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The problem of spin waves in itinerant ferromagnets and antiferromagnets is discussed from the band-theory

point of view. In the ground state, the energy bands are spin split e.nd there is a spin-density cloud around

each ion site. When a spin wave is excited, we postulate that the spin cloud of each ion precesses as a rigid

unit, i.e., a quasispin. This gives rise to a modulation of the effective exchange potential, and the difFerence

between the modulated potential and the ground-state exchange potential has the form of the s-d interaction.
Here the s part includes all the conduction electrons and the d part arises from the precession of the

quasispins. The magnon energy, electron band splitting, and the magnon-magnon interaction are discussed. In
every case the agreement between the result and the experiment is as good as or better than the existing
theories.

I. INTRODUCTION

A difficult problem in the itinerant theory of
ferromagnetism in real transition metals is how
to deal with the Hund's-rule correlation of the
electrons in the many d orbitals. ' Using iron as
an example, we can find direct experimental evi-
dence that the band description of the Bloch elec-
tron states is valid at low temperatures. ' On the
other hand, the iron atoms retain their local mo-
ments in the paramagnetic phase. This means
that the electronic structure of paramagnetic iron
is not described by spin degenerate d bands as the
mean-f ield theory suggests. Instead, a correct
theory should preserve the strong Hund's-rule cor-
relation within each ion. The same problem is
present in the spin-wave theory. ' In the current
theory of spin waves, the one-magnon state is
constructed as a linear combination of Slater de-
terminants of Bloch states. Each Slater deter-
minant has one spin deviation from the ground
state. This type of wave function is very conven-
ient for handling correlations in the momentum
space, but not for the Hund's-rule problem be-
cause this involves real space correlations. In
this paper we develop a different description of
the spin waves in an itinerant system. In the
ground state there is a spin cloud around each
atomic site. When excited, the spin cloud around
each site is assumed to precess rigidly as a unit,
a quasispin. A spin wave is then a coherent pre-
cession of quasispins. Thus, the on-site Hund's-
rule correlation is strictly retained. The two
seemingly divergent points of view represent two
extreme limits of the actual situation, the current
theory is the weak-coupling limit and the quasispin
theory is the strong-coupling limit. We will show
that the conclusions of the strong-coupling theory
agree with the data on nickel and chromium better

than the weak-coupling theory, although these two
metals are largely regarded as weak-coupling
systems.

The starting point of any theory of itinerant mag-
netism is the theory of the ground state. There
have been important advances in the determination
of energy bands, Fermi surface, and wave func-
tions for ferromagnetic and antiferromagnetic
ground states. ' " Some of these calculations are
first-principles calculations because they attempt
to construct the crystal potential from atomic or
crystal charge densities by using the Hartree-
Slater approximation. ' " It was generally found
that when the calculation is carried out self-con-
sistently, the band splitting, the Fermi-surface
geometry, and the magnetization come out to agree
well with the experiments. The spin distribution
obtained from the crystal wave functions also
agrees with that inferred from the neutron form
factor. "' We take the band-calculation method
as the starting point because it offers the follow-
ing advantages: (i) the full set of s, p, and d bands
come out naturally from the calculation, and (ii)
the exchange screening and the Hund's-rule cor-
relation are accounted for in the same approxi-
mation as in an atomic Hartree-Slater calculation.

We then treat the spin waves as perturbations
on the ground state. The presence of a spin-wave
modifies the exchange potential in the one-electron
problem, and the modification is readily deter-
mined in the rigid spin approximation. Since one
magnon produces only a small perturbation on the
ground state, the modified one-electron problem
can be solved by the standard method. The added
energy to the entire electron system due to one
magnon is identified as the magnon energy. The
electron-magnon and magnon-magnon interactions
can also be discussed in this manner. Thus, the
properties of the low-lying excited states are cal-
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culated from ground-state electron levels, wave
functions, and potentials without introducing addi-
tional parameters.

2

H = +V(r),2m (2.2)

where V (r) is the periodic potential for an elec-
tron with spin g. The potential consists of the
following terms:

V.(r) = V„(r)+ V (r)+ V,.(r),
where the nuclear potential is

Z 2

v. ( }=—P

(2.3)

the Hartree potential is

p(r')
v„(r)= ' r-r'

and the exchange potential is

V (r) = n(3e')[(3/4s) p (r)]~&'. (2.4)

In the above equations, Z is the atomic number of
the metal, R, are the positions of the atoms, the
electron density

p. (r) = —Q I p„&.(r) I'f„k. , (2.5)

where f„„ is the Fermi distribution function, N
is the number of atoms in the specimen, and

p(r) = p (r)+ p (r) . (2.6)

The factor e takes care of corrections from the
Slater exchange. ""

In the end of the calculation, one finds the spin
density

II. FERROMAGNETIC SPIN WAVES

The energy-band problem for the ferromagnetic
ground state is defined by

(2.1)

where E„„ is the energy eigenvalue of band n,
wave vector k, and spin g, p„k, (r) is the spatial
part of the band wave function which is normalized
within the Wigner-Seitz cell. The one-electron
Hamiltonian is given by

where the integration is carried out in the unit
cell, assuming one atom per cell. The moment
per atom is in general nonintegral. The exchange
splitting for the band n at the wave vector k is

(2.9)

This quantity is in general dependent on n and k.
Now we construct a theory of ferromagnetic spin

waves based on the band-theory formalism. We
write

V. (r) = V(r) o'-W(r),

where

v(r) = —,'[v, (r)+ v„(r)],
w(r) = —,'[v, (r) —v (r)],

and g' is 1 or -1 for spin- up and spin-down elec-
trons. The spin-dependent part of the exchange
potential is W(r). In the ground state it has the
same periodicity as the lattice. When a spin wave
is excited, the spin-dependent part W(r) under-
goes a periodic variation. In a rigid spin model we
postulate that the spin direction of the atom at
5, is shifted from the z direction so that it is given
by the unit vector q, . Then the perturbing potential
in the one electron Hamiltonian is

H~ = —Q Wo(r —Rq)(gq ~ g -o'), (2.11)

where W, (r —R, ) is the exchange potential in the
Wigner-Seitz cell around B„and is zero outside
that cell. The Pauli matrices for the band electron
is denoted by 0.

The quantization of the quasispins is a little more
subtle because the size of the spins is in general
not an integer or a half odd integer. The ground
state of the spin on each site may be viewed, ac-
cording to the interconfiguration fluctuation mod-
el,"as a mixture of a number of spin configur-
ations, all in the state of maximum z spin com-
ponent. Thus,

g = Q b„~ S„,S„&,

where g„~ b„~' = 1. The size of the quasispin is
S = P„~ b„('S„. The ground state of the entire
spin system is then

I o& = III(f),

and the moment per atom

$= s r dy=
2 „k —„k, 28

C nk

where i is the site index. The one-magnon state
with wave vector q is defined as

i q &
= C-„S=„ i O &,

where C- is the normalization constant and S
x q=S- +iS-
a a
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The normalization constant can be readily found
to be

Ic; I-'=
& ol[s'-„, s=„jl o& = 2s.

Then the creation and annihilation operators of the
magnons are found to be

a»= (2S) &2 S» a» = (2$) &2S+»~ q

The spin deviation operators are related to the
magnon operators by

-4 qe R~a( =
~N aq8

Therefore,

S", = (—'S)'~'(a~t+ a, ), S f = i (—,'S)'~'(a~t -a, ).
At this point, we approximate the spin deviation
operators as boson operators. Then to satisfy

Q Sf = Ns — a q.
a' q,

which means that each magnon reduces the z com-
ponent of the total spin of the crystal by one unit.

Now the unit vectors g, in the perturbing poten-
tial are readily related to the spin deviation oper-
ators

qf = 1-ata, /S, q', = (2S) '~ (a, +a, ),

q f = i (2 S) '~' (at, —a, ) .
(2.12)

In terms of the electron operators C„„,, C„k, and
spin-wave operators, we can write

the spin commutation relations in the lowest order,
we must have

S, =S -a~~a, .
This form of S, satisfies the additional condition
that

a~qa~ (&n', k+ q'&I W, l n, k+qt) C„,p, , C„z+Inn k q ql
—

&
n', k + q'&

I W, I n, k + ql )C„k,;C„-„,- )
2 I/2

Q Q Q (&a', k+q&IWolsk&) a;Ct. -„,-„c„p +( n', k+ qtlW, Inks')at-ct, „-,- c„„-).
nn

(2.13)

The matrix elements are evaluated by integrating
over one unit cell.

One may be tempted to work out a deformable
spin model by postulating a continuous spin dis-
tortion q(r). It is questionable whether the spin
quantization procedure can be carried through for
a deformable spin. Besides, recent neutron scat-
tering measurement of the spin-wave form factor
of chromium seems to favor the rigid spin model. "

The perturbing Hamiltonien in Eq. (2.13) is iden-
tical to the s-d Hamiltonian that was extensively
studied a decade ago. The only difference is in the
physical meaning. Here the band electrons include
not only the s electrons but also the d electrons.
The spin waves are generated by a periodic pre-
cession of the spin clouds in the signer-Seitz cells.

The consequences of the perturbing Hamiltonian
may be immediately calculated by using the dia-
grammatic rules of Izuyama and Kubo. For ex-
ample, the magnon energy is given by the implicit
equation'0' "

grams yields

nk& Wo nkvd
nk

—&nktl W, Ink() f„-„)
&nkg &n~, k+q )

NS ~ E -z~~
nk~ n~, k+q~

x I &
n', k+ q l

I wo I n k & ) I . (2.15)

This result differs from that of Nagaoka" in that
a number of interband terms do not appear here.
They arise from higher-order diagrams not in-
cluded in Fig. 1. In Appendix A, we show in de-

(u = 11(q, (u), (2.14)

where II(q, ~) is the magnon self-energy which, in
the lowest order, is givenby the Feynmandiagrams
in Fig. 1. Straightforward evaluation of these dia-

FIG. 1. Self-energy diagrams for the ferromagnetic
spin waves.
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tail that the spin-wave energy at zero wave vector
vanishes. For small wave vectors the magnon
energy must depend quadratically on the wave vec-
tor q.

We now compare our theory with some of the
known results of other theories. If we ignore the
magnon energy in the energy denominator in Eq.
(2.15), which is justified for large values of q, the
equation

(o = II(q, 0)

is precisely what one would obtain by first calcu-
lating the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction between the spins in each cell and then
obtaining the magnon spectrum from the spin pair
interaction Hamiltonian. ~ This strongly sug-
gests that the large-q part of the magnon spectrum,
which reflects the near-neighbor coupling, is given

by the RKKY theory. This point of view has been
very convincingly advocated by Stearns. "

If we ignore & on the left-hand side and at the
same time assume only one band and approximate
all matrix elements by a constant b, , we find the
following equation for the magnon spectrum:

f e
1+ & k~ ~ k+qe$ -p

ÃS g -g~ —(d
k~ k+0 ~

magnon energy may be neglected in the right-hand
side, and we obtain the Landau-Lifshitz" and Her-
ring-Kittel2' theory for the magnon energy of itin-
erant ferromagnets. For small q, our treatment
puts a dynamic correction into the theory.

The magnon damping due to electron-magnon
interaction follows directly from Eq. (2.15). If
we write the comylex magnon energy as ~ -lI'

q y

then

g', k+ q& lVo nk &

ft 5

x(f„,7+-&-f„pI)

x5(E«p( E«ik, q (u~) (2 17)

At low temperatures, the damping becomes non-
vanishing after the magnon dispersion curve enters
the Stoner threshold.

One may obtain more qualitative feeling for these
results by studying a particularly simple model
of one parabolic band with effective mass m and
constant matrix elements E. Figure 2 compares
the spin-wave spectrum calculated from Etl. (2.15)
with those calculated from RKKY theory and RPA.

which is the same equation as found from treating
the magnon problem by the random-yhase approxi-
mation. ' This suggests that in the weak-coupling
limit where the random-phase approximation (RPA)
applies, our theory must break down. This is
understandable because when the coupling is weak
and the magnetization itself is very small, even
one magnon produces too large a perturbation. On
the other hand, when the exchange interaction is
strong and there are many bands, we propose that
our method of treating the moments on the atoms
as quasispins takes better account of the exchange
screening and Hund's-rule correlation within the
spin s.

For small q, the spectrum may be solved in the
constant matrix element model to give

y+ tf kf n', k+ qy
~ge

+

(2.16)

3

Z
LLI

WAVE VECTOR q

RKKY

which is smaller than the RKKY and the RPA theory
results by a factor of 2."

In addition, in the constant matrix element ap-
proximation, the equation for the magnon spectrum
may be written

~=[x. (4, ~)l ',
where X+ (q, +) is the dynamic transverse sus-
ceptibility of the electron gas. For large q, the

FIG. 2. Qualitative sketches of the dispersion relation
of ferromagnetic spin waves according to various the-
ories. The RKKY theory gives a dispersion curve which
extends into the Stoner mode region. The random-phase
approximation +PA) predicts that the dispersion curve
bends over prior to reaching the Stoner threshold. The
quasispin model (QSj predicts that the dispersion curve
approaches the Stoner threshold without bending, but
becomes overdamped after crossing the threshold.
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In the RPA result, the dispersion curve dips down

upon reaching the Stoner threshold. '~ The RKKY
theory and our result do not show this dip. The
condition for the existence of a dip near the Stoner
threshold was discussed by Nagaoka. " He showed
that it has to do with the ratio of the exchange
splitting and the Fermi energy. When this ratio
is small, no dip is expected. So, unlike the RPA,
our theory does not predict that a dip always exists.
Recent neutron scattering experiments on ¹ido
not seem to indicate such a dip. "

After passing the Stoner threshold, the magnon
damping is found to be

1;-=(m '
V, b, '/n Sq) (u, ,

where V, is the volume of the unit cell. The fac-
tor infrontof the magnon energy is approximately
1.5 near the Stoner threshold. So the magnon mode
is so overdamped that it becomes unobservable.
Of course different band models may give more
or less damping, but the ratio of I;/&o, = 1 should
hold.

Similar to the work of Izuya, ma and Kubo' we
can calculate the electron energy, and in particu-
lar, the band splitting as a function of temperature.
We will present the results here for the one band,
constant matrix element model with the following
interaction Hamiltonian:

x NB ~ ~ q' q' k +qi- k+q'i k+qi k+q'i)

~(sqCk~q Ckt+u q Ck~q Ck)).
k q

(2.18)

The electron self-energy diagrams are given in
Fig. 3. By taking the difference of the energies of
opposite spin states near the Fermi level, we ob-
tain the temperature dependence of the band split-
ting

FIG. 3. Diagrams of electron self-energies.

positive. So, not only is the band splitting depen-
dent on a higher power law than T' ', the tempera-
ture-dependent terms are opposite in sign and
tend to cancel. The net result is that the T de-
pendence of the band splitting is extremely weak,
in agreement with the experimental result of
Lonzarich and Gold." The theory of Edwards pre-
dicts a negative sign for the T' ' term. " The
origin of the negative sign can be traced to his as-
sumption on the form of the electron-magnon in-
teraction. Lonzarich refined Edward's argument
according to the itinerant theory and obtained the
same sign as ours. "

Finally we discuss the magnon energy renormal-
ization effects. At elevated temperatures there is
the well-known T' term in the magnon energy due
to the excitation of electrons near the Fermi level.
The energy renormalization due to magnon-magnon
interactions is calculated from the sum of the
group of diagrams in Fig. 4. We keep only those

6(T) = b + BT' (2.19)

where the constant B is expressed in terms of the
band parameters as

t t

~(T) = ~ XT'+BT"5"- (2.21)

The surprising result is that the T' term is

BT'"= —g n~[&u-+(1/a)(q VgEk)'~, ],
(2.20)

where n~ is the Bose distribution function for the
magnons. Furthermore, the self- consistent rela-
tion between s,(T) and the electron distribution
gives the mell-known T' term to the band splitting.
Thus,

FIG. 4. Diagrams of magnon self-energy due to mag-
non-magnon interaction.
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terms which are proportional to n . It is not dif-
ficult but rather tedious to show that the tempera-
ture dependence of this term is indeed T' ' as
shown by Izuyama and Kubo from very general
physical grounds. ' ~ The expression for the en-
ergy shift came out slightly different from that
given in Ref. 20, conceivably because we have cut

off the interaction at the two-magnon term where-
as Izuyama and Kubo included some third-order
terms. We find, for the one-band model

&uq(T) =(uq(O)+ 5(u3,

where

1 1 I
5&v-, = ———p n-, —g (5(EKt —Er)[(q VuPE« —(I/n)(~i ~ VuEu7][(q, ~ &u} Eu —(I/n)(q, &uEu} ]

k

+ 5(Eu I- Er)[(q Vu)2Eu+(I/n)(q. VuEu}'][(q, Vu)'Eu+(I/h)(q, VuEu}2]}.

(2.22}

The conc1usion of these rather lengthly calcula-
tions is that our model predicts the expected tem-
perature power laws for all the energy shifts.
Furthermore, the energy shifts are accessible to
numerical calculation without the need of introduc-
ing new parameters.

III. ANTIFERROMAGNETIC SPIN WAVES

The itinerant theory of ferromagnetism predicts
a spin-wave energy which is a complicated func-
tion of the band parameters. In contrast, the the-
ory of itinerant antiferromagnetism gives a very
simple prediction, namely that the magnon dis-
persion relation is linear and the magnon velocity
is (—,'(v2~))'~', ((v~))'~' being the average Fermi ve-
locity over the nested part of the Fermi surface. "
The magnon velocity has been estimated for chro-
mium based on band-calculation results and com-
pared with experiments. "'" It was found that the
experimental result is lower than the theoretical
value by about a factor of 2. The mystery of this
discrepancy was compounded when the calculated
velocity was found to explain the spin-diffusion
rate above the Neel temperature. "'" We will
show in this section that a calculation analogous
to the ferromagnetic spin waves in Sec. II gives a
correction to the previous result for the magnon
velocity. This correction factor depends on the
interaction strength and it brings the theory and
experiment into good agreement.

In pure Cr, the spin-density-wave (SDW) state
has a periodicity which is incommensurate with
the lattice. However, in all the inelastic neutron
scattering experiments, a few percent of Mn was
added to Cr so that the spin-density wave is locked
on to the lattice. ' In this case the magnetic mo-
ment is the same on every atom in the solid except
that half the moments point up and the other half
point down. The periodicity may be characterized
by a wave vector Q which is equal to one-half of
a primitive reciprocal-lattice vector and is per-

p, (r) = p,(r)+ o'+5p(r- R,)e+'"&,

where 5p(r —R~) is defined in the Wigner-Seitz
cell around R, . Then the exchange potential is
also spatially dependent,

(3.1)

and

V (r) = V(r)+ V(r)o g ~ @ a~ (3 2)
3p, r

V„(r) = —a(3e')[(3/4v) p, (r)]' '. (3 3)

We treat the last term in Eq. (3.2) as a perturba-
tion on the band Hamiltonian

H, p'/2m+ V(r), (3.4)

where V(r) is the sum of V„(r), V„(r) defined in
Eq. (2.4) and V,(r) in Eq. (3.3). The eigenstates
and eigenvalues of H, are defined by

Bonar. =&nC One~ (3.6)

where p„u=p f(r}f„$,is the Pauli spinor. The
perturbing Hamiltonian is

w( )= ~ gw(r-R, ut"',
where

Wo(r) = -V„(r)[5p(r)/3po(r)],

(3.6)

(3.7)

which is defined within the Wigner-Seitz cell.
Since the periodicity of W,(r) differs from that of
V(r), the perturbing potential will link together

pendicular to the spin direction. Once locked on
to the lattice the SDW shows remarkable stabili-
ty in structure when the Mn concentration is varied
over a range of a few percent. The moment per
atom is also larger than that of pure Cr. We will
extend the spin-wave theory to this transverse,
commensurate spin structure.

In the SDW state, the spin density has a spatial
dependence
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states
~

neo& and ~n, k+Q, o&. If a large number of
states near the Fermi level can be linked by the
same wave vector Q, the reduction in exchange
energy due to this pairwise correlation stabilizes
the SDW state. In pure Cr the wave vector Q is
rather close to one-half of a reciprocal-lattice
vector. The addition of a few percent of Mn shifts
the Fermi level slightly to enable the SDW to lock
on to the lattice. ~

In the following discussion, we will use the Fed-
ders-Martin model for the bands. " The band 1 is
an electron band of mass m,

E,;= k'/2m. (3.8)

H = ~gC~~Cj. g+E2pC~„fy C2„ty

g[(II IW, ~2, %+/&

The Fermi wave vector is k~ and the Fermi ener-
gy is E~ =k~/2m. The band 2 is a hole band of
equal mass,

ERf = 2Ez —(I/2m}[(k„- Q}R + k„+kB,]. (3.9)

The Fermi surfaces of the bands are two equal
spheres separated by Q, assumed to be in the x
direction. Then the most important part of the
total Hamiltonian is

p. (r}=
N Z [0*.»(r)4. ,k+Q(r}«;C..-:o..&

k

+c.c.].
Then Eqs. (3.V) and (3.12) give

(3.15)

where

k

(3.16)

n =2E~ exp[-I/N(ER)U], (3.18)

where N(Er) is the density of states per band per
spin per atom. In the ground state the total spin
on the site i is given by Se' '

~, where

S =- (&p, &p,) d—'~
2 c

U=-(Ih( * —M [y,»(r)4, ». ,o(r)+c.c.]V(r) 1 r
3po r N

k

xl2 k+Q&,. (3 IV)

with k averaged over the Fermi surface. The
equation for n, , Eq. (3.16), may be recognized as
the gap equation, with 2h as the energy gap. " For
the band model assumed here, the gap at low
temperatures is given by

where

x(C„ACR»+)Ri —Ci»iCR, f+)Rt)+ H.c.])
(3.10)

(3.19)

n = (IR[W.(2, K+@&,„. (3.12)

Then the quasiparticle states are easy to find.
The energies of these states are

E I& ) E ~ (~ 2 + n2)))» (3.13)

(liclw l), k ~ ))) = r 0',
1 (F)wp)y, );~) )d'r,

(3.11)

and the integral is over the Wigner-Seitz cell.
The wave functions are also normalized in the unit
cell. We will also replace the matrix elements of

W,'(r) by their average over the Fermi level

H =- W' r-R«, o-o' e'q R3 (3.20)

The quantization of H, in terms of spin-wave
operators is facilitated by the transformation to
the local spin coordinates. We define

~n ~)) ~Brio Ri

qs qf el Q. Ri
(3.21)

In the ground state the local spin always points in
the y direction. Then

When spin waves are excited the added perturb-
ing Hamiltonian is

where c~ =E,k
—E~ =E~ —E, g+&. In particular the

off-diagonal correlation function may be calculated

(C, » ))CR,»+o, a &

= ~ [a/2 (e'+a')'~] tanh[-'p(~'+ n,*)'~'] (3.14)

The sinusoidally modulated part of the charge
density is found to be

Yk =
(2 }i)R ~ (8 )) +Q R)8

Q

(3.22}

« =
(2NS)~

Z g hqR

Then in the average matrix element approxima-
tion
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Hl —
NS

~ () qi~ (Cl k-q) 2, k- q'yo) C) k () (Ck k q+Q(+H c )
qq k

Z [(u q +a (()(Cg k + q ) C(k ( + Ck k + q ) Ckk ( + H c )
kq

'(((
() ((q}(C(k+q)Ck k+Q$ C) ky()(Ck k+Q$+H c )]. (3.23)

0 g+q
Aq= (3.24)

For an antiferromagnet the low-energy magnons
have wave vectors near Q. Consequently, we de-
fine a two-component spin-wave operator

The one-magnon terms in H, give the diagrams in
Figs. 5(b) and 5(c). The rules for computing these
diagrams are given by Fedders and Martin. " We
find the following diagonal elements:

11"'(q,~) =11"'(q ~) =I(q ~}
where

and a matrix Green's function

D(q, t)=-i(TA-„(t)A-, (0)), (3.25)

where q«Q. The Fourier transform of D satisfies
the Dyson equation

2
X

EP +Ek q
—Cu

' (3.29}

[D(q, k))] ' =[D' (q, (d)] ' —fl(q, (d},

where the zeroth-order Green's function is

(3.26) and the following off-diagonal elements:

11(,')(q, ~)=11(', (q, ~)= I(q, ~)-. (3.30)
tt(() 0 )

[C"'(q ~)l '=
I

0 —(v/

(3.27)
Putting these results into Eq. (3.26) we find that
the poles of D(q, (v) are solved from

The diagrams for the self-energy matrix II are
shown in Fig. 5. The two-magnon terms in H, give
the graphs in Fig. 5(a). They contribute to the
diagonal part of the self-energy matrix

(k)( ) 11(2)( ) or

(v —4(k'/US —I (q, (())

I (q, (v)

=0

(3.31)

I (q, (v)

—k) —4n. '/US —I (q, (d)

Z ((C(k) Ck k+o))
k

(Clk) C& k(Q() +C.C.)

= 4(k'/US . (3.28)

1ks 2, k+Q, s

2, k+Q, s 1ks

FIG. 5. Self-energy diagrams for the antiferromagne-
tic spin waves.

(d =2(4A /US)[2n, /US +I(q, (())].

We expand I(q, (v} for small q and ((). The result is

I(q, (d) =-(2A'/US)(1+[N(Er}U/4r). '] (aP ——,
'

vs q')j,
(3.32)

where vr =kk~/m is the Fermi velocity. Then, in
the lowest order in q, the magnon dispersion rela-
tion is found to be cd =cq, where

c =[)/(1 + $)]'I'vr/v3 (3.33)

and f=4Ik'N(E, r)/US'. The magnon velocity is
lower than the Fedders-Martin result by the factor
[ t'/(I + 0]'~

There are a number of uncertainties in esti-
mating the size of $. The energy gap and the mo-
ment per atom for the 2%-Mn alloy can be taken
from the experimental data, 4 =0.2 eV,4' and
S =0.28.~ The product N(Er)U has been estimated
as 0.43." It is difficult to pin down the values of
N(Er) and U separately because it is not certain
how much of the real Fermi surface can nest.
However, for most transition metals U is of the
order 2-3 eV. W'ithin this uncertainty, we esti-
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mate f, =0.10-0.22, or the reduction factor
[$/(I +))]'+=0.30-0.42. The estimated band ve-
locity is vr ——5.1 &&107 cm/sec, with the phonon
mass enhancement factor included. " So the esti-
mated magnon velocity is c = (0.9-1.2) x10' cm/
sec. This is consistent with the experimental
value 1.3x10' reported by Sinha et al."and 1.55
&10' reported by Als-Nielsen et a/. " Thus, the
quasispin theory removes a long-standing dis-
crepancy between theory and experiment.
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APPENDIX A

We prove here that the magnon frequency given
by Eq. (2.15) is zero at zero wave vector. This is
accomplished by showing that II(0, 0) =0. We define

where E„ is the Pauli spinor. Then g„-k, is an
eigenstate of the Hamiltonian

ff = p'/2m+V(r) —o'W(r).

The self-energy II(0, 0) may be written

2 f%.&O. .III'.o"I4:.&

nko

1gg fk, —fk,+
nka n'k'a'

"l&knkalIIao I kn 7 a ~&I' ~

There is the identity

[If, cr ] =2v W(r) .
We take the matrix element in a unit cell to obtain

&knkal yk'a&
I &n» a &

2 (Enka En'k'a')('nkal c
I 4'k'a'& '

The last term of II(0, 0) is equal to

(f.k. —f; k . )(4.X.I ~ 14. k .&

nka n'k'a'

1= 4» Z f.k. &&.».III.[ -, o']ls.g. &

nka

1=- » Zf;,.«.-».III:"I~.t;.&,
nka

which exactly cancels the first term. This com-
pletes the proof.
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