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Unusual [uuw]- and [uv0]-type axes of easy magnetization have been observed in some cubic rare-earth —iron
Laves compounds. The presence of these directions of spontaneous magnetization can be accounted for, within
the phenomenological treatment of the magnetic anisotropy, by including eighth-power direction-cosine terms
in the power expansion of the magnetic anisotropy energy. It will also be shown that the single-ion model
predicts the existence of these directions. The conditions imposed on the bulk magnetic anisotropy constants
are derived. Typical values of these constants in rare-earth-iron Laves phases are calculated using the single-
ion model.

I. INTRODUCTION

The direction of the spontaneous magnetization
reflects the dependence of the magnetic free
energy of the crystallographic directions. Ac-
cording to the phenomenological treatment, the
magnetic free energy of a cubic crystal can be
expanded into a power series of the direction co-
sines (a„a„a,) of the direction of magnetization
n with respect to the cubic axes:

E(n, T) = Ko+ K, (a', a,'+ a', a', + a2 a', )

+K, (a', a', a,'),

with n', + e,'+ o.,'= 1. The K; 's are the temperature-
dependent bulk magnetic anisotropy constants. It
is commonly accepted that only terms up to the
sixth power of the direction cosines should be re-
tained. It can be easily shown by differentiation
with respect to the angles p and y (p= cos 'a„y
=cos 'a, ) that the only minima for E(n, T) occur for
a; 's corresponding to the major axes of symmetry
of the cubic system, namely, the [001], [011], and
[111]directions. Which of these becomes an easy
axis of magnetization, depends on the relative
values of K, and K,. Accordingly, it is generally
believed that the crystal-field approach using the
single-ion model would yield the same directions
of easy magnetization. The Hamiltonian is there-
fore usually written and solved only for exchange
fields, which are assumed to be parallel to the
major axes of cubic symmetry.

In recent years Mossbauer-effect studies have
been successfully usaf in order to determine the
magnetic anisotropy properties of cubic Laves
binary RFe„' and ternary R„' R,', Fe, rare-earth-
iron compounds. " In several instances the easy
axes of magnetization of these compounds were

found to deviate from major cubic directions of
symmetry. Such behavior was observed in two
main types of compounds: (i) some binary rare-
earth-iron Laves compounds CeFe„' SmFe„' and

Hope„' and (ii) ternary mixed-rare-earth
Fe compounds, ' in the course of spin

reorientation, which took place upon change of
either the composition or the temperature. In most
cases the departure of the axis of magnetization from
the major axis of symmetry takes place over a rel-
atively broad temperature interval within which n

rotates continuously over a wide range of direc-
tions. This rotation has also been confirmed by
means of neutron-diffraction measurements of an
oriented powder sample of Ho, 4Tb, ,Fe,.' Initially,
the unusual directions of magnetization were be-
lieved to be due to distortions of the cubic unit
cells.

The purpose of the present communication is to
show that such cases can be understood within
the framework of cubic symmetry. In Sec. II we
will show that the presence of K„ the eighth-power
cosine term in the phenomenological expression,
yields minima of E(n, T) for directions other than
the major cubic axes. The analysis allows one to
establish the conditions imposed on the bulk mag-
netic anistropy constants in order that the axis of
easy magnetization should deviate from these
major axes of symmetry. In Sec. III we will show
that the single-ion model, applied to the rare-
earth ions, can lead to directions of easy magne-
tization other than the major cubic axes of sym-
metry, for various values of the crystal-field
parameters. In Sec. IV we shall obtain the values
of the magnetic anisotropy constants Kl K2 and

K, for several RFe, compounds and show that K,
is often of the same order of magnitude as Ky and

K,. Section V includes a short discussion of some
experimental results.
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II. PHENOMENOI. OGICAI. APPROACH

Since the retention of the sixth-power cosine
term yields only E(n, 7) minima associated with
the major axes of symmetry, the expression for
E(n, T) [Eq. (1)]was expanded to include the eighth-
power term:

E(n, T) = K, + K,(o. ',n,'+ a', a,'+ n,'a', ) + K, (a',n,'a', )

and K, in units of K„we therefore define K,' = K,/
K, and K,' = K,/K, . A straightforward calculation
(see Appendix) allows one to determine the con-
ditions imposed on the K,' 's which account for the
presence of axes of magnetization other than the
major axes of symmetry. These conditions for
[uuw]-type directions are

-2&K2&2 and ~(K2'+2)'&K,'&0
4 4 4 4 4 4+K, (o.,e, + a,a, + a,o. ,). (2) or (sa)

The conditions for an extremum in E are

QE—=—=0
ap ay

(3)

The extremum is a minimum if, at point (P„y, )
which satisfied conditions (3),

2&K,' &4 and —,(K,'+2)'&K,'«v (K,' —1).
The conditions for a [uvO]-type direction are

0&K,' & —~

and (sb)

~) 0 d (P'v') 0 (4a)

Application of conditions (3) and (4) to the first and
second derivatives of (2) gives the restrictions
imposed on the K, 's in order to obtain minima
for E. The results indicate that such minima can
exist for directions of n parallel to the major axes
of symmetry and also for crystallographic direc-
tions of type [uure] (P=y) and of type [uvO]. These
additional directions exist only for K, & 0. For the
sake of conciseness, it is helpful to express K,

and the discriminant is positive definite, i.e.,
ez(ll, , r)S*E(P,,, r, ) & E(P, n'&)*, 0

BP By BP By

2&K' .

Figure 1 represents, in the K,', K,' plane, the
regions with the different possible axes of mag-
netization. Within the approximately triangular
region ABC, the axis of magnetization is of type
[uuzo]. Within this region 8= cos 'a„defined as
the angle between n and the [001] axis (see insert,
Fig. 1), has values between 0 and 54.4'. Lines
of constant 6) have been plotted in the ABC region.
The angle 8 changes continuously across the AB
boundary but shows a discontinuity, when crossing
the AC or BC boundaries. The cross-hatched re-
gion in the neighborhood of A corresponds to a
region of local minima of E for [uuw] types of
magnetization. Such directions will therefore not
be stable. Region CED is similar to ABC, in that

Kj =Op K2=2gR (ioo]

-O5—

ii -t,O—

-).5—

2 O [)QQ] [uvo] piO]

I

-2
I I

Q I

Kp/Ks

FIG. 1. Boundaries of regions corresponding to different easy axes of magnetization in the E'j =E &/E& and K'2 =E2/Kg
plane. For details see text.
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the direction of easy magnetization is of type
[uuw], the angle 8 within this region varies be-
tween 54.4 and 90'. Between points E and G there
is again a very narrow band corresponding to non-
stable (local minima of E) axes of type [uu1v].
Region DBML is part of the area in which the di-
rection of magnetization is of type [uvO], i.e. ,
8=90' and 4 =tan '(v/u}. Lines of constant 4
have also been plotted in this region, which con-
tinues indefinitely towards the right, bounded by
the straight lines K,'= 0 and K,'= —&.

The variation of the angle 8 as function of tem-
perature, deduced from Mossbauer-effect mea-
surements in CeFe, and SmFe„ is shown in Fig.
2. In SmFe, the direction of magnetization rotates
continuously from the [110]axis at 140 K towards
the [111]axis at 240 K. In CeFe, the axis of mag-
netization is parallel to the [001]direction up to
150 K; above this temperature it changes to type
[uuw] with 8™20'. Just below the Curie tempera-
ture at 230 K, this angle increases to SO'. In
HoFe„n is of [uucu J type at T& 20 K and parallel
to [001] at higher temperatures. 'o In some ternary
compounds, such as Ho, ,Er, ,Fe„ the behavior
is more complex. %'ith increasing temperature
the direction of magnetization goes through the
sequency [uu1v]- [110]-[uvO]-[100].

The phenomenological treatment developed above
accounts for all types of behavior. In the case of
CeFe„ the values of Ky K2 and K, vary with in-
creasing temperature in such a way that their
projection in the K,', K,' plane follows the general
trend of the heavy arrow (a} in Fig. 1. For SmFe,

~o~[ooj ' 0'

so-

70-

60-
a*ac~'[n~]

~ 60—
8

40-

the same projection has the trend of arrow type
(b) which crosses region CED going from region
[110]towards region [111]. This occurs during
the temperature increase from 140 to 240 K. In

Ho, ,Er, ,Fe, the projection follows a direction
antiparallel to the arrow of type (b) at low tempera-
tures and thereafter the general direction of the
arrow of type (c).

Examination of Fig. 1 also indicates that a spin
reorientation involving the [111]direction, namely
of type [111] [100] or of type [111]=[110], will
not necessarily take place through a transition
region, if K, and K, are sufficiently large, relative
to K,. On the other hand for a [100]=[110]spin
reorientation, there will always be a transition
region, with axes of magnetization of type [uvO],
even for very small values of the bulk magnetic
anisotropy constant K,.

III. SINGLE-ION APPROACH

Xexch = 2(gg —1)psffexcg ife n. (7)

In order to take into account a mixing of excited
J states into the ground state, V, and V, were ex-
pressed by the Racah operators' U„:

Xcrys = Eg + V4 + V6 y

where E~ is the energy of the excited state,

and

V.=&.(I —&,)&r') [U:+(~)'~'(U'+U. ')] (9a)

The magnetocrystalline anisotropies of rare-
earth-containing alloys are attributed mainly to
the anisotropy of the interaction between the well-
shielded 4f electrons of the rare earth with the
crystal fields. A detailed discussion of the ap-
plication of the single-ion-model Hamiltonian to
the problem of the anisotropy in rare-earth Laves
compounds was given in Ref. 3. The same ap-
proach is used here. One finds

canis = +exch+crys —N +exch ++crys

with N the number of rare-earth ions per unit
volume. The exchange Hamiltonian is

10-

~ o'[coo]

NO
(

f80
r (x)

I

220

FIG. 2. Temperature dependence of the angle of in-
clination & of the direction of easy magnetization with
respect to the [001] axis in CeFe2 and SmFe2.

(9b)

The values of (r" ), the 4f radii, and of the shield-
ing factor e4 have been calculated by Freeman and
Watson. "'" A4 and A„ the crystal-field parame-
ters, are assumed, as in previous studied, ' to be
independent of the rare-earth ions involved, which
are all trivalent. The exchange field H.x,h was
kept constant, p, gHexch= -150 K, for all tempera-
tures up to 300 K. Usually X.„s is calculated and
diagonalized for n parallel to the three major axes
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300—

V(K)

200

of cubic symmetry. In the present work such cal-
culations are made for thirty different directions
of n, which are confined to the (110) and the (001)
planes. These directions, expressed in terms of
the indices [avw], include the major cubic axes of
symmetry and are listed in Table I.

The free energy per ion is

100

E„(n&, T) = I8T -lnZ(n&, T),

where Z(n~, T) is the partition function

Z(n, , T)= Q e st~sr,

(10)

'0
Ho

O.R 0.4 O.B 08 1

Tb

where the E& are eigenvalues and m is the number
of energy levels,

m =2J+1.

FIG. 3. Spin orientation diagram of the Tb, Ho& Fe2
pseudobinary system. The shaded region corresponds
to nonmajor symmetry axes of easy magnetization. The
boundaries were calculated using the values p~,„di
=-150 K, A4=36 K/a(), andA6/A4=-0. 038 a() .

(a) 300—

T(K)

TABLE I, Direction of n for which the magnetic anisot-
ropy Hamiltonian was calculated.

200—

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0
1
2
3

5
6
7
8
9
1

10
10
10
10
10
10
10
10
10

1
10
10
10
10
10
10
10
10
10

0
1
2
3
4

6

8
9
1

10
10
10
10
10
10
10
10
10
1
9
8
7
6
5
4
3
2
1

1
10
10
10
10
10
10
10
10
10

1
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0

100—

0
0

Er
0.4 0.6 0.8 1

Ho

(b) 300—

T (K)

200—

100—

I

0 02 0.4
Er

06 0.8 1

Ho

FIG. 4. Spin orientation diagram of the Ho„Er& Fe2
pseudobinary system: (a) parameters as in Fig. 3; (b)

+/A~ =-0.043a to, other parameters as in Fig. 3.
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300—

T(K)
300 0

200—

100 [io o]

200-

100-

ErFe2

I

Ot2

[1oo]„gr
'/~// "0,//~

j
'g ~/ a + '4''

/'
/ lt a

"i'/„" [110]
' /,

,//". ;$,

0.4 0.6 0.8
HoFe2

0
0

Tb

s I i

0.2 0.4 0.6 0.8
Dy

FIG. 5. Spin orientation diagram of the Dy» Tb&~ Fe2
pseudobinary system. Parameters as in Fig. 3.

FIG. 7. Experimental spin orientation diagram of the
Ho» Er~ Fe2 system (Refs. 6 and 8) to be compared to
the theoretical diagrams of Fig. 4. Solid circles, tri-
angles, and squares correspond to Mossbauer spectra
characteristic of the t111], t011], and [001] easy direc-
tions of magnetization, respectively. Open triangles
stand for Mossbauer spectra identified as being due to
tuuao]- or [uv01-type directions of easy magnetization.

For a ternary combination R+', , the magneto-
crystalline free energy is expressed by

F(x, n&, T) = xF„1(n~, T) + (1 —x) F„2 (n&, T) .
(13)

The easy direction of magnetization of a given
composition at a given temperature is the direc-
tion of n~ for which the free energy has its lowest
value. This procedure when repeated for various
values of x and T is used to construct spin orien-
tation diagrams (SOD). In the present calculations

300—

values of A, =36 K/a', and A, /A, = -0.038a, ' (a, is
the radius of Bohr) were used. These values were
found to yield theoretical SOD's in good agreement
with the experimental SOD's. ' Spin orientation dia-
grams thus calculated for various R "-R ' com-
binations with R " = Ho, Dy, and R(' = Tb, Er are
shown in Figs. 3-6. These SOD's clearly exhibit
the presence of "unusual" directions of easy mag-
netization (shaded areas in Figs. 3-6), that is,
directions not parallel to the major cubic symmetry
axes, for all the investigated R ' -R' systems.
It should be noted that in the Ho-Tb and Ho-Er
systems, regions which correspond to all three
major axes of cubic symmetry are obtained. In

T(K)

200—

100— [1oo]

F(K)
10

-1 :2
10

-2
10

-3
10

T
10
20'
24

26

0
Dy

I i I

G2 04 0.6 0.8

FIG. 6. Spin orientation diagram of the Er Dy&~ Fe2
pseudobinary system. Parameters as in Fig. 3.

10
3O )60

[001) e' [1 1 1]
t

[110t
15 t

[100]

FIG. 8. Magnetic anisotropy free energy I" (with re-
spect to its minimal value) of Ho+ in HoFe2 as a func-
tion of the direction of magnetization within the (110)
and the (001) plane at several temperatures, p&H, „,„
= -150 K, A ~

= 36 K/a ), and A &/A ~
= -0.045a O1.
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the Dy-Tb and Dy-Er systems however, only re-
gions of the [100] and [111]type are present. The
experimental SOD of' Ho, Er, , Fe, is shown in
Fig. 7. For the elemental rare-earths involved,
as is seen in Figs. 3-6, n is parallel to one single
major axis of cubic symmetry. As mentioned
above, in HoFe, the direction of easy magnetiza-
tionwas observed to deviate from the [100] direc-
tion below 20 K.' This behavior can be accounted
for by slightly increasing A, /A, [Fig. 4(b}]. The
results obtained for Ho" (in HoFe, }with p, sH„,„
= -150 K, A, = 36 K/a '„and A, /A, = -0.045a, ' are
shown in Fig. 8. In this figure, the relative values
of the magnetic anisotropy free energy F (with
respect to its minimum value) are plotted as a
function of the direction of magnetization n at
various temperatures. In the left-hand part of the
figure, n is confined to the (1TO) plane, in the
right-hand part n is in the (001) plane. Clearly
the minimum of F corresponds to n lying in the
(001) plane. With increasing temperature n ro-
tates towards the [100] direction. The tempera-
ture dependence of /=tan '(u/v) is shown in Fig.
9.

IV. BULK ANISOTROPY CONSTANTS

'The bulk magnetic anisotropy constants can be
derived from the single-ion magnetic anisotropy
free energy Fs(n~, T) using the expression

F„(n~, T)= K, + K,(a',a,'+ o,,'a. ,' i u,'o, ', ) + K,(o ',o',u2)

(14), two sets of K, 's, one for ~ =0, 1, 2 and the
second for i = 0, 1, 2, 3. The two sets of K, 's can
be resubstituted in Eq. (14}to calculate for any

n&, two corresponding values of the anisotropy
energy E(n~, T). These values calculated by trun-
cating the power expansion after three and four
terms, respectively, are compared to Fs(n, , T).
In all instances the agreement between E(n~, T}
and F„(n, , T) is improved by an order of magni-
tude when the K, term is included in the power-
series expansion. As the temperature increases,
the relative importance of the K, term rapidly de-
creases. The anisotropy constants K, (T), i = 1,2, 3
in units of K/ion are plotted as a function of tem-
perature for the trivalent Dy, Ho, Tb, and Er ions
in Figs. 10-13. These K, 's were obtained using
psH, „,„=150 K, A, = 36 K/a'„and A, /A, = -0.038a, '.
For Ho'+ the K; 's for A, /A, = -0.045a, ' are also
plotted, but only Ky is affected by the change of
A, /A, . Several points of interest should be noted.
(i) K, is found to be positive for all investigated
R" ions. (ii) K, is of the same order of magnitude
as Kl and K, at low tempe rature s, but decreases
faster with increasing temperatures. (iii) K, in
Ho" and K, in Dy" change signs as the tempera-
ture is increased.

In order to obtain [uuu ]- or [uvO]-type easy axes
of magnetization the calculated K, 's (f = 1, 2, 3)
have to satisfy conditions (5a) and (5b) of Sec. II.

4 4 4 4 4 43(+1+2++2+3+ +3+1) ' (14)
Ki~K

310

In order to illustrate the relative importance of
the K, term, the procedure described as follows
was employed. Diagonalization of the Hamiltonian
for the different n, (j=1,30) directions yielded 30
corresponding independent F„(n, , T) values at a
given temperature. These values were used in
order to determine by least-squares fitting of

10

10

-110
K3

%999XX9.99X9X99,X99X9XM

[ioo]-o—

-1-10

15—

30—

-10

-102

-103

K1

[110 45
0

I » & i I i i i i I

10 20 30 T(K)

I I i i I I I I I i I

100 200 300
T (K)

FIG. 9. Temperature dependence of Q (the angle bet-
ween n and the [100] axis) for HoFe2. Values of param-
eters the same as those of Fig. 8.

FIG. 10. Bulk magnetic anisotropy constants of Tb'~
in TbFez, parameters as in Fig. 3. The K&'s are plotted
on a logarithmic scale in units of K/ion. The shaded
region corresponds to values -10 «X&«10
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K;(K)
103

10

I I I I
I l I I f ( I I I 1

I 1

K~(K)
103

10

Er

10 10

10 10

5%9,'646999999%99%9VX&~
10

101

-10

-102

K2
-10

-10

K2

-103

I i & i i I

100 200
T (K)

I

300

I I I I I I I I 1 I I I I I I I I

100 200 300
T(K)

FIG. 11. Bulk magnetic anisotropy constants of Dy+3

in DyFe2, parameters as in Fig. 3. Remark as referred
to in Fig. 10.

FIG. 13. Bulk magnetic anisotropy constants of Er2'~
in ErFe2, parameters as in Fig. 3. Remark as referred
to in Fig. 10.

For a ternary Laves compound, R„"R", Fe„we
assume K& = xK, „&~& + (1 —x)K, ~ s&g . It is found
that the calculated K, 's do satisfy conditions (5a)
and (5b) at elevated T. At low T slight deviations

K~(K)
103

102

10

from these conditions are observed. It should be
noted that both conditions (Sa) and (5b) and the cal-
culated K& 's have been derived for a free energy
which is expanded up to the eighth order of the co-
sine terms. Considering also that the relative
importance of the K, term increases by a few orders
of magnitude as T decreases to 4.2 K, it is not
implausible that higher cosine terms in the expan-
sion of E(n, T) may become significant at low tem-
peratures.

V. DISCUSSION

10

2 ~)499%9XXW999%99%%694&
I A
I ~= —0038
I A4—10
I

= -0.04 5
I A4

—1
I

I

-10

2—10

—103

) & i i I i i i i I

0 100 200 300

FIG. 12. Bulk magnetic anisotropy constants of Ho+ ~

in HoFe2, parameters as in Fig. 3. Remark as referred
to in Fig. 10.

In the previous sections we have shown that the
existence of nonmajor symmetry axes of easy mag-
netization in cubic crystals is not in contradiction
with the cubic symmetry and that actually such
axes can be predicted by the crystal-field single-
ion model. It should be emphasized at this point
that the single-ion Hamiltonian of the rare-earth
elements is not the only source of the experiment-
ally observed magnetic anisotropy. This is quite
clear in Ce Fe„LuFe„' and YFe„' which exhibit
magnetic anisotropy, but where it is obviously not
due to the single-ion rare earth, but probably to
the iron sublattice. A further complication is the
minute rhombohedral distortion reported in TbFe„"
which is due to the extremely strong magneto-
elastic interactions. No similar distortions have,
however, been observed in other RFe, compounds.
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In the phenomenological treatment of the magne-
tic anisotropy, the presence of nonmajor symmetry
axes of spontaneous magnetization can be accounted
for by including higher-order direction-cosine
terms. A non-negligible K, term has been observed
in the course of careful torque measurements in¹imetal. " It is not implausible that for certain
values of K, 's (f = 0, 1, 2, 3, 4) axes of spontaneous
magnetization parallel to general [mdiv] directions
might be observed. This will give rise to four
inequivalent iron sites in RFe, compounds. The
Mossbauer spectra in such cases"' would be a
superposition of four six-line patterns. This how-
ever, will be hardly detectable from the experi-
mental data, even though mathematically the qual-
ity of the theoretical fits will improve as the num-
ber of superimposed spectra increases from three
to four.

Recently Williams and Koon" reported the re-
sults of bulk magnetic anisotropy constants mea-
surements on a single crystal of Tb, y Ho, „Fe,
using torque magnetometry techniques. In general
their findings are in satisfactory agreement with
the SOD of the (Ho-Tb)Fe, system as determined
on the basis of Mossbauer spectroscopy and calcu-
lated using the single-ion model. Willian1s and
Koon were unable to observe a triple point which
indeeddoes not appear in the corrected SOD of
Fig. 3. Following the usual procedure, Williams
and Koon neglected higher than sixth-power cosine
terms in the analysis of their experimental re-
sults. Neglecting eighth-power terms is justified
at T& 150 K, it is not however, according to our
results, at lower temperatures. The discrepancy
at higher temperatures between their measured
K, 's and those calculated in the present work is
not too surprising. Torque measurements yield
values of the over-all bulk anisotropy constants
irrespective of their microscopic origin, while
our calculations determined only the contribution
of the single rare-earth-ion anisotropy to those
constants.

VI. CONCLUSIONS

Inclusion of the eighth-power cosine terms in the
phenomenological expansion of the magnetic aniso-
tropy free energy accounts for the presence of
[uuv] —and [uv0]-type spontaneous axes of mag-
netization. The presence of such axes has been
observed in several binary and ternary rare-earth-
iron cubic compounds.

The single-ion model predicts the existence of
such nonmajor cubic symmetry axes of easy mag-
netization.

The value of the bulk magnetic anisotropy con-
stant K, is of the same order as those of K, and

K, at low temperature, but decreases faster with
increasing temperature.
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BE—= 2 sinP cosP (2cos P —1+cos y)
2 2

BP

x [K,+K, cos'y- 2K, (cos'p- cos'p

+ cos'P cos'y+ cos'y)] = 0,

—= 2 smy cosy (2 cos y —1+ cos P)
BE 2 2

By

x [K,+ K, cos'p —2K, (cos'y —cos'y

+ cos'y cos'p+ cos'P)] = 0.
Each derivative is a product of four factors.

These derivatives will simultaneously satisfy con-
ditions (3) whenever one of the four factors (not
necessarily the same in the two expressions) will
vanish. We distinguish several cases.

Case 2. cosP= cosy= 0, cosP= siny= 0, or
sinP = cosy=0. This case corresponds to the (100)
axes of magnetization.

Case Z.

cos p = 0 and 2 cos'y —1+ cos' p = 0

or

cosy = 0 and 2 cos'p —1+ cos'y = 0.
This corresponds to the (110) axes of magnetiza-
tion.

Case 3.

and

2 cos'y —1+cos'p= 0

2 cos'p —1+ cos'y= 0.
This corresponds to the (111) axes of magnetiza-
tion.

Substituting the values of cosP and cosy in each
case into the quadratic form, Eq. (4b), yields the
limiting values of K,' and K,' (assuming K, &0) for
which the above-mentioned major axes of sym-

APPENDIX

Starting with Eq. (2), substituting a', = 1 —n', —n'„
changing the notation to nl cosP and Q2 cosy and
applying conditions (3) for the extremum, we ob-
tain
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metry become easy axes of magnetization.
Case 4. The nonmajor axes of easy magnetiza-

tion are obtained by the vanishing of the second
and fourth factors, respectively, in the two de-
rivatives; i.e.

cosP= 0

and

K, + K, cos'P —2K, (cos'y —cos'y

+ cos'p cos'y+ cos'p) = 0.

This yields the (uv0) directions, the angle P
between the direction of magnetization and the
[100] axis being in this case sin'2P = sin'2P
= —2K,/K, (again K, &0). The magnetic anisotropy
free energy E„„,is equalto —', IF/K, .—

Case 5. Finally the vanishing of the third factor
in one derivative and the fourth in the second or
the vanishing of both fourth factors, i.e. ,

2 cos'P —1+cos'y = 0

and

K, + K, cos'P —2K~ (cos'y —cos'y

+ cos'y cos'p+ cos'P) = 0,

or

K, + K, cos'y —2K, (cos'P —cos'P

+ cos'p cos'y+ cos'y) = 0

and

K, + K, cos'p —2K, (cos'y —cos'y

+ cos'p cos'y+ cos'P) = 0

yields the minima for the (uuw) directions. The
angle 8 (see Fig. 1) in this case is 8= cos ' (1
-2cos'P) and

cosP=OK, + 2K,)+ [(K,+ 2K,)'+ 24 K,K,]' ']/12K, .

Substituting in (3) and taking into account that
1 ~ cos'P ~ 0 we obtain the boundaries of region
ABDGECA in Fig. 1. The expression for the
energy in this case is complicated. Numerical
computations show that in the shaded area near
A and inthe narrow strip between G and E, the
minima for a [uuw] direction are local minima
only or, in other words, in these regions the mag-
netic anisotropy free energy has lower values for
the magnetization lying along a major symmetry
axis.

*Visiting scientist on leave from the Nuclear Research
Center-Negev, and the Department of Materials
Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel.
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