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Skew scattering by rare-earth impurities in silver, gold, and aluminume
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We report Hall-effect measurements on silver, gold, and almninum contimnng rarer impurities, between

1.2 and 77 K and up to 40 kG. The Hall effect due to skew scattering by the magnetic rare-earth impurities is
clearly observed; for 0.5 at.Vo of impurities and at 1.2 K, it can be twice as large as the ordinary Hall effect.
We present a model which can explain the variation of the skew scattering throughout the rare-earth series

and, from the analysis of the experimental results, we derive the coupling between the rare earth and the
orbital angular momentum of a conduction electron.

I. INTRODUCTION

Skew scattering is known to be one of the mech-
anisms of the extraordinary Hall effect in ferro-
magnetic metals and was first discussed by
Smit. ' In recent years the problem of skew scat-
tering by isolated magnetic atoms in nonmagnetic
metals has also started to attract attention 2 ~

Clear experimental evidence of skew scattering
by rare-earth NIE} impurities in silver has been
provided by Hall-effect measurements that we
have reported recently. ' In order to understand
more precisely the mechanism of skew scattering
by RE impurities we have proceeded with a sys-
tematic study of the Hall effect at low temperature
(1.2-VVK) of Ag&, Audf, and Al& alloys. We
present in this paper this experimental study
(Secs. II-III) together with the theory of skew
scattering that we propose (Sec. IV}.

The scattering of conduction electrons by a
magnetic impurity is called skew if the deflection
is different to the right and to the left (with re-
spect to the direction of the impurity magnetic
moment). When the magnetic impurities are
polarized by an applied field, they all deflect
the electrical current in the same direction and
so contribute to the Hall effect. One expects the
Hall resistivity to be the sum of the following:

(a) A term p,
o of ordinary Hall resistivity which

is due to the Lorentz force. Under the coridition
that u,y«1 and the phonon resistivity is much
smaller than the impurity's resistivity,
this term is generally proportional to the mag-
netic field and independent of the temperature
(and also independent of the impurity concentra-
tion in the dilute limit). This behavior of the
ordinary HaD resistivity is observed, for in-
stance, for silver with nonmagnetic impurities'
when the conditions above are fulfilled. In dilute
magnetic alloys the so called "spin effect" may
increase the ordinary Hall coefficient at high
field but leaves the low-field Hall coefficient un-

changed. Anyhow the spin effect is clearly rela-
ted to the negative magnetoresistance and, if one
considers the very weak negative magnetoresis-
tance of Ag& or Augt alloys, "0 it should be quite
ineffective in these systems. Actually we could
not observe any spin effect in our Hall-effect
measurements on Ag-, Au-, or Al -based alloys.

(b} A term ps„(extraordinary Hall resistivity)
due to the skew scattering; p ~„ is proportional
to the concentration of the magnetic impurities,
proportional to their polarization in the low-field
limit (and to H/T if the susceptibility follows a
Curie law) and becomes saturated at high field
(generally for gJg~» kV). p,„may be exactly
proportional to the magnetization of the impurities
at any field for some mechanisms of skew scat-
tering but can depend on the field in a more com-
plicated way." In addition to the skew scattering,
the mechanism of "side jump""" may also con-
tribute to the extraordinary Hall resistivity but
always for more concentrated alloys than those
we have studied.

The scattering by a magnetic impurity can be
skew if the matrix elements of the scattering
potential between states of wave vector k and k'
are changed by an interchange of k and &. Thus
the exchange interaction between conduction and

f electrons cannot make the scattering skew if it
is simply written, as usual,

a= -P X-'s-„*,a„-(g- I) r(l&-&'I) s &,

where 4 is the spin of the conduction electron,
J the total angular momentum of the f electrons,
and (g- I) the de Gennes factor. However, when
the localized electrons possess an orbital angu-
lar momentum, the exchange interaction cannot
be reduced to a simple spin-spin interaction such
as (1) but contains additional terms and, in par-
ticular, terms which couple the orbital angular
momentum of the conduction electron [T= (IP)
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rx p] with J.'"'~ We refer chiefly to the work of
Kondo'4 who, limiting the plane waves of the
conduction electrons to their s and p partial
waves, derived a relatively simple form of the
exchange interaction between conduction and f
electrons [Eq. (2.45) in the Kondo paper"]. If
one keeps only the terms relevant to the skew
scattering problem, this interaction can be writ-
ten

H& = —g N 'az. ap j(g-I) I'(~k-k'~}X s+w(2-g}
H'

xZJ (~x p)

+2idp;[J ~ (ex g')] ( J s)),
(2)

where Tc (j') denotes the unit vector in the direc-
tion of k (k'). The first term of (2) is the usual
spin-spin exchange interaction, the second and
third terms contain (Tcx a') in first order and so
are antisymmetric terms which can give rise to
skew scattering. One notes that, when the ex-
pansion of plane waves is limited to s and p par-
tial waves, the matrix elements of the orbital
angular momentum 1 between plane waves k and
k' is 12wi (Rex Tc'), so that the second and third
terms correspond to interactions of the type J 1

and (J ~ l)(J ~ s) but restricted to the p partial
waves. Only the second term will be considered
in the calculation of Sec. IV. Appendix B shows
that the third term induces a much smaller con-
tribution to the Hall effect.

The Hall resistivity arising from the term of
the type J 1 in H,&

has been already calculated
by Qiovannini~ and will be again calculated in Sec.
IV in a somewhat different way. This contribution
to the Hall resistivity cancels out for Gd (S -state
ion, g =2) as the coefficient of J ~ (kxk') in (2)
cancels for g =2. However the experimental re-
sults show that the skew scattering is maximum
for Qd in Ag or Au. It turns out that there should
be in these alloys a second mechanism of skew
scattering which does not arise from the asym-
metry of H,z. We show in Sec. IV that the ad-
mixture of the conduction electrons with the non-
magnetic 54 electrons of the RE can also give
rise to skew scattering if the spin-orbit coupling
of the 5d electrons is taken into account. A com-
bination of this mechanism and of the preceding
mechanism based on the (T 3) term of H,z can
explain the experimental results and, in particu-
lar, the variation of the skew scattering through-
out the RE series. This is discussed in Sec. V.
The fit with the experimental data allows us to
obtain interesting information on the magnitude

of the term 1 J in the interaction between the
conduction and f electrons.

II. EXPERIMENTAL PROCEDURE

The silver- and gold-based alloys have been
mostly prepared at the University of Qeneva by
arc melting with water-cooled copper hearth and
tungsten electrode. The gold and silver metals
were obtained from Engelhard Industries and
were nominally 99.999% pure. The rare-earth
metals were obtained from Nuclear Corporation
of America and were 99.9% pure.

The aluminum-based alloys and some silver and
gold alloys with light RE were prepared at the
CEN Saclay by melting in a levitation furnace and
then quenched by splat cooling.

The arc-melted gold and silver alloys were
cleaned in aqua regia for gold alloys or nitric
acid for silver alloys, rolled into foils of thick-
ness 0.1 mm, and cleaned again to obtain a thick-
ness of 0.07 mm. The foils were accurately cut
by spark machining to the shape for Hall-effect
measurements, then annealed 5 h at S00'C in
sealed quartz tubes containing argon and quenched
in water.

This thermal treatment appeared to be the best
to obtain the maximum solubility, as it has al-
ready been found by Bijvoet et al ." for the Ag&
alloys. These authors have performed a system-
atic study of the solubility of the RE in silver.
They have measured the residual resistivity per
at. /& in the very dilute limit (c- 500 ppm), ob-
served that, when the concentration is raised, the
beginning of the RE clustering results in a de-
crease of the resistivity per at. %%uOan ddetermined
the limit of solid solubility in this way. Above
the limit of solubility the resistivity is almost
independent of the concentration and this shows
that the resistivity per atom is much smaller for
clustered than for isolated impurities. We also
observed for the Ag and Au based alloys a pro-
portionality of the resistivity to the concentra-
tion at low concentration, followed by a satura-
tion of the resistivity above the limit of solubility.
Moreover, we purposely clustered the RE of some
alloys by an annealing at 400'C without quenching
and observed then an almost complete cancella-
tion of the resistivity and, at the same time, of
the skew-scattering term. This confirms that the
clustered atoms contribute weakly to the normal
and also to the skew scattering. The resistivity
defines nearly the effective concentration of
isolated impurities.

Table I shows the nominal concentrations, the
residual resistivities and the effective concentra-
tions of the Ag- and Au-based alloys studied in
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TABLE I. Nominal concentrations, residual resistivities, and effective concentration (see text) of the Ag- and Au-
based alloys studied in the paper.

Rare-earth
element

Nominal
concentration

(at. '7p)

Ag-based alloys
Residual

resistivity
(p& cm)

Effective
concentration

(at.%)

Nominal
concentration

(at.%)

Au-based alloys
Residual

resistivity
(pQ cm)

Effective
concentration

(at.%)

Pr
Nd

Sm
Gd

Tb
I?Y

Dy

Dy

Dy

Dy
Ho

Er
TIYl

Yb
tu

0.5
0.5
0.5
1
0.5
0.3
0.4
0.8
1
1
1
2

2

0.36
0 ~ 5
1.1
3.76
3.54
1~ 8
2.2
5.5
6.67
7.07
5.89

11~ 8
11.8

6.1

0.13
0.14
0.29
0.71
0.56
0.27
0.33
0.82
1
1.06
0.96
1.95
2.0

0.5
0.5
1
0.5
1
1.5
0.5
1

0.96
0.46
1.2
3.4
6.84
9.81
3.52
7.21

6.9
6.40
6.04

14.3
6.21

Not determined

05
0.98
1.40
0.5
1.03

0.99
0.91
0.86
2.04
0.89

this paper. For the Ag-based alloys, the effec-
tive concentrations are obtained by dividing the
residual resistivity by the resistivity per at. /&

f ound by Bijvoet et al ."in the dilute limit. For
the gold-based alloys measurements by Edwards
and Legvold" or Murani" indicates that the re-
sistivity per at. % is about VpQ cm for most of the
heavy RE and we adopted this value throughout
the series to calculate the effective concentration.
It can be seen in Table I that, for heavy RE,
0.5 at. % and sometimes 1 or 2 at.% could be dis-
solved in Ag or Au (one obtains a good agreement
between the nominal and effective concentration).
On the contrary it has been impossible to dissolve
completely 0.5 at.% of light RE and the residual
resistivities obtained correspond to smaller
effective concentrations. A part of the RE is
then certainly clustered but, as we have seen
above, it should contribute very weakly to the
electron scattering.

The aluminum based alloys have been obtained
by splat cooling. Only Tb, Dy, Ho, Er could be
dissolved at sufficient concentration for the ob-
servation of skew scattering (c- 1000 ppm). We
have some reasons to believe that clusters (RE
or Al:R compounds) are present in the alloys.
A very approximate concentration was determined
by comparing the resistivity with that of very
dilute alloys. " The splat-cooling technique was
also used for some gold-based alloys. We have
checked that the splat cooling introduces only a
negligible defect scattering.

The Hall-effect measurements were performed
in a superconductive coil up to 40ko and from

1.2 to 77 K. The current in the sample was mod-
ulated at 22 Hz and the Hall voltage was detected
by a lock-in PAR amplifier (sensitivity of the
measurement: + 10 9 V). Details on the apparatus
have been already reported. "

III. EXPERIMENTAL RESULTS

The main features of the Hall resistivity induced
by skew scattering have been described in Sec. I
and it appears that the skew scattering shows up
first in the temperature dependence of the Hall
effect. On Figs. 1-5 we have plotted the low-field
Hall coefficient R g is the limit of p„,/H when
H-0) versus T~ for series of Ag& and AuB
alloys.

We consider first the plots for AgGd on Fig. 1
and guGd on Fig. 3: it turns out that R can be de-
composed in the sum of a constant term R, (the
ordinary Hall coefficient of the ~Gd or guGd
alloys) and of a term AT ' that we ascribe to skew
scattering by the Qd impurities

A =Ra+&T '

A skew-scattering term varying in T~ is just
what is expected for Gd impurities whose initial
susceptibility obeys a Curie law. A constant
value of the ordinary Hall coefficient is quite
normal as the impurity scattering remains much
stronger than the phonon scattering throughout
the temperature range. '

For the other magnetic alloys (e.g., ~Tb on
Fig. 1), a variation R=Ro+A T ' is clearly ob-
served at high enough temperature. At lower
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FIG. 1. Initial Hall coefficient (R is the limit of p»/H
for H 0) vs T ~ forAgGd, AgTb, AgDy, Ag Ho, AITm
alloys.

FIG. 2. Initial Hall coefficient R vs T for AgTm
Ag Sm, ~Er, Ag Nd alloys,

temperature one observes deviations from T
which can be explained by crystal-electric-field
(CEF) effects. Actually the initial magnetic sus-
ceptibility' '2 of most of the alloys also shows at
low-temperature deviations from the Curie law
observed at high temperature, and the deviations
are explained by the splitting of the f level by the
CEF. On Fig. 6 we have plotted at the same time
the inverse of the magnetic susceptibility (from
Murani'7) and IR —Ro) ' as a function of the tem-
perature for a AuDy alloy. It appears that one
can make the curves coincide, and this means
that the skew-scattering term has the temperature
dependence of the susceptibility.

In som. e gold alloys with a very small skew-
scattering effect, the analysis of the temperature
dependence of the Hall coefficient is not so simple
as other contributions cannot be neglected. Con-
sidering the plot of B vs T ' for the nonmagnetic
alloy AuLu on Fig. 4, one observes that B is not
rigourously independent of the temperature (on

the contrary R is quite flat for Ag Lu or Ag Tm
on Fig. 1). We believe that the change of R in
AuLu may be due to 10 ppm of residual iron im-
purities (which are known to contribute signifi-
cantly to the Hall effect of gold above" 5'K).
The effect of such residual iron impurities may
be non-negligible for alloys which exhibit a very
small skew-scattering effect, for instance AuEr,
Au Tm, and Au Yb. It turns out that, for AuEr,
AuTm, and AuYb, the skew-scattering term can
be determined accurately only below 5 'K. For
the AuPr and AuSm alloys, the dip of R above
15'K on Fig. 5 is obviously not due to skew scat-
tering, but may be due either to the presence of
iron impurities or to a change of the ordinary
Hall effect as, in these low-concentrated alloys,
the phonon scattering is not quite negligible
above 15'K. These several alloys (AuEr, AuTm,
AuYb, AuSm, AuNd) are those for which the
analysis of the temperature dependence of the
Hall coefficient is somewhat questionable. For
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the other alloys, the skew-scattering effect is
much larger and can be determined much more
accurately.

The Hall effect induced by skew scattering is
also expected to be proportional to the impurity
concentration. We have determined the coeffi-
cient A of the term in T~ in the Hall coefficient
of several ~Dy and AuDy alloys at high temper-
ature and plotted A as a function of the concentra-
tion C and of the residual resistivity po on Figs.
7 and 8. It can be seen that A is proportional to
C or p, . So, at least at high temperature, the
experimental Hall coefficient can be written

R=Ro+apo

The magnitude of the skew scattering by a given
rare-earth impurity in the high-temperature
limit can be characterized by the coefficient .

(~t) means the Hall angle induced by the magnetic
impurities).

On Figs. 9-11, the Hall resistivity p,„ induced
by skew scattering inAgGd, AuGd, and AuTb
alloys is plotted as a function of the magnetic
field at several temperatures. To obtain p~„, we
determine the ordinary Hall coefficient R, of the
alloy onthe Figs. 1-5 and we subtract RoH from the
experimental Hall resistivity p„„. We emphasize
that the high resistivity of the alloys justifies us
in taking the ordinary Hall resistivity linear in
H (v,r «1) and independent of the temperature
(p,„,„,„,«p, , in the experimental temperature
range, except for some low-concentrated alloys);
this behavior is actually observed when the skew-
scattering effect cancels out (~Tm, ~Lu, AuLu).

We consider first the variation of the Hall re-
sistivity p „as a function of the field for the alloys
with gadolinium impurities, for instance, AuQd.
On Fig. 9 we have also plotted Brillouin functions

B» for T = 6.2 and 2 'K. One observes that, at
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6.2 'K, the Hall resistivity p~„ induced by skew
scattering varies very nearly like the correspond-
ing Brillouin function. At 2'K, p~, departs some-
what from the corresponding Brillouin function.
For ~Gd also (Fig. 10}pa, varies approximately
like a Brillouin function. The theory described in
Sec. IV predicts that the main skew-scattering
contribution to the Hall resistivity is proportional
to (J,) . This is in agreement with the observed
fit with Brillouin functions. The slight deviations
could be due to interaction effects at lowtempera-
ture.

For impurities with CEF splitting, the field

12.5
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E

C 75
Ch

cL". 5
I

2.5

10 20

MAGNETIC-FIELD (kQ)

FIG. 11. Extraordinary Hal. l resistivity p» of aAu Tb
alloy vs magnetic field at several temperatures.

FIG. 9, Extraordinary Hall resistivity p» of aAu Gd
alloy vs the magnetic field at several temperatures. The
solid lines represent Brillouin functions for J = ), g = 2,
T=6.2 and 2'K.

dependence of p~„may be very different from that
of a Brillouin function. The example of the AuTb
alloy is given in Fig. 11. If we consider the curves
at low temperature, we observe a first beginning
of saturation above 10 kG, followed by a rise at
about 17 kG and again a saturation. Such complica-
ted variations are observed for several non-S
ions and are linked with the complex level struc-
ture in presence of crystal field and magnetic
field of the same order of magnitude.

Although the analysis of the CEF effects on the
field and temperature dependence of the skew
scattering is interesting, it is not in our present
scope and will be developed elsewhere. In this
paper we want chiefly to clear up the origin and

the mechanism of the skew scattering by RE im-
purities and, in order to avoid a special analysis
of the CEF effects for each alloy, we shall only
discuss in Sec. V the experimental data in the
temperature range (kTa crystal field) where the
magnetic susceptibility nearly reaches its free-
ion value. In this range the experimental Hall
coefficient(Figs. 1-5}can be fitted with expression
(4}, and the coefficient a characterizes the skew
scattering for a given impurity. The experimental
values of g are shown on Fig. 12 for the silver-
based alloys and Fig. 13 for the gold-based alloys.
For mostly of the alloys we have determined the
coefficient g from experimental in the range
20-40 K. It can be checked from the magnetic
measurements of Williams and Hirst" or
Murani" that, down to 20'K, the susceptibility
deviates little" from the Curie law observed at
higher temperature. In the case of AuEr, A.uTm,
and AuYb alloys, we could measure accurately
the variation of the Hall coefficient only at low
temperature (see above), and we determined the
coefficient a after correction of the crystal-field
effects.

We report finally the few results obtained for
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FIG. 12. Coefficient a which characterizes the skew
scattering by each BE impurity in Ag is plotted through-
out the BE series Q is defined by (4)] . The solid, dotted
dashed, and dashed lines, represent, respectively, the
values of a, a&, a2 calculated from (33) {a=a&+a2).

FIG. 13. Coefficient a which characterizes the skew
scattering by each BE impurity in Au is plotted through-
out the RE series [a is defined by (4)]. The solid, dotted-
dashed, and dashed l.ines, respectively, represent the
values of a, a&, and a2 calculated from (34) (a =a)+a,).

the Al:8 alloys. On Fig. i4 the Hall constant
of the Al:8 alloys is plotted as a function of T~.
The coefficients u derived from the experimental
results are plotted on Fig. 15. The accuracy on
these values of a is rather poor. We retain chiefly
the sign of g and its rough variation in the RE
series.

IV. THEORY E

Q

8, = 4.0yQcm

p = (L9ItQcm

e = 0,5yQcm

p = 1.9pQcnr

In order to derive the HaQ resistivity induced
by skew scattering, we have first to calculate
the antisymmetric part of the scattering probabil-
ity [antisymmetric in the sense Ie'( k k')
= -w'(k'- k)]. lt can be shown (see Appendix A}
that antisymmetric terms in the scattering prob-
ability cannot arise in first Born approximation,
so that the scattering probability must be cal-
culated to second Born approximation. Secondly,
these antisymmetric terms can only occur if
two partial waves (with /+ l' = odd} are scattered. '
This requires a scattering potential acting on
several partial waves and also complicates the
calculation. We shall calculate the scattering
probability of plane waves to second Born approx-
imation with the following scattering potential of

1.6

0.25 0.5 025

(K')
T

FIG. 14. Initial Hall coefficient B vs T ~ for Al Tb,
AlDy, AlHo, AlEr alloys.
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the RE impurity:

a, =a&'& +a~' +a&" +a«,
where H' and H" are the exchange terms which
couple the spin and the orbital angular momentum
with the 4f moment, whereas the dominant terms
H" and H + account for the attractive potential
of a trivalent RE ion for d and s partial waves,
respectively. We shall now specify the several
terms of H~ and determine the corresponding
scattering amplitude:

(i) H"' is the usual spin-spin exchange inter-
action [first term of the interaction (2) derived
by Kondo"]

Hi'~= -P N '(g l)r((k --k'))

x 2l4k teak+ ak-'ll-~g+ak+ak-J +ak a«+J ]'-
(5}

Following Watson, Freeman, and Koide, we
write

consider scattering without spin Qip and to keep
only the scattering amplitude terms of first order
in a('&, that is,

~(a)(Q )
2v's(E. )(g-1)

I.m

x 1"&YP (Qk)Y, „(Qk ), (6)

where s(Er} is the one-spin density of states at
the Fermi level in the conduction band [the factor
exp(2iq, ) accounts for the phase shift of the partial
waves l = 0 and L = 2 by the dominant attractive
potential to which the small exchange is added].

(ii) H@' is the second term of the general ex-
change interaction derived by Kondo. '~ We re-
call that this term correspond to a coupling of the
type I J (but limited to the partial waves 1 =1)
between the orbital angular momentum l of the
conduction electrons and the total angular momen-
tumSofthe f electrons. Only the part of H' which
does not flip J is useful in our calculation (Appen-
dix B}. We write itinaform similar to (5}:

I'((k-k']) =4v Q Y, *(Q„)Y, (Q,)f"&(]Qk,)k')},

H&(n, p, ) =r&».
(6}

(~)

The definition of the spherical harmonics Y, is
that of Edmonds. " Throughout the paper their
axis is that of the field. We limit the expansion
to l &3.

We show in Appendix B that it is sufficient to

H~l=-g N '(2-g)svF, J, gm
ik~ lg

x Y,*.(Qk) Y,~(Qk)ak. ak.

It is sufficient to calculate the scattering ampli-
tude arising from H" in first Born approxima-
tion (see Appendix B), and one obtains

2v's(' )(2-g)F,
ks 8» 3k J, ~m

x Y,*(~)Y, (Qk). (10)

host: Al

0

Q

9

g(g 1)J(J+1)

Tm Yb Lu

-g(2-g) J(J+1)

FIG. 15. Coefficient a which characterizes the skew
scattering by each RE impurity in Al is plotted through-
out the RE series [a is defined by (4)]. The solid, dotted-
dashed, and dashed lines represent the values of a, a&,
and a 2 calculated from (35) (a =a ~+a g).

This term of the scattering amplitude is antisym-
metric and can give rise to skew scattering. But
it vanishes for Gd(g =2}and so we need another
antisymmetric term to explain the experimental
results for the alloys containing gadolimium im-
purities.

(iii} Hi" is the part of the attractive potential
acting on the d partial waves. It is indeed well
known that the substitution of a trivalent RE ion
in a monovalent metal (Ag, Au} results in a
potential capable of attracting about two conduc-
tion electrons, mostly in Sd states (formation
of a 5d virtual bound state) and in 6s states.
This is consistent with the values of the RE re-
sidual resistivities'I "+' which are much too
high to be due only to the exchange scattering
and which are roughly independent of the RE spin.
And the crystal field seen by the 4f electrons can
also be explained''4 by the formation of a 5d
virtual bound state (vbs). For Al-based alloys
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it has also been proposed" that the formation of
a 5d vbs (by attraction of 5d electrons and re-
pulsion of Sp electrons) could explain the residu-
al g shift in the bottle-neck regime of EPR. The
5d vbs is generally supposed nonmagnetic as the
experimental magnetic moments are nearly those
of the trivalent ions {the small excess moment
is explained by the polarization of the 5d vbs by
the exchange coupling with the f electrons" ).

The formation of a 5d vbs results in a strong
scattering of the partial waves l =2. If the spin-
orbit coupling of the d states is ignored, the
phase shift of the partial waves l =2 is given by
the classical expression"

coty, = (E, -E}//b„ (11}
where E„ is the energy of the center of the vbs
and 6 its half-width. If the spin-orbit coupling
of the d states is now taken into account, "the
degeneracy of the states j = —,

' and j =~(j =1+ s}
is raised and the vbs splits into two vbs centered
at E,/, and E3/, with

(12)

Z =Z„[1-(fI- Z)p, ]-'.

However, for 5d electrons which are generally
admitted to be far from the condition for magnet-
ism, this enhancement should be small.

The splitting of the vbs results in phase shifts
different for the partial waves of total angular
momentum -', and —,'. As X(X~-10 ' eV) is smaller
than n. (b, - 0.2-0.6 eV), the phase shifts q», and

q„, are obtained by differentiating (11). One
obtains

~q = q», g», -= a (~/~) sin'&„ (14)

where q, is the mean phase shift. We expand now
the plane waves in partial waves of definite total
angular momentum:

where A. is the spin-orbit constant of the 54 states
(E o =Pl s). For simplicity we ignore the addi-
tional crystal-field splitting.

After Yafet" A, may be somewhat larger than
the atomic spin-orbit constant as the orbit split-
ting lowers the correlation energy:

x/g

~k, ) = —4', (kr) Q Y, (Qq)
™

(
k =2,s = —',j =—',j,=m+ —')

m

2+m

+ terms with /g2. (15)

The asymptotic form (r ~) of the scattered wave
function is obtained by introducing the phase shift

js/2 and e' j3/2in the asymptotic form of the above
expression and one derives straightforwardly the
scattering amplitude. We need only the non-spin-
flip scattering amplitude (see Appendix B) and we
obtain

where g, is the mean phase shift. This is the usual
expression of the scattering amplitude when the
spin-orbit coupling is ignored. The antisymmetric
part is

(3a) 4g
f~» (Q~&, e +) =+ ())qe2~')2 Pm Y~~ (Q), )

m

f-„,(Qk„~) = . g (e"~».-1) rg. (Q„-)x Y; (Qk,)

x Y2 (Qke).

Appendix 8 shows that the main contribution to
the Hall effect is derived from the real part of

f . From (18) we write

(16)

(16)

When 'Q5/2 and p3/2 are different, the scattering
amplitude fi ) is not symmetric with respect to
k and k'. An expansion to the first order in hq
allows to separate the symmetric part fi"' and
the antisymmetric part f~":

fk. (Qk ~) g(e="—."'-1)Y.* (Qg)

x Y, (Q„,),

fk, (Qk„+) =+ . —sin'q, sin2q, PLY) (Q-„)
2w

g m

x Y, (Qk,)+imaginary. (19)

Thus the splitting of the nonmagnetic vbs by the
spin-orbit coupling introduces in the scattering
amplitude an antisymmetric term which has the
opposite sign for the spin-up and spin-down elec-
trons. We emphasize that this term should be
nearly independent of the RE element as the 5d
screening and the width of the vbs should be nearly
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Sln
2((i) n(E~)

(20)

equal for all the RE impurities in a given host.
The scattering amplitude f(') correspond to a

scattering potential which includes, in addition to
a spin-independent potential V, acting only on the
d partial waves, a term A. '1.s acting also on the
d partial waves with X' given by

that of p spherical harmonics (l =1). This means
that one must pick up in P(2 the products of two
scattering amplitude terms which depend on k (or
k') through spherical harmonics Y, and Y, , with

(1 +1') odd. So we have only to consider in [f)' the
products of the antisymmetric term f(') (l =1) by
f(~' (l ' = 2) or f"(l' = 0) and the products of the
antisymmetric term f(~) (l =2) by the parts l' =1
or l' =3 of f('). After integration one obtains

f„(Q„., +) = . (e '"o-1},(~) 1
2zk

(21)

We neglect in this section the part p or f of the
screening charge but we shall consider in Appen-
dix C the result of a small additional phase shift
01'

We proceed now to the calculation of the scat-
tering intensity

)f (g g)(2 (f(&) ~f(2) +fhs) +f(sa) +f(4(2 (22)

We have to select in this scattering intensity the
terms which changes sign when k and k' are inter-
changed and which are of odd order in J, and even
order in s, . Such terms arises obviously from the
products of f"by f" or f + and off™by f(' (see
also the discussion of Appendix B). When the anti-
symmetric terms of the scattering intensity are
obtained, they have to be introduced in an expres-
sion of the skew-scattering Hall resistivity, for
instance the expression (15) of Ref. 5 for elastic
collisions:

( ) I

xw'(ka - k'+)d'kd'k', (23)

where n is the number of electrons with a given
spin direction, f the Fermi-Dirac distribution,
u and v are unit vectors in the directions x and

y, and where w'(k+- k'+} is the antisymmetric
part of the scattering probability w(k+-k'+):

Sm'83
w (k+- k'+) [ fp, (Qp, +})'

x 5(e) - e~i)n imp. (24)

The calculation of the integral can be simplified
if one remarks that, on account of the factor
(k u)(k' ~ v), the integral cancels out unless the
dependence of P ~' on the directions of k and k' is

This term may be significant if sin g, is of the
order of the unity and if the vbs is narrow.

(iv) H(4 is the spin-independent potential which
attracts the part s of the screening charge s. The
corresponding scattering amplitude can be written

p„, =—,~ (J,)[(sin')), —sin')b) (2-g)F,«4(('acNn(R )
3ne'

z+ z
2

z+ —z px~ px~ (26}

(R, is the coefficient of ordinary Hall effect, i
and i are the currents for each spin direction;
note the correction of a. factor —,

' in Ref. 5 into ~).
For rare-earth impurities in Ag, Au, or Al the
spin-independent scattering is most dominant, '
i' and i are n-early e(lual, and (26} becomes

p, „=RQ+—,'(p,', +p,„) (2'l)

(we shall consider in Appendix C the additional
terms resulting from the occurrence of slightly
different values for i' and i ).

In the temperature range where the magnetic
susceptibility reaches the free-ion susceptibility
nearly (kT greater than the crystal-field splitting)
and at low field (J,) can be written

(Z) =-gZ(a+1)psff/3k, r (gps=Qpe(). (28)

We also introduce the impurity resistivity p„
which is mostly due to the spin-independent phase
shifts g, and g„and can be written

p, = (2((ffCN/ne'k ) (sin')), + 5 sin')), ). (2&)

Then, from (25}, (27}, and (28), we can write the
Hall coefficient (R =p,„/ii) in a form similar to
(4).

R R, +(p, +a, )p, T ', (30)

+—,'(X/b, ) sin')), sin2)),

x(g-1)(&"- &")]. (25)

It can be noticed that the first term in the brack-
et provides a contribution proportional to (2-g)
(Z,), that is, to the orbital polarization of the RE,
and the second a contribution proportional to
(g —1)(j), that is to the spin polarization.

The total Hall resistivity is given by expression
(13) of Ref. 5:
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with

g p,~ sinmg0- sin2g,
94 in g, +5 sin2g,

agreement is less good for the light RE than for
the heavy.

For the Au& alloys, the best fit is obtained with

a =0.34x 10 eg (2-g) j(j+1)
xsN )Z,g(2-g)j(j+1), (31)

sin'g, sin2g,
2Q s sin q, +5sin'q,

&«(5 )(I "-&")g(g-I)j(j+I) (32)

In a given host, g„q„X,A, E„T', and I ' may
be supposed nearly independent of the RE element.
Then a, should vary throughout the RE series like
the factorg(2-g) JP+I) and a, likeg(g-1) j(J'+1).

V. DISCUSSION

The analysis of the crystal-field effects on the
skew scattering at low temperature is not in the
scope of this paper, and we shall only discuss the
experimental results in the temperature range
where the magnetic susceptibility'~' reaches
nearly its free-ion value. According to Sec. III,
the experimental Hall coefficient in this tempera-
ture range can be written [expression (4)]

R =Ro+apoT '.
The coefficient a is characteristic of the skew
scattering by a given impurity in a given host.
The experimental values of a for the Ag-, Au-,
and Al- based alloys are plotted throughout the
RE series on the Figs. 12, 13, and 15.

The calculation of Sec. IV predicts that a is the
sum of a term a, varying in the RE series like
g(2-g}J (J + 1) and of a term a2 varying like
g(g-1) j(j+1). We tried to fit the experimental
variation of a throughout the RE series with a
linear combination of g(2-g) JP+I) and

g (g-1)j@+1).
For the AgÃ alloys the best fit is obtained with

g =0.43x10 Sg(2-g) j(j+1)
1.57x 10~g(g- 1}j(j+1) (a in K/G). (33)

It can be seen on Fig. 12 that the variation of the
calculated values in the RE series reproduces fairly
well the experimental one. The competition be-
tween the terms a, and a, explains that a, maxi-
mum for Gd, decreases more rapidly than
g(g- I)JP'+I) for Tb, Dy, etc, and changes
sign for Er. For the light RE a, and a, are both
positive, what is consistent with the positive ex-
perimental values of a. However the quantitative

—2.26x10 'g(g-1) J (j+1} (g inK/G). (34)

A term z, larger than in the Ag& alloys explains
that a is larger in gold and does not change sign
in the heavy RE series. For the light RE, the
agreement is satisfying. For Qu Yb we estimate
a =2x10~ K/G from the low-temperature data
after correction of the CEF effects. This value is
larger than the calculated one [from (34)] and this
is certainly due to the "anomalous" character of
the Yb impurities (admixture between conduction
and f electrons). So the case of the AuYb alloy is
relevant to another theory of skew scattering. '

For the AlA alloys, the experimental values of
a cannot be treated with the same confidence than
that for the Ag& or Au~ alloys on account of the
doubt on the metallurgy. The fit shown on Fig. 15
corresponds to

a =0.32x10~g(2-g) j|j+1)
-0.63x 10~g(g 1) j(J+1) (s inK/G). (35)

The fit of the experimental results with combina-
tions of a, and a, provides interesting information
on the antisymmetric terms of the electron-impu-
rity interaction.

By identifying the first term of (33) to (31) one
obtains for the AgA alloys

(I )E -0 43x 10~K/G
9k sin'q, + 5 sin g,

We take as screening charge Z, =1, Z~ =0, g =1,
which gives gp Qwp g2, ~w and a residual re-
sistivity p0=6.42 pQcm/at. %, in agreement with
the experimental residual resistivities (from
5.3pGcm/at. % for Gd to 6.7 for Dy in the heavy-
RE series). With q(E~) =0.15 states/eV atom spin,
one obtains

E~=2x10 ~ eV.

The choice of Z, and @ is not very crucial. If one
lets Z„ free to vary from 0.5 to 1.5 (always with

Z, +Z„=2), I"2 varies from 1.6x10 'eVto 6.5x10
eV.

The same calculation for the AuA alloys, with

Z~ =+1, Z, =+1, provides

P, =1.6x10-' eV.

In the A1% alloys, E, appears to be of the same
order of magnitude.

Thus we find that the coupling between the orbit-
al angular momentum of the conduction electrons
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and the total angular momentum of the RE is rather
small, about 50 times smaller than the spin-spin
exchange coupling I"". It turns out, for exmnple,
that the contribution of such a coupling to the
relaxation of RE impurities in EPR—proportional
to the square of F,—should be negligible. The
contribution of the 1 J coupling to the HEg shift
through the orbital polarization of the conduction
electrons (b,g-E,) should also be small, but per-
haps nonnegligible.

By identifying the second terms of (33) to (32),
one obtains for the Agent alloys

vps X sin'q, sin2q,
2k ~ sin'q, + 5 sin'q,

=-1.5xio ' K/G. (36)

This relation could allow us to deterime P"—r&'.
However this determination is much less direct
than that of F, as the expression (36) contains, in
addition to sing, azd sing» the parameters A. and
6 which are only known approximately. Callender
and Schnatterly" have deduced from the optical
properties of ~Pd alloys a half-width of the 4d
vbs of Pd equal to 0.25eV. Taking the same value
of 6 for the 5d vbs of the RE, A, =0.1 eV,
q, =2m(Z, =+1) and q, = —„w(Z, =+1), we obtain

H'- r&"=0.06eV. .

This seems somewhat too large as, after Kondo, '4

one expects the same order of magnitude for F,
and I' or i- (i- corresponds to the coefficient y

(i) &3) W1.)
1

in the paper of Kondo). So we present in Appendix C an
alternative interpretation of th e magnitude of a2 by
means of an additional skew-scattering term which
results from the di fference between the spin-Up and
spin-down currents and which is also proportional to
(g-l)(J,&. We emphasize that, on account of the
several terms involved, the interpretation of the
magnitude of a, is complex and does not really
allow us a determination of P', I, or n, .

For the Au& alloys, the term a, is larger than
for the AgA, what could be explained by a narrow-
er vbs. With the same value of I ' —TO, one
obtains b,„„=0.7~„g=0.175eV.

For the Al &, the term g, is much smaller. It
could correspond to a much wider 5d vbs
Q, = 1 eV). These different values of A in Au, Ag,
and Al are not surprising as it is we11 known that
transition-metal impurities are less magnetic in
Al than in Ag, and less magnetic in Ag than in Au.

VI. SUMMARY AND CONCLUSIONS

This paper report a systematic study of the skew
scattering by rare-earth impurities in silver,
gold, and aluminium. The main features of the
Hall effect induced by skew scattering are collect-
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APPENDIX A: GENERALITIES ON SKEW SCATTERING

Skew scattering arises when the scattering
potential includes an antisymmetric part H":

&k'I&"I&& = -(kin lk'& = imaginary.

Let us assume very generally a scattering poten-
tial

H =~ a«a«(V««+iW««),
kk'

where Vpk is real and symmetric, R™kreal and
antisymmetric. In the first Born approximation,
the T matrix elements are

pi)
kk' kk' kk'y (37)

and the scattering probability is symmetric (non-
skew):

IV ' (k- k') = (27'/a) ~ TFF'
= (2w/k)(V««. + tV««. ).

Antisymmetric terms appear only if the T matrix
is calculated to second Born approximation; the
second order of Tkk includes terms such as

Vkk» V

k» &a &a» +&

=-im Vkk Vk k5 cg —cp +real term.
k"

(38)

ed in Figs. 1-11. We have not analyzed the
crystal-field effects at low temperature, and we
have concentrated on the results at "high temper-
ature. " We have proposed a model which explains,
in particular, the variation of the skew scattering
in the RE series.

The most interesting information concerns the
term 1 J of exchange coupling between the orbital
az~ular momentum of the conductions electrons
and that of the 4f electrons. It turns out that this
coupling is smaller than the spin-spin exchange
coupliag by almost two orders of magnitude. It is
interesting to compare this result to that of re-
sistivity anisotropy measurements" on the same
alloys which show that another type of anisotropic
interaction, the Coulomb interaction between a
conduction electron and the electric quadrupole of
a RE ion, is much stronger, sometimes as strong
as the spin-spin exchange interaction.
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It turns out that this imaginary symmetric term
can interfere with the imaginary antisymmetric
term iW), ),, in T~k),, The scattering probability
then includes antisymmetric terms such as

2n'
W).),» Vk p Vk» ki 5 (s~ ey» )

~n

So the lowest skew terms of the scattering proba-
bility are of first order in lY and second order in
V. There are also terms third order in W but
they will be generally much smaller as W'«V.

APPENDIX B: SELECTION OF THE SKEW-SCATTERING

TERMS

We consider the scattering by a RE impurity
with the following scattering potential:

H = —(g-1)F5(r) s ~ J—(2-g)A1 J
+ V5(r) +)).'1 ~ s,

where the two first terms correspont to H ' and
H" of Sec. IV and the two last term to H" [with
A-E2, )' AA -'n(Er) 'sin')), ]. Actually these
terms have in Sec. IV a more complicated spatial
dependence. But the simplification to I'5(r) or
V5 (r) does not matter here as we want only to
select the skew terms in the scattering proba-
bility without calculating them.

The skew terms of the transition probability
correspond, according to Appendix A, to products
of one antisymmetric term of H by two symmetric
terms. We show first that these triple products
can only involve the non-spin-Qip part of H.
Suppose that the triple product includes antisym-
metric terms L'J' or /'s~ which Qip either J or s.
One cannot come back to the initial state with
s't' which flips s and J at the same time. How-
ever there are coherent tr iple products including twice
s'J (or s J+) or both s'J or s-J+. But these
products are of order l ' and so much smaller
than the triple products of order V' or Vl as
V» I'. So K can be limited to its non-spin-flip
part II'

H' = —(g-1)F5(r)JP, —(2-g) Al, J,
+ V5(r) +VI,s, .

With the antisymmetric term (2- g)Alp, one

obtains triple products which are, respectively,
proportional to (2-g}AV'J„(2-g)A V(g-1)I's, J'„
and (2-g)A(g-1)'F's', J, . As V» F, one keeps
only the first product. It correspond to the first
Hall-resistivity term in (25). As this term is of
first order in A, it is sufficient to study the
scattering of the p waves by H~ in first order.
This justifies the calculation of f") in first order

With the antisymmetric term X'l,s, of K' one
obtains triple products, respectively, proportion-
al to X' V's„V V(g-1)I"s',J„and A. '(g-1)'F's', J",.
The only term odd in J, and even in s, is the
second. It corresponds to the second Hall-resis-
tivity term in (25). As this term is of first order
in I', it is sufficient to study the scattering of the
p and f waves in first order in FP~ . This justifies
the calculation of f~') in Sec. IV.

The same sort of considerations shows that the
third term in (2) contributes to the Hall resistivi-
ty with a term proportional to E,VF (s',)(J,),
which is certainly small if l «V.

Thus simple considerations of symmetry and
order of magnitude allows us to select the main
skew terms and justifies the calculation of Sec.
IV.

APPENDIX C: HALL-RESISTIVITY CALCULATION WITH

DIFFERENT SPIN-UP AND SPIN-DOWN CURRENTS

For rare-earth impurities in silver, gold, or
aluminium, the spin-dependent scattering is
dominant and so, in the calculation of Sec. IV,
we have supposed equal spin-up and spin-down
currents (i' =i ). We shall now take into account
the small difference between i+ and i induced by
the exchange interaction when the impurities are
polarized by a magnetic field; we shall also
suppose that there is a part p in the screening
charge in addition to the parts s and d, and we
shall calculate the resulting additional terms of
Hall resistivity.

Considering the scattering amplitude of Sec. IV
plus a new term accounting for the phase shift
g„we calculate first the difference of scattering
rates for the spin-up and spin-down electrons
and the difference between the currents i' and i .

The calculation is similar to the classical one
of Ref. 30 and leads to

n(QO Ql) c ()0 Ul) 1 )F(0) (E )(J )i++i sin'()I, -)h ) +2 sin~(q, -)b) + 3 sin')),
(39)

(we have limited the expression of r to terms in
o))

For rare-earth impurities in Ag, Au, or Al, r

is much smaller than one and we shall use the
only Hall-resistivity term of first order in x, that
is, the last term in expression (26). It provide
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an additional contribution to the Hall resistivity:

i+-z (x —"+-
p„~ — .+ . X g(pgy-p„-„) ~

z +z
(40)

+» sin(q, —q, ) cos(q, -q, ) sin(2q, -q, ) sing,
sin'(q, —q, ) + 2 sin'(g, —q, ) + 8 sin'q,

'

(42}

In Sec. IV we have calculated the only terms
p,'„and p„-, which are odd in J, and even in s, .
Calculating also the terms odd in s, and selecting
the most important by considerations of order of
magnitude (as in Appendix B) we obtain

p,'„-p;, = [24w—%cNn (E~)/ ne'k~]

x (X/n) sin'q, sin(2q, -q, ) sing, . (41)

By introducing (89) and (41) in (40) we obtain a
new Hall-resistivity term proportional to
(g-l)F»(J, ), and so an additional contribution to
a„obtained by replacing (I"'~- I"'~)sin'q, in (32) by

Taking the same values of X, A, n(Er} as in Sec.
IV and the phase shifts which are derived from the
interpretation of the resistivity and of the negative
magnetoresistance of"AaGd(q, =113.4' or Z, =1.26,
gx=-9' or Z~= —0.3, q, =18.7' or Z~=1.04 with

Z, +Z~+Z, = 2), one calculates a value of az which
is smaller by only 15% than the experimental
value for the Ag& alloys. So it appears that the
m@~itude of g, can be explained in this way,
without invoking a large value of (I(3~- I"'~) as in
Sec. IV.

There is also a term involving r' in expression
(26) of Hall resistivity. From expression (89}
and also from the interpretation of the negative
magnetoresistance' it is possible to show that
r' remains smaller than about 10 ' for AgÃ or
Au& and that the contribution of the term in r',
in particular, the "spin effect" on the ordinary
Hall effect, is negligible certainly (anyhow the
term in r' is proportional to H' at low field and so
does not contribute to the initial Hall coefficient).
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