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The conduction-electron spin polarization, induced by a magnetic rare-earth impurity embedded in a
transition-metal-like host, is calculated, using the Green's-function formalism. The s and d magnetizations are
calculated to first order in the exchange parameters, in terms of partial static susceptibilities g~(q), g"'(q),
y"(q), and P (q). These susceptibilities are expressed in terms of the host band structure, phase-shifts, and

strength of matrix elements associated to the charge impurity potential and local Coulomb correlation
parameter at the impurity site. These results are compared to previous ones and possible applications are
discussed.

I. INTRODUCTION

The theoretical study of the conduction-electron
spin polarization induced by a local moment in-
volves many aspects, e.g. , the discussion of the
mechanism of exchange coupling between the lo-
calized and conduction electrons, ' the details of the
band structure, ~ the presence of electron-electron
correlations in the conduction states, ' ' and the
combined effect of a charge impurity potential and
a localized spin. '

In general, the atom which carries the local mo-
ment is not identical to the host atoms, and one
expects a scattering source arising from the charge
difference and the period effects introduced by the
impurity.

An interesting example of this situation is a
rare-earth impurity embedded in a transition-metal
host. Besides the scattering associated with the
exchange coupling with the incomplete 4f shell, the
charge difference between the impurity (trivalent)
and the host gives an additional scattering poten-
tial for the conduction electrons. On the other
hand, one knows that the intra-atomic Coulomb
correlations play an important role is narrow d
bands. In particular the Coulomb repulsion at the
impurity rare-earth site is quite different from
that corresponding to the transition-metal host,
introducing then another source of scattering.

Blandin and Campbells have recently discussed
the effect of a localized charge potential acting on
a free-electron-like band which is polarized via
local moments surrounding the impurity charge
potential.

Our purpose is to formulate the problem of the
electron-spin polarization induced by a rare-earth
magnetic impurity in a more complex situation,
namely, a transition-metal-like host. %e are
interested in the physical situation where the mag-
netic impurity introduces itself, both the spin-de-
pendent and charge potential scattering. So, we
study in this two-band system, the combined ef-
fects of one-electron charge and spin impurity po-

tentials acting at the same lattice site. The dif-
ference of the d-electron Coulomb correlations
between the host and the impurity, which intro-
duces an extra potential acting at the impurity site,
is also included in this formulation, within the
Hartree-Fock scheme. The local f moments are
assumed to be associated with localized levels ly-
ing well below the conduction s-d bands.

The plan of this paper is as follows: In Sec. II
we describe the adopted model Hamiltonian and we
obtain the one-electron s-s and d-d propagators
using a Green's-function technique due to Zubarev,
discussing the electron-electron correlation at the
impurity site within the Hartree-Pock approxima-
tion. It should be noted that throughout this work
we neglect the intra-atomic Coulomb correlations
in the d band. In order to calculate the magnetiza-
tion induced by the localized moment, one develops
a first-order perturbative approach on the exchange
parameters; i.e. , the impurity spin s-f and d-f
exchange fields will be treated as weak perturba-
tions. In that sense, our work is a linear-response
calculation of the perturbed electron gas to a field
locally applied at the impurity site. In Sec. III we
solve the self-consistency problem and calculate
the s and d magnetizations in the approximation of
neglecting the k, k' dependence of the exchange in-
tegrals. The explicit k, k' dependence introduces
extra difficulties in performing the self-consistency
program. These magnetizations are obtained in
terms of phase shifts associated with the impurity
charge scattering and change in Coulomb correla-
tion parameter. A comparison to previously ob-
tained results by Mills and Lederer' is then made,
in the case of decoupled s and d bands (vanishing
impurity-induced s-d hybridization) and for static
properties. In Sec. IV we calculate the spin polar-
ization at the impurity site, thus complementing
some previous results of Blandin and Campbell,
where the charge and spin potentials are located
at different sites. In Sec. V we suggest two alter-
native procedures to estimate the impurity matrix

3902



13 EFFECT OF LOCALIZED PERTURBATIONS ON THE SPIN. . . 3903

ta) t V (d)
o

= Z T~s c~ec&e+ Z Tw d~od&n
i&a i/a

where ct, (dt, ) creates an s(d) electron of spin o
at lattice site i and T,'", '(A. =s. or d) is the hopping
matrix element for ~ electrons between the i th and
jth sites, T,~' being related to the band energy &&"'

of the host by
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In the host-metal description we neglect hybridiza-
tion effects in order to simplify the calculation:
only impurity-induced mixing will be considered.

(ii) The rare-earth impurity, placed at the ori-
gin, is assumed to introduce two types of one-
electron perturbations: excess charge effects
(through a Friedel type of potential) and spin ef-
fects (through the exchange interactions between
conduction states and the localized impurity spin).
We consider firstly charge effects, which give the
terms

&tn'=PVags«'+g(Vao to oo+ o~ oo «

td)
noa =

oa oa ~

In the above Hamiltonian we neglect completely in-
tra-s-band scattering V„. The phenomenological
s-d hybridization between s and d bands is induced
by this impurity potential and occurs only at the
impurity site. This simplified picture has been
used to discuss the resistivity of transition-metal-
based alloys. 9' A more detailed description of
impurity-potential effects in transition metals has
been proposed by Riedinger and Qautier. " How-
ever, for simplicity, we adopt here this model
Hamiltonian (2), which we expect describes qualita-
tively the effects we intend to consider.

(ii) The localized spin is coupled to the conduc-
tion states through

J")R;, R&0$ c c
i ja

—g J' '(R„R&) &r(S') d~, d&, ,
i ja

elements. Finally, Sec. VI is devoted to the gen-
eral discussions and possible applications.

II. FORMULATION OF PROBLEM

A. Description of model

We adopt a simplified picture to describe a tran-
sition-metal host with a rare-earth impurity placed
in it:

(i} The unperturbed one-electron Hamiltonian
which describes the host s and d conduction states
is written, in the Wannier representation,

where a k, k -dependent exchange coupling is as-
sumed:

Zu'(R„R&)=+ J '(k, k')e '~'"~e' '
& A. =s or d ~

k, k'

the couplings J"'(k, k') correspond to the exchange
interaction between the localized f electrons and
conduction states, as previously calculated in the
literature. ' As mentioned in the Introduction, in
(3) we restrict ourselves to the ionic ease and ex-
clude resonant f states as would be expected for
Ce impurities. '~ If this is to be included, we do
it through the Wolff-Schrieffer transformation.

(iv) It is well known that rare-earth d states
(5d) are quite different from 3d states of usual
transition metals or intermetallics. One expects,
beside period effects" approximately included in
V«, an important variation of the Coulomb inter-
action at the impurity site. In the host metal we
neglect Coulomb correlations and take them into
account only at the impurity site. The Hamiltonian
is

&mp (d ) (4)
coul UB0 t Ro, y

U = Uirnp Uhogt (4)

U being the Coulomb repulsion parameter. Thus,
the model Hamiltonian adopted for this problem is
given by

3C 3' +Ann +Xtn +~nty (5)

B. Equations of motion

where the supercripts (0) and (1) indicate the zero-
order and the first-order propagators, respective-
ly. Since a Coulomb correlation is present through
the term (4) one needs an approximation scheme:
In this paper we treat such correlation within the
Hartree-Fock picture, which enables us to com-
pare our results with those of Ref. 8.

The equations of motion which determine the
propagators are

1
&@Gran, (&u) =—5,.& 5N +P Ti~i Gr«(o'}+5 o V~Goyn(~}

27r 1

+5&onU(no~ ) Goy (~}+5&o Vu Goy (o.'}

—P d" '(R„R,) (S')o G„,(&u)

In order to calculate the magnetization induced
by the local moment (+ one needs the propagators
G, &, (&u) =((d«, d&,))„and G', &,(~) = ((c„;.c&~,))„. (For
notation, definitions, and equations of motion see
Refs. 7, 14, and 15.) The above propagators are
calculated to first order in the exchange couplings,
i.e. ,
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G(&s(((&) =—5(& 5,„+~T(& Gt&, (((&) + 6(p Vs Gp&, (((&)a}L
1 ~ 4) N dA,

Fourier transforming Eqs. (7} and (8) and drop-
ping the exchange terms one obtains equations of
motion, in the Bloch representation, for the prop-
agators G&~&,", '(((&) and G~fsf~'(u&) (&(, p = s or d, &( v p).
After some algebra one gets for these propagators
(where we change variables through k' -k and k

k+
GQ(P& (~) (2 }-j,( I)(&)-& g

ql S

( f(&&)-& TQ( ) (
(&)&)-&

G&)s(P1 (~) (2v)-& (~ ~(L))-& T)(s(p))
k+q, ks a

X (((& —6 ) (&( 4 P)

(9a)

(9b}

the scattering T matrices being defined as

T, (p&) = U'„s(p&)/[I —U'«(p&) Fs(p&)] (&(, 13
= s, d), (9c)

where

and

F„((u) = Q((o- e)I"&) ' (& = s or d) (9d)

U'„(~) = v'„ +
I v,„I'F,(~), U; (~}=

I v„I' F ((u),

U,', (p&) = V„, U' ((p) = V„. (9e)

In Eqs. (Qc) and (9e), V« = V«+ aU(np(~~}~& is the

localized Hartree-Fock potential which should be
determined self-consistently through the propagator
G«f,

~' (p&), Remembering that, in general,

(di, h.;,.) = Q 8' [Gf«„- f,,(~)],

where F„is, as usual, "

—Gp~ I.,(p& —ie)], e -0
[f(p&) being the Fermi-Dirac distribution function],
one has

V;, = V„+~U g 8:.[G-",.;",I,(~)] .
(10)

k, q

Equations (9) solve completely the problem of de-

—g J"&(R(& R()(P)oG&"„(p&) (X=s or d).

(8)
It should be noted that Eqs. (7) and (8) are valid to

all orders in the perturbations J"' and J"'. Since
we intend to calculate the spin polarization to first
order in the exchange parameters, we obtain now

the zero-order and the first-order solutions of
these equations.

C. Determination of zerowrder propagators

termining the zero-order d-d propagator. It re-
mains, however, the self-consistency problem de-
fined by Eq. (10). Introducing (9a) for &(=d in (10)
one obtains the self-consistency equation

Vss V«+hUQ f(&P')

+&UP„[(Fs(p&)} T«(p&, V„)] .
In the following it will be assumed that Eq. (11)
shows a paramagnetic solution, namely, Vdd = Vdd
= V«. Consequently, in the first-order solution
discussed below, the zero-order propagators
GSS-"-& (p&) and G'; ~-„' (p&) will be supposed to be
spin independent, with P«= V«+dU(np(s&}+& and
spin-independent T matrices. Expressions (9}
show that for a given band structure (through the

density of states and its Hilbert transform) the
zero-order solution is completely determined pro-
vided the matrix elements Vdd and I V,„I are given.
A discussion of approximate procedures to evalu-
ate these parameters is given in Sec. V.

D. Determination of the first-order propagators

Fourier transforming Eqs. (7) and (8) and col-
lecting first-order terms in the exchange parame-
ters one obtains equations of motion for the prop-
agators G«1-" &. (p&) and GI«( -„' (p&). Denoting by
Mo"' the first-order change in occupation number

at the impurity site induced by the external" pertur-
bation da&(&(=s, d) and using the results obtained
in Sec. IIC for the zero-order propagators, one
gets the solution of the coupled system of equations
for GP&').,(p&) and Gs'-' '; (p&) which gives the first-
order correction for the d-d propagator. This
propagator is given by the contributions associated
with the scattering processes depicted in Figs. 1 and

2 (see also the Appendix B). In Fig. 1 we include
the combined scattering associated with the im-
purity T matrices and with the impurity exchange
interaction Ju&(k+q, k), whereas in Fig. 2 the

combined scattering associated with the change in
the Coulomb correlation parameter hU and the im-
purity T matrix is schematically represented.

A convenient approximation is to regard the ex-
change interaction as being k, k' independent, so
that J("&(k, k') =7"& (&(=s, d). We expect that such
approximation will not destroy the main features
of the problem. In this simplified situation, the
contribution of the terms described in Fig. 1 to
the propagator Gsfs-"-,' (&u) is

2&( p& —(-'S& [1—U«(p&) Fs((s)]P
(12a)

The terms described in Fig. 2, corresponding to
b, U, assume a simple form when the sums over
k', k" are evaluated (see Appendix B), namely,
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FIG. l. Scattering pro-
cesses due to impurity T
matrix and exchange cou-
plings associated with the
d-d propagator.
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Thus, in the situation where the exchange interac-
tion is taken k, k' independent, the first-order d-d
propagator is

qq()) ( )
1 1 (S')o[J' '+J"'I V« I [F,((a)}])- nUM)I, ' 1

271 CO ~ 'Eg [1 —U«(&))}F,((o}]' (13)

(14)

The first-order s-s propagator is obtained along exactly the same lines. Here we show the final result
for the case where the exchange coupling is also assumed to be k, k' independent:

1 1 (S )a[J"'[1—V«F~(ru)] +j' '
I V,q I [E~(&u)] }-d UMO'Q I V«I3[F~(u)]3 1

k», E;a
f+q [1—U„((o)E,(~)]' CO —E'»44 4 k

III. SPIN POLARIZATION

A. Calculation of d and s magnetizations

From Eqs. (13) and (14) one calculates the first-
order change in occupation numbers

g~a Q, ) p GM'$1) R ~ = S
%+q, k, r

which yields

n&lf GL ) o xhd(qQ
g'fd) (@)+ ~As (qQ

g(8 ) ($lf}
c

-X"~(q) nUnn' ' (&=s, d) . (15)

The explicit forms of the "partial static nonen-
hanced susceptibilities" X"~(q) (X, 6 =s, d) are given
in Sec. III B. The induced ~ magnetization is de-

Xo"=EX"'(q) (&, P=s, d) . (17c)

(15), using Lnou) =g;nn';"), and since nno',")
= —4n,",', the self-consistency problem can be easi-
ly solved. One gets

m- ' =2P (q) J' '(S')+2X"'(q) J"'(+, (16)

where we have defined the "partial static enhanced
susceptibilities" X ~(q) through

x "(q) = x"'(q)/(1 —«xo") . (17a)

X"'(q) = X"'(q) + X"(q) [&U/(1 —~UX«0)] Xo«, (17b)

gp being

d

)F/i
d

k+q

FIG. 2. Scattering pro-
cesses associated with both
impurity T matrix and the
change in Coulomb repul-
sion. The squares repre-
sent EULkno(4).
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1 5„+5 [1-Vdd Fd((u)]' 1
[1-U~(&u}Fd((o}]' (u- a;"' '

(18a)
1 ~ 1 I V,dl [F«(~)]'

2 ~ " —;„-'[1-U„( )F,( )]'

(x, p=s, &f; xwp) . (18b)

In order to obtain the explicit form for these sus-
ceptibilities, we introduce phase-shifts through

F„(&u) = IF„(u)) I
e "&'"' (x = s, &f),

Xdd(") =1 —
Vdd Fd(") = IXdd(~) I

e '"""', (18)

X(~) = 1 —Udd(&u) Fd(&u) = IX(u)I e '"'"'

where the quantities IF„(&u) I, IXdd(~} I, 6„(~),
g~(&u), q(&u) are defined in the Appendix A. If one
takes into account definitions (19), Eqs. (18) be-
come

+fu(d~& ') +fZd(d &~&)

-Eg0) Q)
L'+q

(20)

where the functions f&'d(&o) and fdd(ru) (X, I3 =s, &f) are
defined in the Appendix C.

An examination of the Eqs. (Cl)-(C8) of Appen-
dix C reveals that, in the absence of a perturbative
charge potential (Vdd = V,d =0), one has

f& (~) =f&'(~) =f3'(~) =fd'(~)

fsd(+) fdd(+) 0

f & (~) =ff'(&d) =f (~),
and the partial susceptibilities (18a), (18b), and
(20) reduce to

X~d(q) =0 (P., p=s, d and Xep), (21a)

which is just the classical result for the indepen-
dent-electron spin polarization due to an external
magnetic field. One sees that expressions (20)
show the same formal result as the obtained in the
pure host case, provided that "new" Fermi distri-
bution functions are introduced. These new dis-
tribution functions include scattering effects
through phase shifts and the strength of the T ma-
trices.

(21b)

B. Explicit form of nonenhanced susceptibilities

The "partial static nonenhanced susceptibilities"
are defined as follows:

x'"(q}=——1
21r

At this point, some comments are necessary.
The "nonenhanced" susceptibilities X™(q),X"(q),
X"(q), X' (q) incorporate, in a natural way, the dif-
ference in valence between impurity and host ions,
via the phase shifts associated with the charge im-
purity potential.

From Eqs. (16) one sees that, even in presence
of Coulomb correlations at the impurity site, the
d and s magnetizations can be written in terms of
"partial susceptibilities. " Equations (17) show
clearly the effects of 4U: The susceptibilities as-
sociated with the response to the local moment
coupling J'~) are enhanced or reduced, depending
on the sign of AU, by the factor (1 —nU Xodd) ', and
the susceptibilities associated with J"' coupling
are corrected by adding (or subtracting) a "4U
scattering factor. "

Now, it is useful to recall the case of indepen-
dent bands (neglecting the impurity-induced mix-
ing). The susceptibilties x"(q) and x' (q) vanish,
and from Eqs. (16) and (17) one gets

»-"' =[X"(q}/(1—

FAUX,

")]~"'5'& (22)

» "'= x"(q) 2 8'"'(S'& (23)

Expression (22) for the &f magnetization may be
compared with the susceptibilities obtained by
Mills and Lederer' for the case of a single d band
in the presence of externally applied frequency ~
and wave-vector-q -dependent magnetic field. Be-
sides the field, these authors include at the impu-
rity site a charge potential and the effect of nU [see
Eq. (11) of Ref. 8]. Now, in the static limit (~=0)
of Ref. 8, we recall that a k, k'-independent ex-
change coupling can be interpreted as being an ex-
ternal static magnetic field acting only at the ori-
gin. The fact that the field acts only at the origin
amounts to considering an external field of the form
ho g;. e "'"'. Then, summing over the values of
the wave vector q', considered in Ref. 8, one ob-
tains a formally identical result to ours [cf. Eq.
(22)], with h, =Z&d'(S'&.

This similarity is to be expected since both ap-
proaches are linear-response calculations, ours
being a static one, which can be easily generalized
to a dynamic one within the random-phase approxi-
mation. Recall that in our case, the weak "exter-
nal" field is the impurity spin s-f and d-f exchange
fields.

Now we make some comments about the correla-
tions in the host. The adopted approximation, ne-
glecting all Coulomb correlations in the host, ex-
cludes strongly exchange-enhanced hosts, like Pd
metal, for instance, where the Stoner criterion is
nearly satisfied. The calculation including the
intra-atomic Coulomb correlations in the host can
only be obtained on formal grounds in terms of a
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power series under the assumption of a local
screening 1e

IV. SPIN POLARIZATION AT IMPURITY SITE

[F.( )]'
2v " [1 —V«FB((u) —

I V,B IBF,(&u) FB((u)]B

(24)
Now, using the definitions of Appendix A, one ob-
tains

X '(0) =-
B sin[2q(&u) —25B(ur)]f(u&) d&u .1 I FB(u)) IB

(26)
So, the "enhanced" d-d susceptibility at the origin
ls

X«(0) =
X (O)rt 1 —n U X'"(0)] . (26)

Quite similarly, one derives the other local par-
tial static susceptibilities, the magnetizations at
the origin being given by

~ (h)(0) 2pll(0) pter) (~) +2pB(0)g(B1 (gg)

(A., P =s, d; XoP) . (27)

lt should be emphasized that for T =0 K [where
f(&u) =1 and &u & eB], expression (25} can be easily
computed given the density of states and the pa-
rameters V«, IV,BI (see Sec. V), and nU. One

expects from expression (25) through the term
sin[2q(&u) —25B(ru}] a possible change of sign of the
magnetic response. The detailed study of this
particular problem will appear soon'~ and will not

In this section we describe how to complement
the results obtained by Blandin and Campbell. s

We recall that in their paper the magnetic moments
were assumed to be at least at a distance HB from
the charge impurity center.

On the other hand, we consider throughout this
paper the limit EB =0 for the magnetic impurity,
i.e. , charge potential source of scattering and
local moment located at the same site. As an im-
plication of our approach, it is possible to evaluate
the self-polarization hyperfine field induced by the
magnetic rare-earth atom embedded in the transi-
tion-metal host. This particular situation simpli-
fies considerably the calculations as compared to
the general formulas (18) and (20), which are ap-
propriate to the calculation of the long-range po-
larization (to be used, for instance, in indirect
g- shift calculations). A similar simplification oc-
curs in the discussion of the spin disorder resistiv-
ity associated with the magnetic rare-earth atom. '

To derive the self-polarization field one just
needs to sum up over q expressions (18). For ex-
ample, in the case of the "nonenhanced" d-d sus-
ceptibility, one has

x (o) =xB'=Z x"(q)

be dicussed further in this paper. The only thing
we want to suggest is that the result obtained in
Ref. 6 may be extended to ltB-0 and that the
changes in sign are a general result of combined
spin and charge potentials. ' '

U. ESTIMATE OF IMPURITY POTENTIAL PARAMETERS

( VydIAND IVsd I)

The results of Sec. III B and the expressions for
the phase shifts (see Appendix A) show that for
given matrix elements V«and l V,„I the new Fermi
functions f, and fB are completely specified by the
knowledge of the band structure through p, (&u)

(&=s, d) and their Hilbert transforms.
The explicit determination of the matrix ele-

ments V«and V,~ can be made under some sim-

plifyingg

hypothesis.
A first alternative consists in assuming that

screening satisfies the Friedel sum rule" ne-
glecting the contribution of s-d mixing to the
screening. The usual result is then

nZ =-- arctan1 ~ V'
7r 1 —VBB FB (&B )

(28)

I V.BI w pB(&r)
[1—$su FB"(BJ,)]'+[v f'«pB(4)] (30)

Then, using resistivity measurements for these

where 4Z is the extra charge introduced by the im-
purity, pB(~) and FBs(&u) being, respectively, the
pure host d-band density of states and its Hilbert
transform (cf. Appendix A), and es is the Fermi
energy. Expression (28) together with (11), where
s-d mixing is consistently neglected also, deter-
mines completely the matrix elements V«. One
should note that for T =0 'K expression (11) can
be cast in a more simple form [neglecting I V„ IB

as in Eq. (28)],
sy

V'„= V«A+Un„+n U pB(~) d&u ([[1—V«F„"(&u)]B
0

+[w V«. p, ((u)]B] '), (29)

where n„=g~f(e&"') is the number of electrons in
the host metal. Equations (28} and (29) show that
V« is completely specified by the band structure
[through pB(&u)], the charge difference n, Z, and the
Coulomb energy parameter LU. As assumed
throughout the calculation we suppose that the so-
lution is nonmagnetic, i.e. , V«= V«. It remains
to estimate the mixing matrix elements I V„I,
which in this simplified picture act only as a source
of scattering between s and d states and as the
principal source of scattering for the s electrons.
It may be shown, by calculating the imaginary part
of the scattering matrix (T&u), I V,B I'}, that the
residual resistivity ~R for nonmagnetic rare-earth
impurities is proportional to9'0
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+b V,[n'd" '(n'+1) s'], (31)

where V, and Vm are the atomic potentials corre-
sponding to d configurations of n+4Z or n+AZ-1
electrons. ln (31) n' may assume the values 3, 4,
5 according to the transition series, n taking on
values between 1 and 10. The first term of (31)
corresponds to perfect screening at the impurity
site (the number of d electrons changing by az}
and the second one to an excess of one charge in
respect to perfect screening. Since one has a
change in d-occupation number Q hn,"' the coeffi-
cients a and 5 must satisfy

a ~z+b(~z-1) =gnng'(v«,
I v„l), (32a)

and naturally

a+5=1 . (32b)

Equations (31) and (32) define a self-consistency
problem, determining the amount of configuration
admixture at the impurity site. In this model the
relevant matrix elements are obtained as a linear
combination of matrix elements associated to the
potentials V, and Vs which are known from atomic
tables. From (31) one has

impurities (e.g. , Lu) diluted in transitionlike met-
als one can obtain rhA. So, from (30), together
with the previously obtain value of V«, one deter-
mines I V,~ I~.

A second alternative would be, instead of giving
primary importance to the screening sum rule, to
adopt the procedure suggested by Hayakawa'9 and
to construct the impurity potential starting from
potentials corresponding to different atomic con-
figurations. (We are grateful to Dr. J.A. B. Car-
valho for very useful discussions concerning this
point. } Following Ref. 19 one has

V, ,=a V,[n'd"+uu(n'+1)s ]

(s I V, , —V „I d} =a 5 V,"'+ b 6 Vm' = V, , (33b)

xg d,",'(v' lv I}

and for V,~ one gets

(34)

xQ nno. '& V'uu

Hence, according to Eq. (11), V« turns out to be

(35)

V« —V«+EU(no+Mo )

= bv«'- (Az- 1}(bvuau'- bvusu') +(5Vuu' —bvuu'}

x2 "no" '(V'uu
I v, u I) + &U&no+ nno") &36)

From Eqs. (35) and (36) it is clear that the matrix
elements I V,~l and V«are determined in terms of

5vu' and bv'o ' are known from atomic tables, to
complete the procedure one needs an explicit ex-
pression for bubo+' in terms of the matrix elements
V~, V,„and the band structure of the host.

Recalling that

dn,',"= 6:„[(F,((u))' Tuu((u, v,'„ I v, u I'}],

where Vh,„is the potential used in the construction
of the host band structure. It should be noted that
in the model adopted here the s-d mixing matrix
elements of these potentials are obtained by com-
puting matrix elements between plane waves k and
d states and, after that, averaging over the wave
vectors k up to the Fermi level. On the other
hand, from Eqs. (32) it follows that

a=-~Z+1+gd o'."(V,'„
I V„I) .

So, V« is written

V =bVni-(aZ-1)(bVoi —5V~')+(5V~", —5V~")

&dl Vsmo Vh, utld} =a 5 V«u'+b 5 V«s'= V« (33a) one obtains

(o)
'& 1+ I V«I fo p, (ou) pu(&a&)+[Fu(u)] p, (&u)/pu((u)]' (37a)

where

D(co) =(1—v«Fu (~) —
I
v u lo[Fu (~) E,"(~)—o' Pu(~) P.(~)]]o+[ov«P&~) +

I v..I' [Pu&&) &."(&)+ P.&")&u &")]']
(3Vb)

and so it is possible to determine self-consistently
the potentials V«and I V,u I. Again it is assumed
that the solution is nonmagnetic, i.e. , V« = P«.
Once determined, from one method or the other,
the values obtained for V«and I V,~ I can be used
in the explicit calculation of the phase shifts and
partial susceptibilities.

VI. FINAL REMARKS

From the model described in the text is clear
that the rare-earth impurity introduced in the tran-
sition host acts in two ways:

(i) The simplest effect is that the f level (sup-
posed to lie below the conduction s-d bands) pro-
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vides only a source of one-electron spin-dependent
potential via the exchange interactions s-f and d-f.
Its isolated effect has been extensively discussed
in the literature' ' and extensions to include hy-
bridization (s-d host hybridization) have been
made. '

(ii) The valence state of the usual rare earths
(trivalent in general} introduces a new feature of
the impurity, since the potential associated with
the charge difference provides a new source of
scattering. In the case discussed here, primary
importance is given to the nature of the host, name-
ly, the existence of s-d bands,

The effect of potential scattering associated with
the rare-earth impurity in ferromagnetic transi-
tion metals has been invoked in a previous work. "
There, it was shown that potential schattering as-
sociated with the rare-earth impurity may dras-
tically modify the behavior of the d magnetic mo-
ment, thus coupling the rare earth's f moment
antiparallel to the host magnetization.

Another aspect of the combined effect of spin
and charge potentials was discussed withina one-
band model by Blackman and Elliot in the context
of the calculation of spin-disorder resistivity s and
Rude rman-Kittel-Kasuya- Yosida interaction. '
In these works (and their extension to describe
s-d bands and hybridization effects'0} the effect of
potential scattering is also included in the phase
shifts, their behavior as a function of the energy
determining the net effect in these quantities of the
impurity charge scattering.

The recent work of Blandin and Campbell in-
volves also the combined effect of charge potential
scattering and spin-dependent potential. , in the con-
text of the calculation of the spin polarization.
Note thai the above authors also treat the exchange
interaction to first order in perturbation theory.
Their work, assuming a nonmagnetic impurity at
the origin and magnetic moments far apart from
it by at least a distance 5, has for its main re-
sult that the usual spin polarization includes a phase
shift determined by the strength of the one-electron
local perturbation.

Our calculation above, although involving more
complicated steps, may explore a typical feature
of narrow d bands. In fact, besides providing the
limit R, = 0 of Ref. 6 (cf. Sec. IV), it is known"
that the behavior of phase shifts (defining the im-
purity response, within the Hartree-Fock approach}
depends strongly on the details of the d density of
states, ' which in our case may assume arbitrary
shape. The price to be paid for this generality in
the band structure is the more coxnplex nature of
the expression giving the spin polarization for
these two-band systems. However, the limiting
situation of Sec. IV of the polarization at the im-
purity site, provides a simple expression which

can be easily evaluated numerically, even in pres-
ence of the complex band structure of the transi-
tion metal.

Other quantities, e.g. , the spin-disorder resis-
tivity and the Ruderman-Kittel-Kasuya- Yosida in-
teraction as shown in Refs. 22, 23, and 10, have a
more simple dependence on the phase shifts than
the spin polarization does.

As discussed in Sec. III, whence the potential
matrix elements are obtained, the computation of
the phase shifts gives directly the effect of the im-
purity charge scattering on the spin polarization.
In the long-range spin-polarization case [cf. for-
mulas (18) and (20)], since phase shifts appear as
giving rise to "modified Fermi functions, " the com-
putation of the partial susceptibilities requires a
quite delicate numerical analysis. In fact, if one
is interestedinobtainingthe effects of a d-band
structure (virtual bound states, peaks, etc. ), they
appear naturally in our formalism via the phase
shifts, but in a much more complex form through
these modified Fermi functions (cf. Appendix C),
thus changing the usual behavior of a magnetic re-
sponse problem, which is always given in terms
of common Fermi functions. So, the procedures
introduced by Diamond~ and Lipton and Jacobs
should be extended to include new functions which
may assume other values than 0 or 1. Hence, be-
sides the problem of investigation the role in long-
range spin-polarization of the details of the band
structure, expressions (Cl}-(C8}add the problem
of extending available numerical techniques to eval-
uate magnetic response functions.

The best way to discuss the role of the band
structure in resonant scattering (virtual bound
states), peaks, and so on, is to adopt a realistic
band structure and calculate the susceptibilities
involved. By changing in the band structure the
position of the Fermi level, in order to scan the
neighborhood of the top of the band, the regions of
narrow peaks, etc. , the role of these details may
be discussed properly. Such an analysis, however,
is beyond the scope of this article.

As far as the experimental situation is con-
cerned, we would like to point out some possible uses
of our calculations. Besides the determination of
the residual resistivity of transition alloys with
nonmagnetic rare earths, which could provide a
way of estimating l V,~ I (as discussed in Sec. V),
measures of indirect g shift could be of interest.
This class of experiments would measure the indi-
rect g shifts, keeping fixed the "resonant" (e.g. ,
Gd) and "nonresonant" (e.g. , Tb) rare-earth im-
purity but changing the transition host, in order to
vary the nature of the host band structure. Sys-
tems like NiRh alloys, for instance, with rare-
earth. impurities, by changing the amount of Ni and
Hh would provide a changing d-electron structure.
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A measure of indirect g shift as a function of con-
centration could exhibit experimental evidence for
the effect of changing the d-band structure on the
spin polarization
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APPENDIX A: PHASE-SHIFT PARAMETERS

Taking into account definition (Qd), for &d wig in
the limit & -0, one has real and imaginary parts.
Hence

It is clear that

F (&d+ig)Fg(&d+I&.'} IF (&d)
I IFg(&d)l """'"'~"""

Similarly,

I- vggFg(&dais) = ll- vggF(g &d)l
e""gg' '

Ix&u &

I
e ingg-(e )

where

(As)

(AS)

F~( &danie} =F„"(&d)V iF[ (&d) ()&=s, d),
where

(Ai)

(A2)F,"(& ) = &P u) F„'(&d) =&(P„(&d),
1

p&, (&d) denoting the density of states of conduction
electrons. If we introduce phase shifts, one may
write

lx g(~) I ={[I—vgg Fg (~)]'+[vgg Fg(~)]')'",
cos&)~(&d) =[I —V~Fgs(&d}]/I l —V„F,(&d) I,
»n&) (~) =- & Fg(~)/li - V„Fg(~)l

and finally

I- v~Fg(&dais) —
I vgl F,(&daric) F,(&d+ie)

= Ix(&d)
I

e""'"'

(A7)

(AS)

F„(&d+Ie) =
I
F„(&d)

I

e"') ("' (AS) where

IX(&)
I

= ({I—v~ Fg (&)
I vg—I' [s g (~)F'(~') —Fg(~) F,'(~)]]p+{vgg sg(~) —

I vg I'[Fgs(&) Fl(~) +Fgl(&) F,"(&)]]p}&",
(A())

I - V F,"(&d) —
I V., I [F",(&d) F."(&d) -E (&d) F.'(&d)]

coen(~) =- " '
'Ix( )

$ gg Fgl(&d} - I V,g I [Eg (&d) E,( )+&dFg(&d) F,"(&d)]

(AIO)

APPENDIX 8: GENERAL EXPRESSION FOR PROPAGATOR G "4 (Qk+qp;a

In this appendix, we exhibit the final result for the first-order correction in the one-electron d-d prop-
agator, when the full k, k' dependence in the exchange couplings is included. One has

G- - -' (&d) =-—
&g&l

J' '(k+&I, k)(P')o+QJ' '(k+&I, k')(+o «&T (&d)+T (&d) J' '(k k)
k+q k' k' k' k'

1
&&(+o' T+(&d) g &g) J '(k', k )(&)'}e Ig)T (&d)+T (&d) Q (, )

J&»(k' k")(~)o
~k

XT'g(&d)
I &g)+

—
(g& r&Unng~~+nUng(Q~~p &g) T (&d)+T" (&d) g (g, nUn)t( '

k'

+ T (&d) ~ (g& r)ULdgp~ &g& T (&d) «&, (Bl)tu) ~ a

k" k

This lengthy expression is to be compared with the simplicity of the result of the text [cf. E&l. (13)], thus
emphasizing the complexities introduced in the self-consistency problem by the k, k' dependence.

APPENDIX C: DEFINITION OF FUNCTIONS f &g(&d) AND f~g(&d) (Xg=s,d)

ff'(~}= IX(~) I

' cos[2&)((d)] f(&d),

f '( &)=&dI v„l' IF,(&d)/x(&d) I'cos[s&)(&d) —s(),(&d)] f(&d),

(cl)
(c2}
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1 d&u'f(~') IX(~')I 'sin[2q(&u')]
w

«( 1 d&u' f((u') I V« I IF, ((u')/X((u') I sin[2n((u') —25, (&u')]

(d —(d

ff'(~) = Ix«(~)/x(~) I' cos[2&(~) —2'«(~)] f(~),

f3'(~) =
I V« I' IFu(~}/x(~) I' cos[2n(~) —2~a(~)] f(~),

1 d~'f(ur') IX«(&u')/X(&o') I' sin[2q(~') —2rI«(&u )]
2 v (d —CO

1 d(u'f(&u') I V« I~ IF,((u'}/X(u,") I sin[2q((u') —25,((u')]
7r

6' denoting Cauchy'8 principal value.
Note added in proof: The second alternative estimate of the impurity parameters can be improved

(screening condition) using the methods of Ref. 12.

(CS}

(c4)

(cs)

(C6)

(cv)

(c8)
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