and propaga-
tion directions § for the [-L, -i—, %] R-point soft mode in the perovskites. The form of g’ in Eq.
(6) is also given by this table with the substitutions discussed after Eq. (6).

q W 8@.m)
(1,0,0) longitudinal 1K (A+2B)2t P14+ 4K (A—B)*t P2
(1,1,0) longitudinal 1K (A+2B)2t™P1+ LK YA - B)2t™Po+ 1K,C*t7P2
(1,1,1) longitudinal 1K (A+2B)2t7P1+ 1K, C? P2
(1,0,0 0,1,0) K,C*t™P2
1,1,0 1,1,0 KyA-B)2t P2
(1,1,0) (0,0,1) 1K,C2t7P2
(1,1,1) transverse %K'Z(A—B)Zt'pﬁﬁKZCzt'PZ

2¢ €n? -4n - 36)] 3

= - — P
Valta) =~ e[ 1 - LT [ 0(e") (FP)

2 € N 2]

__35[1+ ————54n2(—212+ 268n - 651%)

+0(€) (CFP).
At the CFP, vj, is distinct from y,,:
(n —2)e

7£g(u¢)= - T

X[1+

Estimates for p,, p,, and pj from Egs. (2) and
(3), using results to O(e€?), are given in Table I.
We note that if one assumes y,,(u.,)=0, as done in
Ref. 2, the difference p, —p, would be somewhat
larger.

The predicted behavior of sound attenuation in
various orientations and polarizations for the per-
ovskites is easily worked out now from symmetry
arguments. The sound amplitude attenuation per
length is given by

2,21;2 (4n% + 401 — 53)] +0(€%) (CFP).

a(@, w= y&@ w, 4)

w2
where p is the unit-cell mass and »(g, 1) is the
measured sound velocity. The functions g(g, u)
are given in Table II for various directions § and
polarizations p. The point we would like to make
is that longitudinal sound even in high symmetry
directions couples to the “transverse” exponents
p, or pj. There is currently no good way to cal -
culate K,/K}. However, we note that K} is not
negligible from Table II since attenuation of sound
with § parallel to [110] and polarization [1, 1, 0]
has been observed' in SrTiO,. From Ref. 5 we
obtain A/B=-1.6 and |C/B|=1.9 for SrTiO,.
Since the ratio (A + 2B)%/(A — B)? is approximately
0.02, it seems likely that p/ should completely
dominate [1, 0, 0] longitudinal attenuation.

The experimental situation for SrTiO, is char-
acterized by an extremely wide factor of 3 spread
in quoted exponents,*s'!® with a mean of about 2.
One trend is that exponents for sound involving p,
are higher than those involving p} although both
are comparable at the HFP and CFP. Since A,
scales to zero slowly,® a possible explanation is
that one is not observing true exponents in the
experimentally accessible region. The present
finding that all exponents should correspond to p,
or pj indicates that we are much farther from un-
derstanding SrTiO, than the results of Ref. 2 would
indicate.

It may be that the problems associated with the
perovskites are not as severe® in orthorhombic
BaMnF,. A free-energy functional consistent with
experimental results obtained so far on BaMnF,
has recently been proposed by Fritz*:

F=F uaat Z [4b,(®%+ &%) + 30,5202
3

+ %(Blell + B€00 + Byeys) (B3 + B3)

+ 3,005 (0% - 32)] . (5)

For this functional, in contrast to (1), longitudinal
attenuation along any axis depends only on p,;
transverse attenuation depends only on pj. The
exponents measured by Fritz correspond to p,
=2.2+0.3 and p,=3.9+0.1. These values are much
larger than those obtained from Table I for the »
=2 fixed points of (5) for three dimensions. How-
ever, a comparison with the € =2, Heisenberg
(planar) results p,=2.2, p5=3.5, suggests two-
dimensional fluctuations. This is consistent*

with the planar nature of BaMnF,.

The result for the generalized elastic constant
follows from the observation that @ appears in (1)
only in quadratic form and can be integrated out
exactly. Since this is true in the presence of a
field coupled to @, the @ susceptibility or the gen-
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eralized elastic constant must be expressible en-
tirely in terms of & correlation functions. The
correct expression is

11 1
C(a, u') Co(ay “) [Co(a) li)

The g’(§, 1) is defined in terms of the I'y,,,, at
equal time. We define singular parts as follows:
Trly;55(a=0,1,=8,)=L,t™1; Tp;,= Lat™2 Ty
-T,,, ,»=2L4"*2 and obtain a,=a, the specific-
heat exponent; a,=a,+p, —p,;; as=0a,+p;—p,. The
form of g’g, 1) is again given by Table II, provided
one substitutes L’s for K’s and a’s for p’s. For

]Zg’(a’ “')- (6)

positive a’s Eq. (6) predicts a weak divergence at
T, in elastic constants which shows up initially as
a “divergence” in the inverse velocity'? [v(q, 1)]™*
<[c(d, w)]™*/2. Of course, a, and a} are also re-
lated to the crossover scaling exponents ¢ from
Eq. (3) and the discussion following it.

Finally, we note that other second-order pro-
cesses, not just ultrasonic attenuation will be af-
fected by the a,, a} exponents. For example, sec-
ond-order Raman intensity measurements could be
used to determine a,. These could be quite im-
portant in view of the discrepancies in the observed
behavior in SrTiO,.

*Research supported by the U. S. Energy Research and
Development Administration, ERDA.

'w. Rehwald, Phys. Kondens. Mater. 14, 21 (1971);

E. Pytte, Phys. Rev. B 1, 924 (1970).

’F. Schwabl, Phys. Rev. B 7, 2038 (1973); Phys. Rev.
Lett. 28, 500 (1972).

3For a review, see M. E, Fisher, Rev. Mod. Phys. 46,
597 (1974).

‘1. J. Fritz, Phys. Rev. Lett. 35, 1511 (1975).

5J. Feder and E. Pytte, Phys. Rev. B 1, 4803 (1970).

€A. Aharony, Phys. Rev. B 8, 4270 (1973).

'R. A. Cowley and A. D. Bruce, J. Phys. C 6, L191
(1973); 1. J. Ketley and D. J. Wallace, J. Phys. A 6,
1667 (1973).

8Studies of simpler models with longitudinal strain
coupling suggest that a first-order transition results
if >0 (a <0 for =2 and 3 in three dimensions).
General cubic anisotropy may also drive the transition
first order. However, we expect to “see” the unrenor-

malized fixed points if the transition is very weakly
first order. See D. J. Bergman and B. I. Halperin
(unpublished) for a good discussion.

K. K. Murata, Phys. Rev. B (to be published).

105, M. Shapiro, J. D. Axe, and G. Shirane, Phys. Rev.
B 6, 4332 (1972).

1B, 1. Halperin, P. C. Hohenberg, and S. Ma. Phys.
Rev. Lett. 29, 1548 (1972).

K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).

3A. Aharony, Phys. Lett. A 49, 221 (1974).

UE . Brézin, J. C. Le Guillou, and J. Zinn-Justin, Phys.
Rev. D 8, 434 (1973).

15w, Rehwald, Sol. State Commun. 8, 607 (1970).

18K. Fossheim and B. Berre, Phys. Rev. B 5, 3292
(1972); J. M. Courdille and J. Dumas, Solid State
Commun. 7, 1623 (1969).

"The “divergences” in the inverse velocities in BaMnF,
are consistent with the difference in values in p; and
p4» cf. I. J. Fritz (private communication).



